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Abstract

Torsional Alfvén waves propagating in the Earth’s core have been inferred by inversion
techniques applied to geomagnetic models. They appear to propagate across the core but
vanish at the equator, exchanging angular momentum between core and mantle. Assuming
axial symmetry, we find that an electrically conducting layer at the bottom of the mantle
can lead to total absorption of torsional waves that reach the equator. We show that the
reflection coefficient depends on GB̃r, where B̃r is the strength of the radial magnetic field
at the equator, and G the conductance of the lower mantle there. With B̃r = 7×10−4 T.,
torsional waves are completely absorbed when they hit the equator if G ' 1.3×108 S. For
larger or smaller G, reflection occurs. As G is increased above this critical value, there is
less attenuation and more angular momentum exchange. Our finding dissociates efficient
core-mantle coupling from strong ohmic dissipation in the mantle.

1 Introduction

Geostrophic motions propagating outward from the cylindrical surface tangent to the inner
core and vanishing, 3 to 4 years later, upon their arrival near the outer core equator have been
detected by Gillet et al. [2010]. In order to estimate the magnetic field intensity in the Earth’s
core interior, they relied on a model of one-dimensional torsional Alfvén waves propagating
in a spherical shell filled by a perfectly conducting and inviscid fluid [Braginsky, 1970]. They
found that the model reproduces well the propagation pattern of the geostrophic motions in
a certain range of values of GB̃2

r , where G is the conductance of the mantle and B̃r is the rms
value of the radial field at the core-mantle boundary. Assuming that B̃r is 7× 10−4 T., they
estimated the conductance to be between 6× 107 S. and 2.8× 108 S. They interpreted their
results in terms of magnetic friction at the core-mantle boundary damping the torsional waves.
In this process, angular momentum is exchanged between core and mantle, contributing to
the length-of-day variations.

Gillet et al. [2015] examined torsional wave propagation in the Earth’s core over a longer
time interval (1940-2010) and confirmed that the waves repeatedly travel from the cylinder
circumscribing the inner core to the outer core equator, where they disappear. Magnetic
fields originating in the core are possibly delayed across the electrically conducting mantle
but Gillet et al. [2015] also remarked that the phase retardation τ between changes in the
length-of-day and core angular momentum series calculated from magnetic data is very small,
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namely less than half a year (Holme and De Viron [2013] argued for an even smaller phase lag
τ ≤ 0.2 yr). Assuming spherical symmetry and that the conductivity varies smoothly with
radius, Jault [2015] inferred from this constraint on the low-frequency electromagnetic delay
time of the mantle an upper limit on the mantle conductivity that corresponds to G ≤ 3×107

S. This calculation leaves aside a possible thin layer of high conductance at the bottom of
the mantle [Buffett and Christensen, 2007] that may consist of post-perovskite [Ohta et al.,
2008] or iron-rich (Mg,Fe)O assemblage [Wicks et al., 2010].

Investigating torsional wave models from a theoretical standpoint, Schaeffer et al. [2012]
remarked that while the values of the viscosity and the magnetic diffusivity in the core interior
are unimportant, their ratio Pm (the magnetic Prandtl number) determines the reflection at
the equator. There, the core-mantle boundary can be approximated as a plane parallel to the
rotation axis. Using a one-dimensional Alfvén wave theory, Schaeffer et al. [2012] computed
a reflection coefficient R, defined as the ratio of the outgoing fluid velocity amplitude over
the incoming one:

R =
1−
√
Pm

1 +
√
Pm

, (1)

for an insulating wall. With two-dimensional numerical simulations, they showed that the one-
dimensional plane wave theory is a useful guide for torsional waves in the spherical geometry
of the Earth’s core, although there are some differences. Hence, they argued that in the
case of most geodynamo simulations, which have been performed with Pm ∼ 1, there is
no significant reflection of torsional Alfvén waves. However, this effect can not explain the
propagation pattern of geostrophic motions inferred by Gillet et al. [2010] as Pm is about 10−6

in the Earth’s core. Here, we show that the value of Pm becomes unimportant in the presence
of an electrically conducting layer at the bottom of the mantle. The reflection coefficient at
the equator depends on Q+

√
Pm, where the dimensionless number Q varies linearly with the

conductance G of the mantle. It is likely that
√
Pm � Q in the geophysical situation. We

can thus interpret the propagation pattern of geostrophic motions in terms of poor reflection
on the conducting mantle at the equator instead of magnetic damping distributed throughout
the core. Our estimate of the conductance G that corresponds to poor reflection is about the
same as the preferred value of Gillet et al. [2010].

The paper is organized as follows. We first combine, in section 2, a theoretical study
in planar geometry – where a vertical wall models the core-mantle boundary next to the
equator – with a discussion of axisymmetric numerical simulations in spherical geometry. We
find that the reflection coefficient is correctly estimated from the study of a one-dimensional
Alfvén wave hitting a conducting wall. Section 3 is devoted to a discussion of the geophysical
case. Energy dissipation in the equatorial region is a non monotonous function of the mantle
electrical conductivity. Accordingly, torsional waves may propagate almost unhindered by
magnetic friction in the core volume and yet be almost fully absorbed at the equator.

2 Reflection of torsional waves at the outer core equator

2.1 Plane wave theory

Using a plane wave approach, we can derive analytically the reflection of one-dimensional
Alfvén waves propagating in the half-space 0 < x on a conducting wall at x = 0 (see the
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Figure 1: Reflected energy of a one-dimensional Alfvén wave as a function of the conductance
of the wall. We set Pm = 10−6 and VA = 6.24× 10−3 m/s corresponding to B = 7× 10−4 T
with ρ = 104 kg/m3, values which are representative of the Earth’s core.

detailed calculation in Appendix A):

R ' 1−Q−
√
Pm

1 +Q+
√
Pm

, (2)

with

Q =

√
µ0
ρ
GB , Pm =

ν

η
, (3)

B the magnetic field perpendicular to the wall, ρ the fluid density, ν its kinematic viscosity,
η its magnetic diffusivity, µ0 the magnetic permeability of free space and G the conductance
of the solid region (−δ ≤ x ≤ 0):

G =

∫ 0

−δ
σ(x)dx . (4)

To obtain (2), we have assumed that the electromagnetic skin depth in the solid domain is
larger than the conducting layer thickness (low-frequency approximation), in which case R
is a real number. In the limit of small Pm, which is relevant for liquid metals, no reflection
occurs when Q ' 1.

Plotting R as a function of G for Earth-like values of B = 7 × 10−4 T, ρ = 104 kg/m3

and Pm = 10−6, we find that the reflected energy is close to zero for a solid conducting layer
next to the fluid with a conductance of G ' 108 S., as seen in figure 1.

The parameters Pm and Q determine where energy dissipation takes place (see Appendix
B). Whatever the value of Pm, there is always equal dissipation of magnetic and kinetic
energy within the Hartmann boundary layer. The ratio of dissipation in the solid wall and in
this fluid layer scales as Q/2

√
Pm although the dissipation in the wall,

Q(1 +R)2 =
4Q

(1 +Q+
√
Pm)2

, (5)
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vanishes in the limit Q → ∞. In this limit, which corresponds to R = −1, there is maximal
exchange of momentum between the fluid and the solid at each reflection but no dissipation.
The value of Q/

√
Pm establishes which of the Hartmann layer or the conducting solid wall

plays the main part in the reflection mechanism (see also equation (2)).

2.2 Simulations in spherical geometry

We have performed numerical simulations of the propagation of a torsional Alfvén wave pulse
in a spherical shell of inner radius ri = 0.35 and outer radius ro = 1 permeated by an axially
symmetric magnetic field B, which is the gradient of a potential. The simulations are of the
same type as the ones done by Schaeffer et al. [2012], except for the addition of a conducting
solid layer of thickness δ surrounding the fluid. The XSHELLS code is used to time-step the
linearized Navier-Stokes equation coupled to the linearized induction equation:

∂tu + 2Ω× u = −∇p∗ + ν∇2u +
1

ρµ0
(∇× b)×B, (6)

∂tb = ∇× (u×B− η∇× b), (7)

where η = (µ0σ)−1 is the magnetic diffusivity. The electrical conductivity σ is uniform in the
fluid and jumps to another uniform value σm in the solid outer shell.

The imposed magnetic field is an external axial quadrupole B = B (2zez − ses). In this
context, we define the Alfvén velocity as VA = B/

√
µ0ρ. We hold the following parameters

fixed across all simulations: the magnetic Prandtl number Pm = 10−3, the Ekman number
E = ν/r20Ω = 10−10, the Lehnert number Le = VA/Ωro = 9.46 × 10−4. This implies a
Lundquist number VAr0/η ' 104. No-slip boundary conditions are used at r = ro while free-
slip are used at r = ri to avoid a very thin Ekman layer there. The inner-core is insulating,
while a solid conducting layer of thickness δ = 0.025 r0 is included at the bottom of the
mantle. In this region, we time-step the induction equation (7) with u = 0. The XSHELLS
code uses the spherical harmonic transform of the SHTns library [Schaeffer, 2013] in the
angular coordinates and finite differences in the radial direction. The finite difference scheme
handles conductivity jumps as detailed by Cabanes et al. [2014]. A semi-implicit time-stepping
scheme is used with diffusive terms (for both the momentum and the induction equations)
handled by a Crank-Nicolson scheme, while all other terms are treated explicitly by a second
order Adams-Bashforth scheme. In order to fully resolve the very thin boundary layers (both
viscous and magnetic) that occur near r = r0, we need Nr = 5000 radial shells. The spherical
harmonic expansion, which is restricted here to axisymmetric functions, is truncated after
harmonic degree `max = 500.

We have chosen the following initial condition which corresponds to an outgoing pulse
(propagating towards the equator):

b = u = s exp

(
−(s− s0)2

d2

)
eφ, (8)

with s0 = (r0 + ri)/2 and either d = 0.02 or d = 0.071.
We note ηm = (µ0σm)−1 the magnetic diffusivity in the solid conducting layer. Twelve

values of ηm, all larger than the magnetic diffusivity η of the fluid, have been used, spanning
five orders of magnitude. We note

Q =

√
µ0
ρ
GBr|r=ro,θ=π/2, with G =

∫ ro+δ

ro

σm(r)dr . (9)
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Figure 2: Evolution of the energy of the incoming (blue) and reflected (green) pulses as a
function of time in spherical shell simulations for Pm = 10−3, E = 10−10 and S ' 104.
Reflection occurs at about t = 400. There is no reflected pulse when the conductivity of the
solid layer is such that Q = 1.

Figure 2 shows the evolution of the energy of the incoming and reflected wave fields for
three of these simulations. From this time history, we compute |R|2, related to the reflection
coefficient R. It conforms with the theoretical prediction (2) obtained from the study of
one-dimensional Alfvén waves hitting a wall at S →∞. The agreement is especially good for
Q ∼ 1 as shown by figure 3.

3 Discussion

In our study, we have used a simple magnetic field, with almost uniform strength and for
parameters that have not been reached previously E = ν/r20Ω = 10−10 and Pm = 10−3. In
addition, we have considered a uniform conductivity in the lowermost mantle together with
a magnetic field independent of the longitude.

In this framework, attenuation of the torsional Alfvén waves that reach the equator is
maximized in the vicinity of Q = 1, which makes this value special for the study of torsional
Alfvén modes. However, we do not know yet whether Q < 1, Q = 1 or Q > 1 at the Earth’s
core equator since the electrical conductivity of the lowermost mantle remains poorly known.
We find interesting to draw attention to the case Q > 1, for which we obtain results that may
first appear counter-intuitive. For Q = 1, the reflection coefficient at the equator changes
sign. Accordingly, the waves reflected at s = 1 have exactly zero amplitude for Q = 1 while,
as Q is further increased above 1, there is more and more angular momentum deposited in
the mantle although there is less and less ohmic dissipation. The latter is not a monotonous
function of the strength of the core-mantle magnetic coupling contrary to what had been
previously accepted [Dumberry and Mound, 2008].

Finally, we better understand how monitoring the geostrophic motions in the Earth’s
core together with the sub-decadal changes in the length of the day may constrain Q at the
core equator and, as a result, the electrical conductivity of the lowermost mantle. Q ' 1
is compatible with conductance required by previous studies of electromagnetic core-mantle
coupling [e.g. Buffett and Christensen, 2007, Gillet et al., 2010, Roberts and Aurnou, 2012]
as well as with lowermost mantle composition [e.g. Ohta et al., 2008, Wicks et al., 2010].
However, effectively constraining the conductivity of the lowermost mantle requires some ad-
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Figure 3: Reflection of torsional Alfvén waves in spherical shell numerical simulations
(Pm = 10−3, E = 10−10, S ∼ 104). Red dots are the measured reflected energy ratio
R2 in the simulations. The blue line is the exact plane-wave theory (with R depending on
the wavelength), while the black dashed line is the thin layer approximation (which does not
depend on the wavelength).
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ditional work. In particular, future studies should take into account the lateral heterogeneities
of both magnetic field and mantle conductivity [see e.g. Ohta et al., 2010, 2014] that have
been neglected in mantle electromagnetic filter theories and in this study of torsional wave
absorption as well.

Appendix

A Reflection on a flat wall

We consider one-dimensional Alfvén waves, transverse to a uniform magnetic field, hitting a
plane perpendicular to the imposed magnetic field B [Roberts, 1967]. The field B is directed
along the x-axis, while the induced magnetic field b(x, t) and the velocity field u(x, t) are
transverse to this field, along y. The wall is placed at x = 0. Assuming invariance along
the y and z axes, the problem reduces to a one-dimensional one, u and b depending only
on x. Projecting the Navier-Stokes equation and the induction equation on the y direction
(on which the pressure gradient and the non-linear terms do not contribute), we obtain the
equations,

∂tu =
B

ρµ0
∂xb+ ν∂xxu, (10)

∂tb = B∂xu+ η∂xxb, (11)

in the half-space (x > 0), where ρ is density, µ0 is magnetic permeability of free space, η is
magnetic diffusivity and ν kinematic viscosity. After scaling the magnetic fields to Alfvén
speed units (VA = B/

√
ρµ0), we transform (10-11) into equations for the two Elsasser variables

h± = u ± b. Introducing a length scale L, the time-scale becomes L/VA. The equations of
momentum and of magnetic induction combine into

∂th± ∓ ∂xh± −
Pm+ 1

2S
∂xxh± =

Pm− 1

2S
∂xxh∓, (12)

where the Lundquist number S is defined here as:

S =
VAL

η
. (13)

The propagation of Alfvén waves requires that the dissipation in the bulk is small enough,
which is ensured if S � 1 and Pm ≤ 1. We note that h− travels in the direction of the imposed
magnetic field, while h+ travels in the opposite direction. Away from the boundary, the two
variables h+ and h− are independent. At the boundary, reflection requires change of traveling
direction, and thus transformation of h+ into h−. If the wall is electrically insulating, and the
fluid velocity vanishes on it (no-slip boundary condition), we have b = 0 and u = 0, leading
to h± = 0. These boundary conditions do not couple h+ and h−. As a result, reflection is not
allowed at an insulating and no-slip boundary when the coupling term on the right hand side
of (12) vanishes (i.e. when Pm = 1). For Pm 6= 1 the equations for h+ and h− are coupled
in the boundary layer. This gives a mechanism for reflection of Alfvén waves at an insulating
boundary [Schaeffer et al., 2012].
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We now insert a solid conducting layer of thickness δ and magnetic diffusivity ηW be-
tween the solid insulator and the conducting fluid. Equations 10 and 11 in the fluid are
complemented with

∂tb = ηW∂xxb for − δ < x < 0 . (14)

At the insulator, we have b(−δ) = 0. The magnetic field and the components of the electric
field E parallel to the wall are continuous across the solid-liquid interface (x = 0):

u(0) = 0, b|x=0− = b|x=0+ . (15)

Since E is related to the electric current j = j1z = ∂xb1z by Ohm’s law, and because u(0) = 0,
j/σ is continuous across the boundary, which translates into

ηW ∂xb|x=0− = η ∂xb|x=0+ . (16)

We seek solutions in the form of plane waves u, b = u0, b0 exp (i(ωt+ kx)) of frequency
ω and wavenumber k. In the fluid domain, we consider an interior solution and a boundary
layer solution. In the interior, the incoming and reflected waves have wavenumbers ω/VA and
−ω/VA, respectively. We also have b = u for the incoming wave and b = −u for the reflected
one, which are characterized by the Elsasser variables h+ and h−, respectively. We note R the
ratio of the outgoing velocity to the incoming one. The solution in the fluid region matches
the solution in the solid conducting region through a Hartmann boundary layer, where:

u(x) = uBL exp

(
− VA√

νη
x

)
, b(x) =

√
Pmu(x). (17)

In the conducting wall (−δ ≤ x ≤ 0), we have

b(x) = c1 exp(ikWx) + c2 exp(−ikWx), (18)

with

kW =

√
ω

ηW

1− i√
2
. (19)

Writing the matching condition at x = 0 and the boundary condition at x = −δ, we obtain
a set of linear equations for c1, c2, uBL, and R. In the limit S† = V 2

A/ωη � 1, we have

R =
1−Q†(ω)−

√
Pm

1 +Q†(ω) +
√
Pm

(20)

with

Q†(ω) =
−iVA
kW ηW

F

(
δ

λ

)
, F (x) =

1− exp(−2x(1 + i))

1 + exp(−2x(1 + i))
, λ =

√
2ηW
ω

. (21)

When the thickness δ is small compared to the electromagnetic skin-depth λ, we can use
the approximation F (x→ 0) ∼ x(1 + i). In this low-frequency limit, we have:

lim
ω→0

(Q†(ω)) = Q , (22)

where

Q =
VAδ

ηW
= µ0VA σW δ (23)
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is a Lundquist number constructed with wall thickness and magnetic diffusivity. In this limit,
(20) transforms into the expression (2) of section 2.1 and R is a real number between −1 and
1, which is independent of the frequency ω. When σW = 0, we have Q = 0 and we recover the
reflection coefficient of the insulating wall [Schaeffer et al., 2012]. Finally, it is straightforward
to extend these results to the case of a thin conducting region consisting of a pile of N layers
(1 ≤ i ≤ N) of thickness δi and conductivity σiW with:

Q = µ0VA

N∑
i=1

σiW δ
i . (24)

B Energy dissipation during reflection

Using VA/ω as unit of length, the viscous dissipation DV in the Hartmann layer is:

DV =
Pm

S†

∫ ∞
0

(∂xu)2dx , (25)

with

u(x) = −(1 +R) exp

(
− VA

2

ω
√
νη
x

)
. (26)

Thus, we have DV =
√
Pm(1 + R)2 and the same result for the magnetic dissipation in the

Hartmann layer.
We calculate the dissipation DW in the wall from the expression of the magnetic field in

this solid region

b(x) = c1 exp(i
kWVA
ω

x) + c2 exp(−i
kWVA
ω

x), (27)

and the boundary conditions that have already been used to derive the reflection coefficient
R in Appendix A

− 4k2W δ
2c21 = Q2(1 +R)2 , b(−δ†) = 0 , (28)

where δ† = ωδ/VA is the dimensionless wall thickness. In the low frequency limit δ � λ, we
have

DW =
1

S†W

∫ 0

−δ†
(∂xb)

2dx = Q(1 +R)2 (29)

(S†W = V 2
A/ωηW ).
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CPER07 13 CIRA), the OSUG@2020 labex (reference ANR10 LABX56) and the Equip@Meso
project (reference ANR-10-EQPX-29-01).

9



References

S. I. Braginsky. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations
in day length. Geomag. Aeron., 10:1–8, 1970.

B. A. Buffett and U. R. Christensen. Magnetic and viscous coupling at the core–mantle
boundary: inferences from observations of the Earth’s nutations. Geophys. J. Int., 171:
145–152, 2007.
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