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ABSTRACT

A novel scheme for the estimation of layer-averaged relative humidity (RH) profiles from spaceborne ob-

servations in the 183.31-GHz line is presented. Named atmospheric relative humidity profiles including analysis

of confidence intervals (ARPIA), it provides for each vector of observations the parameters of the distribution

of the RH instead of its expectation, as is usually done by the current methods. The profiles are composed of six

layers distributed between 100 and 950 hPa. The approach combines the six channels of the Sondeur Atmos-

phérique du Profil d’Humidité Intertropical par Radiométrie (SAPHIR) instrument on board the Megha-

Tropiques satellite and the generalized additivemodel for location, scale and shape (GAMLSS)method to infer

the parametric distributions, assuming that they follow a Gaussian law. The knowledge of the conditional

uncertainty is an asset in the evaluation using radiosounding profiles of RHwith a dedicated Bayesian method.

Taking the uncertainties into account in both the ARPIA estimates and the in situ measurements yields biases,

root-mean-square, and correlation coefficients in the range of20.56% to 9.79%, 1.58% to 13.32%, and 0.55 to

0.98, respectively, with the largest biases being obtained over the continent, in the midtropospheric layers.

1. Introduction

The distribution and variability of water vapor is a

key parameter of the climate system, through radiation

processes (Spencer and Braswell 1997; Allan et al. 1999;

Held and Soden 2000; Pierrehumbert 2011; Allan 2012),

thermodynamics and phase changes (Pierrehumbert and

Roca 1998; John and Soden 2006; Held and Soden 2006;

Stevens and Bony 2013), and dynamical flows (Galewsky

et al. 2005; Roca et al. 2005; Brogniez et al. 2009; Sherwood

et al. 2010). Even if the underlying physics of some of

these processes are well understood, such as the Clausius–

Clapeyron equation, which constrains the moisture con-

tent of the atmosphere (Stevens and Bony 2013), filling

the gaps requires a continuous monitoring of the atmo-

spheric water vapor.

Spaceborne observations complete the network of radi-

osounding stations since the 1970s and provide numerous

constraints for numerical weather prediction (NWP)

models through data assimilation (e.g., Andersson

et al. 2005). Among the current spaceborne observations

performed over a wide range of frequencies, it has been

shown that microwave sounders provide the main source

of constraints on the vertical profiles of atmospheric rel-

ative humidity (RH) within NWP models (Andersson

et al. 2007; Radnóti et al. 2010). In fact, observations in

the 183.31-GHz rotational transition line of the water

molecule allow for the study of RH even in the pres-

ence of low-level clouds (Isaacs and Deblonde 1987).

High-level clouds combine increased absorption by

water vapor within the saturated clouds and scattering

by precipitating particles (icy or water droplets; Burns

et al. 1997; Houshangpour et al. 2005; Hong et al. 2005;

Buehler et al. 2008). Such features of the microwave

radiation allows for the study of mechanisms at play

around the convective cores (Bretherton et al. 2004;

Hong et al. 2008; Zelinka and Hartmann 2009; Chae

et al. 2011).

Beside the assimilation of the raw observations for

NWP purposes, measurements in the 183.31-GHz line

are used to estimate the relative humidity profiles, and

various inversion techniques exist. Multivariate regres-

sion techniques (Rosenkranz et al. 1982; Sivira et al.
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2015), and in particular neural networking (Cabrera-

Mercader and Staelin 1995; Karbou et al. 2005; Aires

et al. 2013), embed all the atmospheric characteristics

in a statistical training base. The N-dimensional varia-

tional schemes include the physical constraints in the first

guesses and in the iterative procedures (Wilheit 1990;

Blankenship et al. 2000; Liu and Weng 2005), while

multispectral methods combining infrared and micro-

wave measurements have been mainly developed to

optimize the retrievals of the cloud-free scenes (Blackwell

and Chen 2006). Hence, the recent National Oceanic

and Atmospheric Administration (NOAA) Unique

Cross-Track Infrared Sounder (CrIS)/Advanced Tech-

nology Microwave Sounder (ATMS) processing system

(NUCAPS) generates profiles of moisture on board the

Suomi–National Polar Orbiting Partnership (Suomi-NPP)

satellite with a global root-mean-square (RMS) difference

around 30% in the midtroposphere and around 20% to-

ward the surface (Nalli et al. 2013).

Overall, the methods of retrieval of a geophysical

variable X from satellite observations provide a con-

ditional estimate of the expectation ofX given a set of

inputs (restricted or not to the satellite data): here we

propose an estimation of the parameters of the distri-

bution of X that can be interpreted as a confidence

interval of the retrieved value. The data used to design

and test the retrieval scheme are presented in section 2.

The approach used to estimate the conditional mean

and standard deviation is introduced in section 3, to-

gether with the computation of the uncertainty of the

observations. Section 4 is dedicated to the results ob-

tained using Megha-Tropiques observations: a com-

parison of a set of radiosonde measurements and a

snapshot of a tropical cyclone. Finally, some conclu-

sions are drawn and a few perspectives are discussed in

section 5.

2. Data

a. SAPHIR observations

Sondeur Atmosphérique du Profil d’Humidité In-

tertropical par Radiométrie (SAPHIR) is a passive mi-

crowave sounder that measures the upwelling radiation

in the 183.3-GHz water vapor absorption line. As part of

theMegha-Tropiques payload, SAPHIR has six double-

sideband channels located close to the line center

(channel 1 at 183.31 6 0.2GHz) down to the wings

(channel 6 at 183.31 6 11GHz). It is a cross-track ra-

diometer that observes the earth’s atmosphere with a

scan angle of 642.968, a footprint size at nadir of 10 3
10 km2, and a 1700-km swath made of scan lines con-

taining 130 nonoverlapping footprints. Details of the

instrument and its channel characteristics are described

in many publications (Karouche et al. 2012; Brogniez

et al. 2013; Roca et al. 2015; see also http://smsc.cnes.fr/

MEGHAT/index.htm for monthly technical updates of

the instrument).

Ice layers in the upper parts of clouds and convective

rainfall have a clear signature in 183-GHz channels

(Hakkarinen and Adler 1988; Burns et al. 1997), and the

detection schemes of such scenes have been developed

for theAdvancedMicrowave SoundingUnit-B (AMSU-B;

Greenwald and Christopher 2002; Hong et al. 2005) and

adapted for the slightly different channels of SAPHIR

(Sivira et al. 2015). In fact, because SAPHIR measure-

ments are almost insensitive to the presence of non-

scattering clouds (either from ice or from rainfall), the

RH retrieval method is applied to all pixels, in an un-

differentiated manner, as soon as the detection scheme

mentioned above considers a pixel as nonconvective.

In addition, information from the cloud cover within

every pixel of SAPHIR is provided by data from the

various geostationary satellites observing the tropical

belt [GOES-West and GOES-East of NOAA, the Me-

teorological Satellite (Meteosat) of the European Orga-

nisation for the Exploitation of Meteorological Satellites

(EUMETSAT), and the Multifunctional Transport Sat-

ellite (MTSAT) of the Japan Meteorological Agency

(JMA)]. The algorithm developed by the Satellite Ap-

plication Facility on Support to Nowcasting and Very

Short Range Forecasting (SAFNWC) has been adapted

to each satellite, thus giving a consistent cloud analysis.

The method and a comparison to the Cloud–Aerosol

Lidar with Orthogonal Polarization (CALIOP) of the

CALIPSO satellite are described in Sèze et al. (2015).

Therefore, the individual cloud analysis from each geo-

stationnary pixel (up to 40 pixels) is kept within every pixel

of SAPHIR and is used to classify the retrieval in terms of

cloudy/cloud-free types.

b. Radiosounding profiles

Here we use two distinct sets of radiosonde profiles:

a synthetic training set used to overcome the issue of the

number of space/time collocations between Megha-

Tropiques observations and radiosonde (RS) profiles

representative of the tropical atmosphere, and a set of

field campaign measurements for the application to

real data.

1) THE SYNTHETIC TRAINING SET

This study follows the work described in Sivira et al.

(2015) dedicated to the design of a layer-averaged RH

profile algorithm. Therefore, the synthetic dataset is the

same and has the same purpose of statistical training

and validation. Hence, in order to overcome the size

issue of a training dataset made of Megha-Tropiques

1006 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33

http://smsc.cnes.fr/MEGHAT/index.htm
http://smsc.cnes.fr/MEGHAT/index.htm


observations collocated in space and time with high-

quality RS profiles, we associated the thermodynamic

profiles extracted from the Analyzed Radiosoundings

Archive (ARSA; http://ara.abct.lmd.polytechnique.fr/

index.php?page5arsa) with a radiative transfer model

used to provide the corresponding SAPHIR brightness

temperatures (BTs). The various quality steps applied to

the RS profiles of ARSA can be found in Sivira

et al. (2015).

As in Sivira et al. (2015), the simulation of SAPHIR

BTs from the RS profile is performed using version 9.3

of theRadiative Transfer for the Television and Infrared

Observation Satellite (TIROS) Operational Vertical

Sounder (RTTOV) fast radiative transfer model

(Matricardi et al. 2004). The surface emissivity is either

prescribed using the 10-yr emissivity atlas of Prigent et al.

(2006) for the continental cases or computed within

RTTOV with the Fast Emissivity Model-3 (FASTEM-3;

Deblonde and English 2000) and 10-m wind speed. The

1990–2007 archive of ARSA is considered and only

profiles restricted to the 308N/308S belt are kept. As dis-

cussed in Sivira et al. (2015), this subset of ARSA has the

known characteristics of the tropical atmosphere. How-

ever, only a few cases sample the extremely dry (total

column water vapor , 20mm) and very moist (total

column water vapor . 80mm) columns.

2) FIELD CAMPAIGNS MEASUREMENTS

RS profiles obtained from two field campaigns are

explored and considered as reference profiles for the

evaluation of the method. The two sets are based on

measurements by Vaisala RS92-SGPD (RS92) probes

that offer consistency in data quality.

d Cooperative IndianOceanExperiment on Intraseasonal

Variability in the Year 2011 (CINDY2011)/Dynamics

of the Madden–Julian Oscillation (DYNAMO)/

ARM Madden–Julian oscillation (MJO) Investigation

Experiment (AMIE; winter 2011/12): Between Sep-

tember 2011 and March 2012, the field campaign

CINDY2011–DYNAMO–AMIE (CDA) took place

over the Indian Ocean with the aim of a better

description of the MJO and its key processes.

CINDY2011 (see http://www.jamstec.go.jp/iorgc/cindy/),

DYNAMO (see http://www.eol.ucar.edu/projects/

dynamo/), and AMIE (see http://campaign.arm.gov/

amie/) gathered a radar network (island and shipborne),

a ship/mooring network, in situ measurements from air-

crafts (microphysics probes and radar), and 51 priority

sounding sites (Ciesielski et al. 2014). Here, we use the

RS92 selected by Clain et al. (2015) that is extracted

from level 3 of theCDAupper-air database, reasonably

collocated in space (within a 50-km radius area) and

time (within a 645-min window), with SAPHIR ob-

servations. Ouagadougou (summer 2012): A Megha-

Tropiques validation campaign took place thanks to a

supersite located in Ouagadougou, Burkina Faso

(12.378N, 1.548W), between April and August 2012. It

gathered a polarimetric radar (X-band radar Xport), a

densified rain gauge network, and two intense phases of

radiosoundings. This campaign is the result of a strong

collaboration between the French Institut de Re-

cherche pour le Développement (IRD), the National

Weather Service [Direction Générale de la Météoro-
logie (DGM)] of Burkina Faso, and the Agency for

Aerial Navigation Safety in Africa and Madagascar

[Agence pour la Sécurité de la Navigation Aérienne en
Afrique et à Madagascar (ASECNA). During this

campaign, 55 RS92 probes were launched at Megha-

Tropiques overpasses and during a premonsoon period

(29 May–11 June 2012) and a monsoonal period

(17 July–1 August 2012).

These two sets have been already explored for the

evaluation of the upper-tropospheric humidity products

derived from SAPHIR (Brogniez et al. 2015), and here

we use the entire profiles. The cumulative distribution

functions of the RH of these two sets are presented in

Fig. 1 and show that, overall, the CDA RS probes

sample more cases with RH between 10% and 40% than

in Ouagadougou.

3) GENERAL CHARACTERISTICS

We decompose the troposphere into six layers, fol-

lowing the method described by Sivira et al. (2015):

the upper and lower bounds of the layers are defined

FIG. 1. Cumulative distribution functions of RH (%RH) within

the CDA set (black curve) and within the Ouagadougou set

(gray curve).
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from the patterns contained in the ARSA database,

with a distinction between oceanic and continental

situations. The original relative humidity profiles are

vertically clustered thanks to self-organized maps

(also known as Kohonen maps; Kohonen 1982) com-

bined with a semiempirical iterative method in order

to obtain layers with minimal variance of RH, as well

as minimal mean–median distance. The six layers are

defined in Table 1. The BTs are normalized (zero

mean and unity variance). The retrieval technique is

trained over a sampling of two-thirds of the ARSA

database that has been randomly perturbed using the

in-flight radiometric noises of SAPHIR channels (10

noisy reproductions of each state; see Sivira et al.

2015), and then tested over the remaining one-third of

the database.

3. Uncertainty analysis

a. Rationale

A known feature of sounders is the evolution of the

sensitivity functions (the RH Jacobians J RH 5 ›BT/›RH)

with the characteristics of the atmosphere under consid-

eration (Schaerer andWilheit 1979). This is illustrated by

two tropical profiles in Fig. 2: when the atmosphere gets

drier, the J RH of SAPHIR widen and the peaks of the

maxima shift downward. This is further generalized over

the ARSA synthetic set in Fig. 3, which shows the dis-

tribution of the maxima of the J RH according to the

corresponding values of BT (computed at nadir). For

instance, for C6 (183.316 11GHz) the warmest BTs (i.e.,

the driest profiles) are associated with low peakingJ RH.

Despite this feature, common to all microwave humidity

TABLE 1. Statistics of the different GAM-based estimations of the six-layer RH profile (radiosoundings from the 1990–2007 period) for

the oceanic training and for the continental training. The mean (% RH) and the variance (% RH) of the residuals (estimated minus

observed RH), and the Pearson correlation coefficient are given.

Layer

Validation of the models

Mean of residuals (%) Std dev of residuals (%) Correlation (Pearson)

Oceanic Continental Oceanic Continental Oceanic Continental

100–200 hPa (L1) 1.58 1.51 7.1 7.2 0.84 0.84

250–350 hPa (L2) 0.80 0.09 3.9 3.6 0.94 0.95

400–600 hPa (L3) 1.80 20.26 4.6 5.2 0.97 0.93

650–700 hPa (L4) 2.00 2.62 12.3 11.3 0.82 0.85

750–800 hPa (L5) 1.11 2.79 15.8 12.5 0.70 0.82

850–950 hPa (L6) 21.50 3.70 12.5 14.8 0.72 0.74

FIG. 2. Vertical profiles (log scale) of the six J RH of SAPHIR for (a) dry and (b) moist

atmospheres. The corresponding RH profile is the black line, and the gray curves are the

J RH for the six channels (C1: plain line, C2: dashed line, C3: dotted line, C4: dotted–

dashed line, C5: long dashed line, C6: two dashed line). The vertical bars on the right-hand

side indicate the six atmospheric layers. The mean relative contributions (%, if greater

than 1%) of each J RH in the global information of the 650–700-hPa layer are indicated as

an illustration.
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sensors, a few papers have already demonstrated the

usefulness of SAPHIR measurements to estimate layer-

averaged RH profiles (Aires et al. 2013; Brogniez et al.

2013; Gohil et al. 2013; Sivira et al. 2015), with an in-

creased improvement of the retrievals with respect to the

three-channel operational sensors toward the edges of

the troposphere.

We follow the work of Brogniez et al. (2013) and

Sivira et al. (2015), who opted for generalized additive

models (GAMs; Hastie and Tibshirani 1987; Wood

2006) to retrieve RH layer-averaged profiles. A GAM

is a nonparametric model that has the flexibility to de-

pict any nonlinearity that is contained in the data used to

calibrate, or train, the transfer function between a set of

explanatory variables Xi and the explained variable Y.

In such a model, the structure of each explanatory var-

iable is assumed to be additive, which gives the form

g(E(Y jX))5 �
p

i51

f
i
(X

i
)1 « , (1)

where g(�) is a link function between the expectation of

Y conditionally on a p-dimensional explanatory variable

X (X1, . . . , Xp)—say, E(Y jX)—and a sum of fi(Xi)

(i5 1, ::: , p). The functions fi(�) are nonparametric

functions with specific terms and coefficients that need

to be defined. Finally, « is a zero-mean Gaussian noise.

Transposed to the present work, the p-dimensional ex-

planatory variable X is the vector of BT (with p5 6) of

SAPHIR for a given sample and the explained variable

Y is the RH of an atmospheric layer k, noted RHk

(k5 1, ::: , 6). For each k, penalized regression cubic

splines are used as the smoothing functions f ki and are

estimated independently of the other covariates using a

‘‘back-fitting algorithm’’ (Hastie and Tibshirani 1990).

The determination of the appropriate degree of

smoothness of each spline is performed during the

model-fitting step, through the minimization of the

generalized cross-validation score (Wood 2004, 2006).

Such a score is computed from the rotation of the data

into a plane in which all the data have the same influ-

ence, followed by a leave-one-out procedure for the

validation step of the estimated smoothing parameter.

Figure 4 represents the f ki for each of the six atmospheric

layers, using the statistical training dataset ARSA. The

x axes correspond to each explanatory variable BTi

and the y axes give their relative contribution [i.e.,

the f ki (BTi)] to explain the RHk. The gray envelop

shows 2 times the standard error of the fitting proce-

dure (the Cole and Green 1992) algorithm, based on

derivatives of the likelihood function, or the Rigby

and Stasinopoulos (1996) algorithm, based on semi-

parametric additive models for the mean and variance),

which can be increased by a lack of data in a given range

(see the distribution of the gray ticks on the x axis) or

by a distribution of data that does not allow conver-

gence. Overall, but for twoXi for RH1 (X2 561.1GHz

and X3 6 2.8GHz), the standard error is small. As

expected by the sensitivity functions of SAPHIR (see

Fig. 2), the dynamics of variation of every spline and

its nonlinearities are strongly dependent to the atmo-

spheric layer under consideration. For instance, the

variability of RH4 is driven by X3 (62.8GHz), X4

(64.2GHz), and X5 (66.8GHz), while RH6 is mainly

driven by X6 (611GHz).

Nevertheless, despite the strength of most retrieval

techniques to capture the nonlinearities of the BT-to-

RH inverse problem, such as GAMs, the dependence of

the sensitivity functions of the instrument upon the at-

mospheric thermodynamics yields scene-dependent re-

trieval uncertainties. This is partly illustrated in Fig. 2

with the relative contribution of each J RH to the total

signal (although it is not a simple addition, as discussed

above), for an atmospheric layer covering 650–700hPa.

For this layer, the information content of the six chan-

nels is very different, thus yielding estimated RH with

FIG. 3. Pressures of the maxima of the sixJ RH of SAPHIR over

the ARSA subset according to the simulated BTs of the profiles.

Term f0 is the central frequency of SAPHIR, i.e., 183.31GHz. The

vertical and horizontal bars located on the right and on the top

represent the ranges of values (minima and maxima) for the

pressures and the BTs, respectively.
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FIG. 4. Smoothing functions (the f kp , selected as penalized regression cubic splines sp) fitted for the six atmospheric layers [layer 1 (top

row); layer 6 (bottom row)], using the six BTs of SAPHIR as explanatory variables (x1, . . . , x6 5 183.31 6 0.2 . . . 183.31 6 11GHz,

normalized). The light gray shaded areas correspond to two standard errors above and below the estimated splines, and the gray ticks on

the x axis give the predictor values from the training database. The numbers indicated in parentheses are the estimated degrees of freedom

for each function.
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different uncertainties between the two situations, al-

though with the same input vector.

b. Estimation of the conditional uncertainties linked
to the retrieval algorithm

The additive framework allows for studying the ac-

curacy of the relationship RHk 5 f ki (BTi), and to do so

for each i. Figure 5 is an illustration of such a relation-

ship between the RH3 (the 400–600-hPa layer, in log

scale) and the BT4 (183.31 6 4.2GHz), as observed in

the training set. Obviously there is a scatter and the

modeling of the distribution of RH3 for particular values

of BT4 can be explored to have an estimate of the fitting

uncertainty between BT4 and RH3. Therefore, if we

assume that the conditional distributions of RH3 given

BT4 follow Gaussian laws, then the estimation of the

two parameters of the distributions—that is, the means

m and the standard deviations s—is enough to charac-

terize the retrieval uncertainty RH3 5 f 3(BT4). Exam-

ples of conditional distributions are provided for three

BT4 (260, 265, and 275K), together with their m and s.

One can thus see that the relationship RH3 5 f 3(BT4)

cannot be characterized with only one distribution, since

the values of s depend on the BT4. Such study can be

propagated with p predictors (in the present case we

have six BTs) thanks to the generalized additive model

for location, scale and shape (GAMLSS)method (Rigby

and Stasinopoulos 2005; Yan and Gebremichael 2009).

It is an extension of the GAM framework that gives

access to the distribution parameters of the regression:

the mean (the location), the standard deviation (the

scale), and the skewness and kurtosis (the two shape

parameters). Because we work with Gaussian distribu-

tions, the two shape parameters are put aside in the

following. As in GAMs, a GAMLSS-based regression

assumes that the structure of each predictor is additive,

so that each explanatory variable can include a wide

variety of terms, parametric or not, such as penalized

splines. The estimation of GAMLSS coefficients (such

as the degree of smoothness of the splines) is based on

penalized likelihood maximization (discussed at length

in Rigby and Stasinopoulos 2005). Thus, instead of pro-

viding the best estimate of RHk for k given BT, the

GAMLSS approach gives the parameters of the condi-

tional distribution ofRHk givenBT, under the assumption

that they have the same parametric form (aGaussian law):

f (RHk jBT)5 1

s
ffiffiffiffiffiffi
2p

p exp

"
2
(RHk 2m

BT
)2

2s2
BT

#
, (2)

where mBT is the mean and sBT is the standard deviation

of the distribution, which are both conditional onBT. In

the following, for a given k mBT will be referred to as the

‘‘estimated RHk.’’

The method is called atmospheric relative humid-

ity profiles including analysis of confidence intervals

(ARPIA): for every set of BTs observed by SAPHIR,

ARPIA computes the means and the standard deviations

(also interpreted as the 1s confidence interval) of the

distributions of the possible estimates of the RHk

(k5 1, ::: , 6).

Table 1 gives the statistical characteristics of the six

GAMLSS over the ARSA subset of profiles not used for

the training (a third of the initial database). This is to test

the internal consistency of the training. The model val-

idation is performed with the computation of the mean

and the standard deviation of the error (observed minus

estimated RHk) for each k, and with the Pearson cor-

relation coefficient (linear assumption). The continental

scenes exhibit larger biases below 750hPa (layers 5 and

6), nevertheless with quite high values of linear corre-

lations (above 0.70). The best retrievals are obtained

between 250 and 600 hPa, where the highest correlation

coefficients (above 0.93) are associated with the lowest

values of errors (means , 1.8%) and standard de-

viations (,5.2%). This is consistent with the findings of

FIG. 5. Distribution of the average RH (%, with a log scale) of

layer 3 (400–600-hPa layer) according to the BT of SAPHIR

channel 4 (183.31 6 4.2GHz), taken from the training set. The

conditional distributions, assuming a Gaussian law, of the RH

given three different BTs (260, 265, and 275K) are drawn as an

example, and the corresponding m and s are indicated.
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Kumar et al. (2014) for the retrieval scheme layer-

averaged relative humidity (LARH) detailed by Gohil

et al. (2013) (the Indian scenario for SAPHIR) when

compared to NWP model profiles.

c. Evaluation using radiosonde profiles: Propagation
of uncertainties

We now consider the uncertainties of measurements

using in situ probes in order to apply a model of prop-

agation of error. Indeed, since for every atmospheric

layer ARPIA provides a RHk value together with its

1s confidence of interval, the comparison to a reference

(the RS measurement) should be an RH value associ-

ated with an uncertainty.

The quality of the thermodynamic profiles measured

by the RS92 probes has been extensively studied, which

yielded characterizing and correcting the biases (Vömel

et al. 2007; Immler et al. 2010; Dirksen et al. 2014) and

documenting the residual uncertainties. The work by

Miloshevich et al. (2009) mentions two terms that affect

the measured RH at a given point i: 1) a random term

«1 induced by the variability of the sensor production,

which is relative to the humidity conditions («1 5
60:0153RH for RH . 10%; «1 560:033RH for

RH, 10%); and 2) a ground-check calibration uncertainty

term «2 different between day («2 560:053RH1 0:5)

and night («2 560:043RH1 0:5). As discussed in Clain

et al. (2015) and following Immler et al. (2010), these in-

dividual uncertainties can be reasonably considered as

random and independent, and thus sum up for a total mea-

surement uncertainty at a given point as «i 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«21 1 «22

p
.

If RHk is the mean relative humidity of a given k,

estimated from N 5 50 to 200 individual measurements

of elementary rhi (i5 1, ::: , N), then the estimate of the

variance (var) of the RHk of the whole layer can be

expressed as (BIPM 2008)

var(dRHk)5 var

 
1

N
�
N

i51

rh
i

!
5

1

N2 �
N

i51

var(rh
i
)

1
2

N2 �
1#i#j#N

covar(rh
i
, rh

j
) (3)

with covar as the covariance matrix between the rhi. The

analysis of the «i computed over the entire set of ra-

diosoundings of the CDA experiment revealed very small

variability, translating into var(rhi)5 «2 ; constant.

We can compute the lower and upper limits of the

range of values that var(bRHk) can take. If all of the rhi

are independent, then covar(rhi, rhj)5 0 and the lower

bound is given by

var(bRHk)5
«2

N
. (4)

However, if all of the individual measurements are

correlated to 1, then

R5
covar(rh

i
, rh

j
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(rh
i
) var(rh

j
)

q 5 1 (5)

and it comes from Eq. (3) that the upper bound is

var(bRHk)5 «2 . (6)

Thus, for each k the standard deviation associated with

the averaged RHk lies within

«2

N
# var(bRHk) # «2 . (7)

In the following, we work with the upper-bound values,

and the uncertainty will be noted as «kRS.

4. Application to Megha-Tropiques measurements

a. Comparisons to upper-air soundings

The comparison between the layer-averaged RH

profiles given by ARPIA and the in situ estimates from

the RS probe are performed following the method of

Kelly (2007), and were recently applied by Roca et al.

(2010) and Brogniez et al. (2015) to evaluate rainfall

estimates and upper-tropospheric humidity estimates,

respectively, from satellite observations. The method is

described in the appendix.

The application of the method over the CDA dataset

is illustrated in Fig. 6 with scatterplots of the observed

layer-averaged RH from the RS probe versus the es-

timated RH from the ARPIA scheme [i.e., mBT of

Eq. (2)], including the representation of the uncertainties

in both estimates [«RS and sBT, respectively, in Eq. (2)].

The bias D and RMS of the regressions defined with the

uncertainties are indicated (‘‘err’’ subscript) together with

the standard (‘‘std’’ subscript) values for comparison

purposes. There is a close correlation between the ex-

pectations, considering the distributions of the J RH of

SAPHIR, and the results. Indeed ARPIA captures quite

well the vertical variability of the RH contained in the

RS, the smallest RMS, and the highest correlation co-

efficient R being reached at layers 2 (250–350hPa) and 3

(400–600hPa) with RMS 5 7.58% RH and 6.52% RH

and R 5 0.89 and 0.93, respectively. This is induced,

without any doubt, by the distribution of the J RH: in

these two layers the overlapping of the functions, and

thus the information content of the BTs, is at its maxi-

mum, whereas for layers 4 (650–700hPa) and 5 (750–

800hPa) the scatters are larger (RMS 5 13% RH and
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13.29% RH, respectively). The ARPIA scheme is also

able to reproduce the moist bottom layer 6 (850–

950hPa) of the RS, with the RMS being quite small

(3.99% RH). The distance from the y5 x line is in-

duced by the statistical constraints on the retrieval

methodology.

A general summary that includes the statistical scores

obtained over the Ouagadougou RS is provided in Table

2. Globally, the method produces a slightly biased

midtroposphere (9.19% RH in the 400–600-hPa layer

and 9.79% RH in the 650–700-hPa layer) with RMS

below 12.12% RH, comparable to other techniques

reaching an RMS of;10% RH in the midtroposphere

(Aires et al. 2013; Gohil et al. 2013). One can refer to

Sivira et al. (2015) for a discussion on the improve-

ments brought by the microwave imager Microwave

Analysis and Detection of Rain and Atmospheric

Systems (MADRAS), which is also part of theMegha-

Tropiques payload and was declared nonoperational

after almost 15 months of operations (a serious me-

chanical anomaly affecting the scan mechanism). The

situations sampled during CDA are better reproduced

by ARPIA than over Ouagadougou, which is most

probably due to the small occurrence of Ouagadou-

goulike profiles within the training dataset sampled in

ARSA. This assumption is reinforced by analysis of the

mean RH profiles encompassed within the oceanic

and continental training sets from ARSA and repre-

sented in Fig. 7, together with the RH profiles sampled

during CDA and over Ouagadougou. While the oce-

anic set clearly includes the observations performed

during CDA, the profiles measured over Ouagadou-

gou are very marginal with respect to the continental

set. This illustrates the need for a proper sampling of

FIG. 6. Scatterplots of the RH (%) derived from SAPHIR BTs vs the RH from the RS profiles of the

CDA soundings, for layers 1–6. Error bars related to the measured RH profile (vertical) and to the

ARPIA retrieval (horizontal) are in gray. The gray dashed–dotted line is the standard regression line, and

the black dashed line is the regression line accounting for errors. The mean bias (D) and RMS of the

regression defined without (std subscript) and with (err subscript) the uncertainties are indicated, as well

as the coefficient of correlation R and the y 5 x line (gray).

TABLE 2. Biases (%RH), RMSE (%RH), andR estimated from

the comparison between the RS and ARPIA over the six atmo-

spheric layers, taking into account the uncertainties in both esti-

mates (the statistics with the err subscript in Fig. 6). The two sets of

RS are considered in a common block and separated.

Layer Bias (% RH) RMS (% RH) R

100–200 hPa (L1) 21.00 9.96 0.55

CDA/Ouagadougou 21.37/20.08 10.82/7.02 0.48/0.71

250–350 hPa (L2) 1.93 8.36 0.89

CDA/Ouagadougou 0.35/6.61 7.58/9.37 0.89/0.88

400–600 hPa (L3) 9.19 7.09 0.93

CDA/Ouagadougou 7.73/13.47 6.52/9.92 0.93/0.84

650–700 hPa (L4) 9.79 12.12 0.76

CDA/Ouagadougou 9.89/9.70 13.00/10.08 0.75/0.75

750–800 hPa (L5) 5.47 13.32 0.61

CDA/Ouagadougou 5.91/4.38 13.29/13.78 0.61/0.59

850–950 hPa (L6) 20.56 1.58 0.98

CDA/Ouagadougou 2.67/26.52 3.99/2.93 0.44/0.97
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all atmospheric conditions when designing retrieval

schemes based on statistical training. This is a difficult

task when considering the current network of high-

quality RS over the globe (Ciesielski et al. 2012), and

actions toward a comprehensive database of RH pro-

files with traceability and the best possible character-

ization of uncertainties are currently done through

comprehensive networks such as the Global Climate

Observing System (GCOS) Reference Upper-Air

Network (GRUAN; Dirksen et al. 2014; Bodeker

et al. 2015).

b. Comparisons to ECMWF profiles

Six-hourly thermodynamic profiles produced on a

18 3 18 regular grid by the Integrated Forecast System

(IFS) of theEuropeanCentre forMedium-RangeWeather

Forecasts (ECMWF) analyses (Uppala et al. 2005) have

been interpolated onto every SAPHIR observation using

the inverse distance weighting projectionmethod and the

10 nearest neighbors. Then, four small regions (Fig. 8,

upper panel) have been selected over the tropical belt,

with only one surface type: central Africa (58S–58N,

208–408E), Indian Ocean (58S–58N, 608–808E), Pacific
Ocean (08–108N, 1708–1508W), and Atlantic Ocean

(158–258N, 408–208W). For each region, 100% of clear

pixels and 100% of cloudy pixels (with no deep con-

vective clouds nor ice layer), detected using the cloud

analysis from the geostationnary observations, have

been accumulated over the orbits associated with CDA-

collocated RS, to reach 2048 valid profiles of ARPIA

and ECMWF. The method of Kelly (2007) is again

applied to compute the RMS between ARPIA and

ECMWF for each atmospheric layer, assuming that

the ECMWF RH profiles have no uncertainty. Figure 8

shows the profiles of RMS for the clear pixels and

cloudy pixels, and for the four small regions. Under

clear-sky conditions (assuming that all of the clouds

are detected by the SAF NWC scheme, which is not

the case; see the discussion in Sèze et al. 2015), the

RMS is below 15% RH in general, with ECMWF and

ARPIA profiles being in very good agreement

(RMS , 5% RH) in the 400–600-hPa layer. Under

overcast conditions the agreement is less obvious,

with an overall RMS between 5% RH and 25% RH.

Such distinction is also done by Bernardo et al.

(2013), who found dispersions below 22% RH for

cloudy-sky cases (maxima of RMS above 400 hPa)

and an RH profile retrieval technique developed for

the Humidity Sounder for Brazil (HSB) and the Ad-

vanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E) instruments of the

Aqua platform.

The four regions have a general consistency, but

some discrepancies appear that require further in-

vestigation. For instance, for the clear-sky condition

quite small RMS (,5% RH) are observed for the

lowest layer over the central Africa and Indian Ocean

regions, while it reaches values between 10% and

15% RH for the Pacific and Atlantic Ocean regions.

This could be induced, for instance, by undetected

low-level clouds by the SAF NWC algorithm, and

the use of coincident CALIOP (and the onboard

FIG. 7. Averaged RH profiles and their standard deviations contained in the ARSA training

set over (a) the oceans and (b) the continents, together with the RS profiles of the two vali-

dation sets (CDA for the oceanic cases and Ouagadougou for the continental cases).
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CALIPSO) measurement would be a way to answer

such an issue. A similar discrepancy is also visible

in the cloudy situations for the same regions: ECMWF

and ARPIA agree with an RMS around 6% RH in

the central Africa and Indian Ocean regions, while

the RMS is around 20% RH for the Pacific and At-

lantic Ocean regions. This time, undetected low-

level clouds cannot explain the difference and it

most probably arises from the parameterization of

shallow convective mixing in the ECMWF model

(e.g., Webb et al. 2001; Hannay et al. 2009). These

are interesting results since SAPHIR observations

are not assimilated in the ECMWF IFS, thus calling

for a dedicated study.

c. An insight of the free-tropospheric humidity: In the
vicinity of Tropical Cyclone Pam

Tropical Cyclone Pam is a category 5 cyclone that

appeared on 6 March 2015 and dissipated on 22 March

2015 in the western Pacific. It was observed by

Megha-Tropiques, and it is used here as an applica-

tion example for SAPHIR-derived RH profiles.

Figure 9 shows the 10.8-mm observed BT by MTSAT at

0030 UTC 13 March 2015. On this date, the cyclone is

located near the Vanuatu islands and the MTSAT ob-

servations reveal clearly the spatial extension of the

phenomenon. The six-layer RH estimated fromARPIA

and the corresponding s are given in Fig. 10, as well as

the closest RH field (0000 UTC, computed with respect

to liquid water only) of the ECMWF interim reanalysis

(ERA-Interim) model (Simmons et al. 2007). The cy-

clone is located near 1708E, indicated by a cross in the

map presenting the RH of layer 4. SAPHIR is not yet

assimilated into the IFS, which gives an independent

observational tool to evaluate the tropospheric humidity

of the model. One can see the filamentary structures of

the water vapor field, and a clear drying from the bottom

layer (850–950 hPa) up to the top layer (100–200 hPa).

The rolling of moist air around the cyclone is visible

until 250 hPa, hydration by intense cyclones noticed by

previous studies (Folkins et al. 2002; Ray and Rosenlof

2007). The patterns of the conditional uncertainties

s associated with the retrieval of RH show that the

largest s are almost systematically associated with the

driest structures. At first sight, the ERA-Interim RH

fields present similar patterns: a dry tongue expands

above Australia from the 750–800-hPa layer up to the

100–200-hPa layer with RH below 20%, a west–east

FIG. 8. Profiles of root-mean-square-errors (RMSE) defined from the comparison between

collocated ECMWF RH profiles and ARPIA RH profiles. (top) The comparisons are per-

formed over the four areas defined, for (a) clear-sky pixels and (b) overcast pixels.
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(dry–moist) asymmetry surrounds the cyclone in the

midtropospheric layers (700–250-hPa, layers 4–2),

and a large moist area is located over Indonesia. The

main discrepancies between ERA-Interim RH and

SAPHIR RH are in the upper-tropospheric layer and in

the lowest layer. Indeed, in the 350–100-hPa layer, the

overall RHestimated fromSAPHIR rarely exceeds 50%,

while ERA-Interim produces RH fields that reach up to

80% in the 250–350-hPa layer and up to 60% in the

100–200-hPa layer.

An additional view is provided in Fig. 11 that presents

the vertical distribution of the RH for the six layers,

through the transect drawn in Fig. 10 (basically, the

nadir line of the segment). To evaluate this small-scale

variability, we have also represented the LARH estimation

(the atmospheric layers are slightly different from

ARPIA, and the retrieval is performed at the so-called

L1A pixels, which are subject to a sampling overlap

along the scan line, while ARPIA is applied to the so-

called L1A2 pixels, where the overlap is removed), the

corresponding field from ERA-Interim, and from the

ECMWF operational analyses. The scan line associ-

ated with the position of Tropical Cyclone Pam is in-

dicated. Artificial jumps are visible in the LARH

retrieval and not in the ARPIA retrieval, which are

not documented but may come from the L1A/L1A2

treatment. Several areas of vertical mixing are visible

from the ARPIA retrieval: near 808E above Sri Lanka,

near 1508E above north of Australia, and near 1758E
on the east side of the cyclone. These areas of mixing

are also depicted by LARH, which confirms that such a

pattern is contained in the SAPHIR observations. We

also notice large structures of vertical drying, which are

common within ECMWF (both ERA-Interim and the

analyses) and within SAPHIR: at 1308E (Australia)

and 1608E (western side of the cyclone). Discrepancies

are also clear. For instance, estimates from SAPHIR

give a quite dry upper layer (100–200 hPa) with an RH

between 10% and 40% for ARPIA and LARH, while

the ECMWF fields are significantly moister with an

RH varying between 20% and 60%, even though the

phasing is consistent. The lowest layer (850–950 hPa) is

also very different between the two SAPHIR retrievals

and the two ECMWF fields, the latter being slightly

moister than the former with stronger variability: the

strong drying near 1508E is produced through the

whole troposphere, while estimates using the ARPIA

scheme on SAPHIR do not produce such drying in this

bottom layer. The origin of these differences needs to

be further analyzed and understood.

5. Conclusions

Observations in the 183.31-GHz line are commonly

used to perform RH profiling (Wilheit and Al Khalaf

1994; English 1999), and the novelty of the technique

presented here lies in the conditional estimation of

the parameters of the distribution, assuming a Gauss-

ian law. The philosophy follows the work performed by

Brogniez et al. (2013) and Sivira et al. (2015) with the

training of generalized additive models to estimate six-

layer-averaged RH profiles from the observations of

the SAPHIR microwave radiometer. The six atmo-

spheric layers are 100–200, 250–350, 400–600, 650–700,

750–800, and 850–950 hPa. The retrieval scheme at-

mospheric relative humidity profiles including analysis

of confidence intervals (ARPIA) is used for the con-

ditional mean and standard deviation of the distribu-

tion of the RH for each atmospheric layer. These

datasets have been available to the international sci-

entific community by the French ground segment of

the Megha-Tropiques mission since July 2015 [Cloud–

Aerosol–Water–Radiation Interactions (ICARE); http://

www.icare.univ-lille1.fr/mt].

Two sets of tropical radiosoundings, an oceanic

set and a continental set, already exploited within

Megha-Tropiques for validation purposes (Clain et al.

2015; Brogniez et al. 2015; Sivira et al. 2015) are used

to qualify the retrieval scheme. Overall, the biases

range between 20.56% and 9.79%, the root-mean-

square is below 13.32%, and the correlations coeffi-

cients are greater than 0.55 with a peak at 0.98. These

performances are similar to other retrieval schemes

developed for the operational radiometers Micro-

wave Humidity Sounder (MHS)/AMSU-B (e.g., Aires

FIG. 9. The 10.8-mmBTmeasured byMTSAT at 0030 UTC 13Mar

2015. Cyclone Pam is indicated by the cross.
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et al. 2013), and a 1D variational technique should

definitely improve the estimation of RH. The com-

parison of ARPIA layer-averaged RH and ECMWF

RH fields (recall that ECMWF does not assimilate

SAPHIR yet, although this is a current effort), taken

from ERA-Interim and from the analyses, shows a

nice consistency for the midtropospheric layers, de-

spite significant discrepancies that are visible on the

edge of the free troposphere.

TheARPIA scheme has nevertheless some issues that

require dedicated studies:

d First, we used clear-sky RS to train the algorithm

because the signature of clouds in the 183.31-GHz line

is difficult to separate from the pure water vapor

absorption, until the significant depression that occurs

from the scattering by precipitating particles of deep

convective clouds and upper-tropospheric icy layers

FIG. 10. Cyclone Pam as seen by SAPHIR, through the orbit of 0029 UTC 13 Mar 2015. The tropical cyclone is located at 158S, 1708E.
(left) RH, (middle) s estimated by ARPIA, and (right) the ERA-Interim RH fields for the time step of 0000 UTC (0.758 grid). Each row

corresponds to one atmospheric layer, as defined in Table 2.
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(Rosenkranz et al. 1982; Greenwald and Christopher

2002). As mentioned in the core of the paper, the

detection method exists for these clouds, but consid-

eration of the remaining scenes requires a realistic

training database that combines in situ measurements

of the thermodynamic state and the cloudy air masses

(liquid and ice water contents). Such profiles could be

extracted from the ECMWF model, but their evalu-

ation byDelanoë et al. (2011) using the ice water path
(IWP) derived from joint observations by CloudSat

and CALIPSO has revealed an overestimation of the

thin and icy clouds associated with a too low global

FIG. 11. Transect of RH estimated by (a) ARPIA and (b) the LARH retrieval from

SAPHIR observations and provided by (c) ERA-Interim and (d) the operational ECMWF

analyses. The transect goes through the middle of the swath (nadir view) along the orbit of

0029 UTC 13 Mar 2015, as drawn in Fig. 10, and the scan line containing Tropical Cyclone

Pam is indicated. The thickness of ARPIA represents RH 6 s. Note that the layers of

LARH are slightly different.
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IWP. Another way to address this issue would be

to combine RS profiles and the cloud liquid and ice

water contents derived from CloudSat and CALIPSO

observations. Although a large number of represen-

tative situations are required in statistical training,

the more than 10 years of observations by these instru-

ments should be explored along that path and would

offer a set of consistent and realistic thermodynamic

profiles.
d Second, the geographic distribution of the RS used for

the training should also be addressed: large regions of

the tropics are not sampled [see, for instance, the

Integrated Global Radiosonde Archive (IGRA) of

NOAA that collects the operational RS transmitted of

the Global Telecommunication System (GTS; Durre

et al. 2006)], and although the ARSA database also

gathers the RS launched during campaigns, the issue

associated with the sampling of all the situations

cannot be ruled out.
d Finally, the estimation of the algorithmic uncertainty

is done under the strict symmetry imposed by aGaussian

distribution in the BT-to-RH transfer function. There-

fore, one perspective is to fully explore the capacities of

the GAMLSS framework in order to look at the shape

parameters of the conditional distributions of RH—

namely, the skewness and kurtosis—and test the mode-

lization using a Gamma law assumption. Such a law

would be indeed more appropriate and should improve

the retrieval and provides uncertainty estimates closer

to the true state.

Acknowledgments. The authors thanks the ClimServ

team for its help with the handling of the data, as well as

Michel Dejus and his team at CNES in the successive

reprocessing of the Megha-Tropiques data since the

launch. Overall, CNES is acknowledged for its finan-

cial support of the scientific activities of the Megha-

Tropiques mission.

Nicolas Henriot from ICARE is thanked as well as

the full staff of ICARE for the support of the Megha-

Tropiques products and the processing of ARPIA.

The French Institut de Recherche pour le Déve-
loppement (IRD) and Agence pour la Sécurité de la

Navigation Aérienne en Afrique et à Madagascar

(ASECNA) are also thanked for their help in the or-

ganization of the Ouagadougou campaign. The help of

R. Johnson, P. Ciesielski (CSU), and J. Wang (Uni-

versity at Albany, State University of New York) with

the CINDY2011–DYNAMO–AMIE radiosounding

dataset was greatly appreciated. The MOSDAC is

also kindly acknowledged for the dissemination of the

LARH product.

APPENDIX

Regression Taking Account of Uncertainties

The method is fully detailed in Kelly (2007). Here is a

brief description: for two variables xi and yi with known

uncertainties «ix and «iy that are both characterized by a

Gaussian distribution, with respective variances Si
x and

Si
y, and then the relationship between the vectors x and y

can be expressed as

y
i
1 «iy 5a1b(x

i
1 «ix)1 «

i
. (A1)

The intrinsic scatter at i of the relationship is enclosed

into the random variable «i, and the pair (a, b) represent

the coefficients of the regression. As underlined byKelly

(2007), uncertainties in the measurements of variables

have a spurious increasing/decreasing effect on the

correlation between two variables, and its magnitude

will depend on the value of the uncertainties with re-

spect to the observed variances in x and y. A Bayesian

method is used to solve the linear regression between

vectors x and y accounting for the uncertainties using the

computation of the maximum likelihood function of

the data.

Using this method, the elements of comparisons be-

tween x and y are given with respect to the regression

lines (with slope a and intercept b):

d the bias of the regression D5b1 x(a2 1), with x

referring to the mean value of x,
d the root-mean-square of the regression RMS 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12R2
p

3
ffiffiffiffiffi
Sy

p
, with Sy referring to the variance of

y and R is the correlation coefficient.
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