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ABSTRACT 

Negative pressure in liquids is both an experimental fact and a usually-neglected state of 

condensed matter. Using synthetic fluid inclusions, namely closed vacuoles fabricated inside 

one solid host by hydrothermal processes, a Raman study was performed to examine how a 

superheated solvent (under negative pressure) interacts with its dissolved solutes. As a 

result, this contribution not only illustrates this well-known tensile state, but also displays 

evidence that a stretched solvent is able to pull on its dissolved solutes and put them also 

under a stretched state. The dielectric continuum hypothesis may lead to expect a stretching 

effect in solutes similar to the solvent’s, but our measurements evidence a damping 

mechanical effect (growing with tension), most probably related to solvation shells. One 

practical consequence is that the (experimentally known) super-solvent properties of 

superheated solutions are certainly related to the change of the chemical potential of solutes 

which results from the damping effect. This change can determine as well a change in the 

thermodynamic driving force of the superheated solution towards bubble nucleation. A more 

complex than usual picture of the aqueous solution physical chemistry emerges from this 

study. 
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1. INTRODUCTION 

Negative pressure is still nowadays a paradoxical-sounding concept, because the notion 

collides between gases, for which the zero pressure is an absolute limit (pressure and matter 

density are strictly proportional at low density), and condensed matter, the internal cohesion 

of which allows them to resist tensile (pulling) as pressurizing (pushing) forces (pressure, 

which can be also called strain, is a vectorial quantity)1. One interest to study the tensile (or 

stretched) liquids is that they are metastable with respect to their vapor: there are 

superheated liquids. The extent of superheating for one liquid (extreme tensile strength) and 

its behavior in this peculiar state give insights into its anomalous properties, themselves 

precious to delineate its complete phase diagram. Water is particularly under scrutiny due to 

its huge importance in almost every processes on Earth, also due to its easiness to 

experience superheating, while it shares the generic features of van der Waals liquids. 

The first and main objective of this study is to explore how the superheating may impact the 

solvent properties of the tensile water so that to make it a super-solvent. It is largely 

established that the liquid tension should increase the solubility of solids and gases, on 

theoretical2-3 and experimental4-7 grounds, with natural and industrial interesting 

consequences8-10, especially in green chemistry treatments11-12. However, the classic 

assumption when trying to quantify this effect is to assume that the dissolved solutes are at 

the same pressure as the solvent itself, viewing an aqueous solution as a continuum 

dielectric medium2-6,13. This hypothesis has never been tested to the best of our knowledge. 

These super-solvent properties are accounted for through the lowering of the dielectric 

constant, and/or changes in the viscosity properties and gas-like diffusion rates. The present 

contribution is discussing how the solvent-solutes interactions may participate in causing 

these properties changes. 

The best technique to explore the tensile forces of liquids is one of the most ancient one, the 

Berthelot’s tube-type fluid inclusions (synthetic fluid inclusions, SFIs), with which all the major 

measurements of superheating were obtained8,14-17. It will be the technique of choice for the 
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present study to produce a superheated aqueous solution owing to micro-thermometric 

procedure: the variation of temperature in a closed fluid-filled vacuole makes the P-T 

conditions to move either along a saturation line (biphasic assemblage) or along an isochoric 

curve (monophasic fluid). T is measured, while P is calculated using the equation of state 

(EoS) of the solution, along the saturation line or along the isochore, possibly extrapolated 

down to the tensile domain. The trapped liquid is constituted by an aqueous solution of 

Na2WO4 containing one solute with a pressure-sensitive Raman peak: the WO4 tetrahedron 

has a Raman symmetric breathing mode, the wavenumber of which significantly and linearly 

shifts with pressure18. A spectroscopic study measured, at the same T, the frequency 

difference of the WO4 wavenumber between the liquid-vapor equilibrium and the monophasic 

tensile state. This difference is related to the pressure felt by the solute to be compared to 

the pressure of the solution predicted by the EoS. The chemical potential of the solute in the 

superheated solution can thus be evaluated, with respect to the chemical potential of the 

stretched solvent. 

A second objective of the present study is to clarify the role (or the absence of role) of the 

amount of dissolved solutes on the way the superheated liquids behave. An overlooked 

aspect when using the SFIs is about the exact composition of the liquids under study. It is 

usually considered that the liquid trapped inside the SFIs is the one supplied initially during 

the fabrication procedure, and therefore possibly pure water. However, during the 

hydrothermal synthesis, the conditions can go up to several kbar and hundreds of degrees 

Celsius during weeks, conditions at which the quartz solubility drastically increases (quartz 

solubility is around 0.1 mol/kgw at P-T synthesis conditions19, and 10-4 mol/kgw at room 

temperature), deviating the initial composition of the trapped liquid by a certain shift15. 

According to a detailed and systematic micro-thermometric study8, there is a close 

connection between the composition and the extreme tensile strength, what was then 

referred to a surface tension effect. Our present ability to distinguish between solute pressure 

and solution pressure paves the way to refine our understanding of these compositional 

effects of the fracture of liquids. 
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2. MATERIALS AND METHODS 

2.1 Synthetic Fluid Inclusions (SFIs) 

SFIs are micro-cavities in a solid crystal (here, quartz) hosting an occluded liquid, 

synthetized in internally-heated pressure vessels8. The chosen solution is a 2.5M (M for 

mol/kgw molal unit; 42.3%wt) solution of Na2WO4 (crystal solubility is 74.2 %wt at 25°C20), 

initially at liquid-vapor saturated conditions. Actually, the Raman symmetric breathing mode 

wavenumber of the WO4 tetrahedron (near 930 cm-1) is highly sensitive to the local pressure 

(see section 2.3). Additionally, the wavenumber of this mode is far from those of quartz (216 

and 465 cm-1) and then the tungstate mode wavenumber can be safely isolated. 

After thermal cracking, the synthetic quartz pieces were put in Pt capsules together with the 

target solution (100 µL) and amorphous silica (10 mg). 30 days at 500 MPa and 450°C 

(density about 1022 kg/m3) made the liquid to be trapped in the cracks as they seal during 

the run, building series of inclusions throughout the sample (Fig. 1). After double-side 

polishing and direct optical observation (quartz is transparent in the visible spectrum), one FI 

(Fig. 1) was selected for the readiness of observation, and closeness to sample surface (≤ 10 

µm). It was 18 µm × 8 µm in size, shaped pretty close to a negative quartz crystal, indicative 

of equilibrium growth and recrystallization conditions. 

 

Figure 1. Left: 5X photograph of the synthetic quartz fragment containing fluid inclusions. 

Right: 100X magnified image of the selected inclusion at room conditions (L+V assemblage 

in the vacuole), containing Na2WO4 42.3%wt. 
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2.2 Micro-Thermometric Procedure 

As SFIs are closed systems, any thermal changes displace the trapped liquid in its P-T 

space according to the rules of phase diagram, in its stable or metastable behaviors7-8,21. The 

thermal changes in the inclusion are done putting the quartz fragment on a Linkam heating-

cooling stage (THMS 600), precisely controlled (± 0.1°C). To avoid thermal gradients related 

to the thickness of the fragment, capping the sample with a silver cover is very efficient8,22. 

 

Figure 2. Phase diagram illustrating the classic micro-thermometric path (see text), from the 

ambient conditions to the homogenization (Th) and nucleation (Tn) temperatures. 

The micro-thermometry technique (illustrated in Fig. 2) practically consists of the progressive 

heating of the sample from room temperature (RT), while the inclusion contains the biphasic 

liquid+vapour assemblage (L+V) (heating bold line, Fig. 2). At a particular T, the bubble, the 

size of which was diminishing along the LV saturation curve, disappears: there is no more 

vapour and the inclusion is said to be homogenized, at the so-called homogenization 

temperature (Th point, Fig. 2). A classic difficulty about the Th determination is that, close to 

the temperature, the bubble is not really visible, but a sort of shadow having Brownian motion 

is distinguishable: Th is measured when it disappears. It needs a careful process to be 

repeated to confirm the exact value. One noticeable point is that Th fixes the trapped liquid 

density: as long as it remains constant, the inclusion repeatedly behaves as an isochoric 

body. Throughout this study, Th never changes, meaning that all the thermal cycles did not 

modify at all the density of the SFI. 
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Further heating above Th makes (P,T) to increase inside the inclusion along the isochore 

(isochoric heating dotted line, Fig. 2): trapped liquid is pressing upon the inclusion walls. 

Then, a progressive cooling of the sample along an isochoric path (dashed line, Fig. 2) put 

the trapped liquid into a growing tension. The temperature of the immediate bubble 

appearance is called the instantaneous nucleation temperature, noted Tn and is always 

lower than Th. Tn characterizes the extreme tensile strength of the probed inclusion. Another 

suitable angle of view is to state that the lifetime of the metastable state diminishes when 

going deeper in the tensile domain, to reach 0 at Tn. In-between Th and Tn, is the growing 

tension range of the inclusion, along which the liquid is less stable than the L+V assemblage 

(why it is called superheated), prevented from taking place during a certain lifetime, due to 

the energy cost of the liquid-air interfaces fabrication6,23-24. 

2.3 Raman Setup and Procedure 

In situ Raman spectroscopy can be used to record the temperature/pressure shift due to the 

phonon anharmonicity of a Raman-active vibration mode25. This phonon anharmonicity is 

responsible for the frequency shift of vibration modes upon external strains such as 

temperature or hydrostatic pressure. A previous study18 studied the shift under pressure of 

the wavenumber of the Raman symmetric breathing mode of different dissolved compounds 

(anthracene, perchlorate, tungstate) and concluded that the tungstate ion was the only one 

suited to record the isothermal pressure dependence, with a linear d/dP. 

The WO4 wavenumber was recorded in the SFI of choice along the whole micro-

thermometric path, namely from positive pressure (biphasic state) to tension (monophasic 

state, below Th). The wavenumber difference at the same temperature between the two 

states is interpreted in terms of local pressure of the solute, owing to a calibrated 

wavenumber-pressure calibration. Therefore, the Raman response is obtained at constant 

geometry, optical configuration, and temperature except the varying in-SFI liquid pressure 

(the only changing parameter), what gives very strong grounds to use the Raman shifts as a 

pressure probe. 
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A d/dP calibration of the WO4 Raman mode is available in the literature, performed at room 

temperature (RT) with a 1M solution18, resulting in a 8.2x10-3 cm-1/MPa slope. A second 

calibration has been done at 162°C (Tn, see below) with a 2.5M solution, to check for a 

possible thermal / concentration effect on the calibration (Fig. 3). A Renishaw RA100 

portable spectrometer was mounted onto the high T-P cell developed at the Institut Néel 

(CNRS Grenoble, France), including an inner glassy-carbon cell heated by electrical 

resistances and inserted in a stainless steel vessel pressurized with helium26. The high 

pressure vessel size is 242x150 mm, and it is equipped with water-cooling jacket and 

windows for laser passage. The two calibration datasets match very well to each other (Fig. 

3), demonstrating that the 1M to 2.5M Na2WO4 change and the 23°C to 162°C difference do 

not significantly affect the linear trend with pressure: the d/dP retained for this study is: 

d/dP = 8.2x10-3 (3x10-4) cm-1/MPa. This linear dependency means that the phonon 

anharmonicity of the Raman-active vibration mode depends very little on the higher-order 

terms of the function: though involved, they certainly are of very small magnitude25. 

 

Figure 3. Raman WO4 mode wavenumber recorded as a function of pressure at constant 

temperature: 162°C (open points, this study) and 23°C18 (black points). The slope is T-

independent. 

The spectroscopic measurements on the SFI were performed on a Renishaw Invia Reflex 

spectrometer, using the 633nm excitation line of a He-Ne laser (less than 10mW on the 

sample). The grating was 1800 grooves/mm, giving a wavenumber step between two 
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adjacent pixels of the CCD equal to 0.97 cm-1. Each measurement was done after a 

wavenumber calibration procedure of the spectrometer on its internal silicon reference 

sample (520.5 cm-1), without moving the quartz sample, which ensures the calibration state 

and promotes the highest possible reproducibility. The microscope (DM2500 Leica) objective 

compatible with this configuration was a Leica 50X long front distance (NA=0.50). Each 

Raman spectrum was obtained with an accumulation time of 120s. Spectra were treated with 

the Renishaw Wire 3 software. The sensitivity and the stability of such recent Raman 

spectrometer make us able to extract unambiguously even very small features, which can be 

completely masked by noise and fluctuations in a routine experiment. 

Raman measurements were performed on the selected SFI (Fig. 1 right) from Th+29°C 

(257°C) down to Tn+2°C (164°C), namely from overpressure to tensile situation. At each 

temperature, two measurements have been done, one when heating from RT and then with 

a biphasic L+V vacuole, the other after crossing Th, and then with a monophasic only-liquid 

filled vacuole. A 2°C thermal step was used, and the cooling down sequence carried out at 

slow rate (2°C/min) to avoid any temperature overshoot and to insure rapid thermal 

equilibrium after arriving at each set point. In addition, a waiting time of 2 minutes was 

systematically respected before recording any spectrum. This time was used to check and 

adjust the position of laser focusing inside the inclusion: horizontally, and vertically, by 

measuring the distance between the surface (where the position of laser focusing can be 

measured with accuracy better than one µm) and the analysis point inside inclusion. 

2.4 Raman Data Processing 

The Raman spectra was not baseline-corrected but directly fitted with a Gauss-Lorentz (G/L 

hereafter) profile, to involve even the tiniest distortions into the analysis. Very small 

differences between mono- and biphasic conditions can thus be probed, since the spectra 

were acquired with strictly identical conditions (optical configuration, temperature), apart the 

pressure inside the inclusion. 
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The fit gave three interesting parameters per spectrum: position, width and shape (G/L ratio). 

All fits were performed with the same set of starting values, to favour the significance and 

comparability of the calculated final values. Widths and shapes are slightly temperature 

dependent or constant within experimental accuracy, but do not exhibit any difference 

between monophasic and biphasic regimes (Fig. 4); they will not be more discussed here. 

Much more interesting is the position of the line center, which is the focus of the present 

contribution. 

 

Figure 4. Temperature dependence of linewidths, shapes (Gaussian/Lorentzian ratio), and 

wavenumber of the line center. Only this latter differs from mono- to biphasic states. 

No Bose-Einstein (BE) thermal correction was done27, since Raman shifts are compared at 

identical temperatures in two different pressure conditions (monophasic and biphasic 

regimes). Moreover this correction would be practically negligible since the linewidth vs. line 

position ratio is very low. 

3. RESULTS 

3.1 In-SFI Superheating 

The melting temperature of the studied inclusion is -18.1°C, corresponding to an analogous 

4.6M NaCl load in the inclusion, reasonably consistent with the divalent 2.5M Na2WO4. At 

such high initial salinity, it seems that the hydrothermal synthesis does not change much the 
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total concentration. Hereafter, as no Na2WO4 EoS is available, we will assume that a 5M 

NaCl solution (for which EoS are available) stands for our tungstate solution. This hypothesis 

is especially valuable for the LV saturation curve, because saturation pressures are not 

greatly influenced by the exact nature of the solutes28. 

The thermal cycle performed on the SFI followed the saturation line from RT (20°C, 2.10-3 

MPa, D = 1169 kg/m3) to 162°C (0.55 MPa, D = 1078 kg/m3), and then to Th (228°C, 2.28 

MPa, Dh = 1022 kg/m3). One important feature is that the Th value never changed through 

the three years of this study, across one hundred or more of thermal cycles, and several full 

runs of Raman measurements. This means that the density of the trapped liquid kept 

constant throughout, despite regularly undergoing compression (isochoric heating above Th) 

as tension (isochoric cooling below Th). This Th constancy means that any mechanical 

deformation, sometimes observed with inclusions15,17, can be discarded and strongly 

supports our isochoric hypothesis. 

Further cooling the sample leads to vapor phase nucleation, not at Th (228°C) but at Tn 

(162°C) < Th. The hysteresis T = Th – Tn characterizes the penetration of the system into 

the metastable region of the stretched liquid: T = 65°C, a mean value with respect to the 

already observed10 110°C (H2O) or 135°C (CsCl). To transform this T hysteresis into a lower-

than-saturation pressure, we need to assume that the cooling follows an isochoric path, and 

that the isochoric curve under tension is the linear extrapolation of its positive pressure 

counterpart (Fig. 2). As noted above, the saturation line and the isochoric calculations are 

performed according to the very recent EoS from Mao and Duan29, at 5M NaCl, the 

monovalent equivalent of Na2WO4, consistent with the Tm measurement. 

3.2 Raman Datasets 

The WO4 mode wavenumbers were recorded from RT up to 257°C (Fig. 5), and lines up as a 

straight line from 150°C to 257°C, deviating from this linear alignment below 150°C. 

Practically, the linear part corresponds to a temperature-independent vibration 

anharmonicity, while the slightly curved part is related to some change in it. When extended 
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down to RT, the Raman symmetric mode of WO4 stands at 931.25 cm-1, consistent with 

931.1 cm-1 in the literature30, and the corresponding accuracy of the internal calibration of the 

spectrometers. 

At T > Th, the thermal cycle was reversed to a cooling stage, and the Raman measurements 

were performed under monophasic superheated/stretched conditions, down to the Tn at 

which the bubble re-appears by cavitation. The measured wavenumbers systematically align 

along a new straight line according to a smaller slope than the biphasic linear dataset. More 

than thirty measurements were performed, in both monophasic and biphasic regimes, and so 

the accuracy of the straight lines drawn through all these points (linear regression fit) are 

much better than the precision of each measurement point taken individually. 

The absence of correction (neither baseline subtraction nor Bose-Einstein factor) of the raw 

experimental data in the linear (164°-257°C) range gives support to a direct interpretation of 

the increasing Raman deviation in terms of pressure shift between the two in-SFI liquid 

states. 

 

Figure 5. Top. Raman WO4
2- mode wavenumber measured over the whole experimental 

range, evidencing a linear and then slightly curved vibration. Bottom. T range over which T-
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independent vibration is observed. Two linear trends arise with the data from the monophasic 

solution deviating from those from the biphasic Raman, more and more with decreasing T. 

The superposed spectra at two different T (Fig. 6) illustrate that the difference between the 

biphasic and monophasic-based spectra is very small: the spectrum taken on the tensile 

metastable solution lies at a tiny lower wavenumber than the one characteristic of the 

equilibrium stable situation. Considering the close proximity between the datasets, we carried 

out several times the whole measurements, trying to improve each time the thermal stability 

of the experimental room. The gap between the biphasic and monophasic datasets was 

systematically retrieved and confirmed: the two straight lines systematically have slightly 

different slopes, meaning the gap is proportional to something varying linearly in the inclusion 

undergoing the two states. The line center exhibits a small but unambiguous gap, and the 

linear correlation of the measured points is evident. The best linear fit 
WO4

 = A + B.T (T in 

°C) quantifies the difference: 


WO4

 = 930.1 ( 0.06) – 0.0127 ( 3 10-4).T, for the monophasic regime,  

and 
WO4

 = 931.2 (0.07) – 0.0176 ( 4 10-4).T, for the biphasic one. 

The uncertainty on the intercept A and the slope B was calculated by the linear regression 

routine. In the fit, the two sets of data were calculated simultaneously, and one strain was 

given: the two trend lines had to cross at Th, at which there is no more difference between 

the two sets, physically. 
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Figure 6. Typical spectra of the WO4
2- line at 192°C and 168°C in the metastable and 

equilibrium states. The points correspond to measurements on each CCD pixel. The raw 

curves (displayed) were fitted to extract the line features (width, position, shape; see text). 

The maximum difference (0.31 cm-1) is actually noticeably lower than the spectral resolution 

(i.e., the ability to separate two lines of similar intensity: about 3-4 cm-1) and also lower than 

the step between two adjacent CCD pixels (0.97 cm-1). What is essential here is the stability 

of the spectrometer, i.e., its ability to give the same result to successive measurements done 

in the same conditions, mainly owing to the thermal stability of the spectrometer room (better 

than ±0.5°C), which improves the internal calibration of the spectrometer. This calibration 

with the internal silicon reference of the spectrometer was always performed exactly in the 

same way, owing to an automatized procedure, and on the same point of the sample. As a 

result, the wavenumber stability over the measurement time (20 hours typically) is estimated 

to be better than 0.1 cm-1, including the uncertainty due to the fitting process. The difference 

of 0.31 cm-1 (Fig. 5 bottom) is calculated between the positions of the two mono-and biphasic 

trend lines (d
T
 = biphasic,T – monophasic,T), and not between two measured point, giving a more 

accurate value than the experimental points themselves. Precisely, the error bar on the 

measured d, has got a twice better precision than the points correlation of the two straight 

lines: d = 0.31 cm-1 ± 0.05 cm-1 at 164°C. 

3.3 Solute Raman-Based Pressure 

The straightforward conclusion is to assign the linearly-increasing Raman shift to the tensile 

effect that linearly grows in the SFI upon cooling (Fig. 7). Using the calibration reported 

above, which is directly extrapolated in the tensile domain, the tension felt by the anion at 

164°C is equal to -37 MPa. This calculation can be decomposed as follows: the  measured 

at 164°C is 0.31 cm-1, that turns into P = -37.8 MPa (ratio 0.31 cm-1/0.0082 cm-1/MPa). The 

saturation pressure (of NaCl 5M) at 164°C is equal to +0.6 MPa, so that the net tension of 

the solute is equal to: P = -37 MPa ± 7 MPa. The uncertainty on this value results mainly 
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from the uncertainty on the d (± 0.05 cm-1) value between biphasic and monophasic lines, 

and on a lesser extent from the  – P calibration (Fig. 3). 

 

Figure 7. Comparison between the solution pressure calculated by the 5M NaCl equivalent 

EoS extrapolation inside the tensile domain, and the WO4 solute pressure as measured by its 

Raman symmetric mode wavenumber. 

Therefore, this measurement demonstrates that the tension in the solvent is transmitted to 

the ion which experiences a stretched state. An interesting aspect is exhibited by the 

monophasic straight line without any anomaly at Th (Fig. 5 bottom). It crosses from 

metastable to stable (or the reverse) conditions continuously, then evidencing a continuity in 

the microscopic parameters (anharmonicity) governing the Raman mode wavenumber. This 

monotonic behavior indicates that the pressure drop around the ion is only related to the 

traction from the surrounding solvent (mechanical effect), and not to a change in the 

dielectric screening (electrical effect) under tension, that would affect the anharmonicity 

parameters. It explains why the screening is increasing under growing tension (restoring 

force effect). 

3.4 Liquid EoS-Based Pressure 

Proceeding a little bit further, we can also evaluate the tension in the liquid with an equation 

of state (EoS) along T < Th. The principle is to calculate the liquid density Dh at Th, and then, 
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Old and recent results8,14-17,31 strongly establish this extrapolative ability, despite it seems 

likely that the scope should be limited, around -100 MPa for liquid water probably8,17,32. 

The NaCl EoS used presently29 has been already tested against negative pressures8,10. We 

used it to calculate the (Dh,Ph) values from the experimental Th 228°C: Dh = 1022 kg/m3. 

The corresponding isochoric curve can be calculated and gives us the dP/dT slope of the 

isochore. Assuming a straight line extension into the superheated domain22, the pressure 

along the isochoric cooling procedure can be deduced: 

    bCT
dT

dP
MPaP

CMPa










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This procedure results in a dP/dT slope equal to 15.8 MPa/°C and a tension at 164°C 

amounting to -96.4 MPa (Fig. 7). To try assessing the uncertainty related to the empirical 

EoS, we performed the same calculation with another classic Eos, from Bodnar33, which 

gave: dP/dT = 17.2 MPa/°C, and a tension at 164°C equal to -107.5 MPa. However, the 

uncertainty of the calculations is significantly lower than the gap between the Raman-based 

pressure (-37 MPa) and the micro-thermometric-based one (-96 to -107 MPa). 

4. DISCUSSION 

This discrepancy between the tension felt by the solution and the local tension undergone by 

the solute molecules is probably related to the damping effect played by the solvation shell 

around the ion which buffers the liquid tension. The electrostriction pressure living inside the 

first hydration shell can be calculated by thermodynamics and electrostatics from the 

Onsager local field model34-36: water molecules within the first hydration shell of Na+ undergo 

110 MPa, the ones of Cl- is at 30 MPa, while we did not find data for WO4
2- or even SO4

2-. 

Therefore, a weakened tension in the anion than in the solvent should be expected. As a 

consequence, we demonstrate that an aqueous solution is a dielectric continuum more and 

more different under growing tension than the reference state situation, on both the solvent 

and the solutes viewpoints. 
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This mechanical solvent-driven traction counteracted by electrostriction (by a mechanical 

screening) deviates the solvation water from the solvent water. Logically this effect may 

acquire a larger influence on the behavior of the global solution with its concentration, due to 

the increasing fraction of solvation water vs. solvent water. It offers an alternative explanation 

of the stronger superheating behavior of certain aqueous solutions: NaCl, CaCl2 and CsCl 

display increasing superheating extent with respect to dilute water8. This is interestingly in 

the increasing order of the hydration number and shell radius in the first solvation shell: from 

4 H2O molecules and 240 pm (pm for picometer) for Na+, to 6 and 240 pm for Ca2+, up to 8 

and 320 pm for Cs+, while the Cl- anion has 6 molecules and a shell radius of 310 pm37. 

Twice more water molecules are part of the first hydration shell with CsCl solutions than with 

the NaCl ones: assuming this solvation shell is the locus of the damping effect proposed in 

this study, it means that with CsCl, twice more water molecules undergo a tension lower than 

the free water molecules. This decreased tension would decrease the thermodynamic driving 

force towards nucleation, especially at high concentration when very few free water 

molecules remain in the solution. 

From a different viewpoint, it can be observed that the solvation thermodynamics is certainly 

influenced by the stretched state through the V.dP term in the calculation of the chemical 

potential of hydrated solutes with pressure38. As hydrated Na+ and Ca2+ have negative 

volumes (apparent volume at infinite dilution) at ambient pressure39, which becomes more 

and more negative under tension3, the chemical potential becomes more positive with 

tension: tension makes the hydrated Na+ and Ca2+ less stable. Meanwhile, Cs+ ion has 

positive volume from ambient conditions down to -90 MPa, and as such, an increasing 

tension means a better stability for the hydrated Cs+, with the reverse trend beyond -90 MPa. 

This diversity in the behavior of the dissolved solutes in stretched solution is forcibly linked to 

the solubility properties of the corresponding salt in such solution. The damping effect would 

lead to an increased solubility of salts in a superheated solution, each time the corresponding 

solute has a negative volume of hydration, for instance, NaCl and CaCl2 superheated 

solutions. The reverse is true for the situation in which the solutes have a positive volume of 
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hydration, as is Cs in a certain range of tension. It is noticeable that water molecules do not 

experience the same solvation pressure in the first hydration shell, which is a good image of 

a varying damping effect. Water molecules within the first hydration shell of Cs+ undergo 30 

MPa, the ones of Na+ is at 110 MPa, and solvation water of Ca2+ is at 3.2 GPa. These values 

have to be combined with the hydration number to evaluate the damping effect, and 

therefore any consequences (solubility, nucleation or whatever) of the decreased tension 

around solute. It is interesting to notice that the solvation pressure is smaller for the CsCl 

while it is more prone to superheating. Two facts are worth to be outlined. First, CsCl has a 

three times lesser solvation pressure but a twice larger hydration number, and the damping 

effect is certainly a combination of the two. Second, the change in the thermodynamic driving 

force comes into play with the usually considered surface tension effect which acts by 

enhancing the nucleation barrier. 

As a result, the mechanical screening by the solvation shells cannot be expected to follow a 

simple law, and a complex picture for the physical chemistry of aqueous solutions under 

tension arises. It requires to consider separately (but not independently) the solids, solutes 

and solvent pressures. Interestingly, the behavior of solutions under positive pressure should 

also consider such effects. 

5. CONCLUSION 

As a conclusion, successful measurements of a growing tension in one aqueous solution 

have been performed by Raman scattering owing to: (i) original samples having the liquid 

closed inside a solid matrix in a vacuole at constant volume according to conditions. (ii) one 

very stable spectrometer with a very reliable reproducibility. (iii) a very precise thermal 

regulation at the room scale. These results demonstrate the complexity of a tensile solution 

with respect to the pure liquid: solvation shells makes the pressure to vary locally from the 

solvent pressure around. The tension field in the solution is not continuous and the water 

dielectric continuum is therefore deeply disturbed by the presence of solutes. The behavior of 
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the water solvent, for instance with respect to its bubble nucleation barrier, is changed. As a 

rule of thumb, only five water molecules remains free of solute interactions in a 2.5M Na2WO4 

(Na+ has 4 molecules in its first solvation shell; WO4 has got 1237), a similar value than for a 

5M NaCl solution. A classical view of the nucleation of stretched solution is to assume that 

the surface tension is increased due to the abundance of bound water molecules in the 

solution, enhancing the nucleation barrier8. The present contribution outlines another angle of 

view, by considering a diminished tension in the first hydration shells throughout the solution 

which decreases the thermodynamic driving force towards nucleation. 

On another point of view, the present work exemplifies the ability of tension to be transmitted 

all around a stretched material, illustrating the realm of the tensile world. Water molecules 

under tension are able to pull on other materials than sister water molecules. As a 

consequence, a stretched solvent not only retains modified thermodynamic properties, but 

also modifies those of the matter with which it is interacting, like solutes, suspended 

particles, or (organic or inorganic) solids. 

One practical consequence afforded in this paper, is that the chemical potential of solutes 

having negative volumes are lower than those expected from solutes at the same tension 

than the water solvent. As a result, the solubility effect of superheated liquids is enforced and 

their super-solvent feature still improved. This picture is complexified by the fact that some 

solutes have positive apparent volumes, and therefore should display the opposite trend, 

with a solubility decreasing with water tension. It is also diversified by considering that each 

type of solutes exert a specific damping effect related to its solvation features. Yet, this 

changing solubility is ultimately linked to the solvation thermodynamics which may become 

more or less favourable with the mechanical stretching on the solvation shells, making 

less/more costly to maintain hydrated solutes. Also, the damping effect which makes up the 

thermodynamic properties of the solutes comes into play with other, possibly kinetic, 

parameters, to build macroscopic complex behaviors. Eventually, the solubility picture that 

emerges from this study appears much more subtle and varied than usually considered. 
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