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Abstract  

The temperature dependence of Ecosystem Respiration (ER) is often assessed based on the 

temperature of one specific layer. Air temperature or temperatures in the first ten centimetres of the 

soil profile are the most frequently used temperatures in models. However, previous studies showed 

that the relationship between ER and temperature is depth dependent, making depth selection for 

temperature measurements an important issue, especially at short time-scales. The present study 

explores one possible way to assess this relationship by synchronising the ER and temperature 

signals and to test if the relationship between ER and temperature differs between daytime and 

nighttime. To do so, ER measurements were undertaken in 2013 in four Sphagnum-peatlands across 

France using the closed chamber method. The ER fluxes were measured hourly during 72 hours in 

each of four replicates in each site. Synchronisations between ER and T signal were determined for 

each depth (from surface to 30 cm depth) by selecting the time-delay leading to the best correlation 

between ER and soil temperatures and ER was then modelled. Our results showed that: (i) the delay 

between ER and soil temperature is greater in peat than in mineral soils; (ii) at a daily time-scale 

synchronisation can improve the model representation using soil temperatures.  
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1. Introduction  

At a global scale, Ecosystem Respiration (ER) and photosynthesis are the largest carbon (C) 

fluxes between the atmosphere and the biosphere, accounting for 98 and 123 PgC yr
-1

, respectively 

(Bond-Lamberty & Thomson, 2010; Beer et al., 2010). By contrast the fossil fuel and cement 

production flux is one order of magnitude lower, at 7.8 PgC yr
-1

 (Ciais et al., 2014). Consequently, 

even small variations in the ecosystem fluxes may result in substantial changes in net C storage 

dynamics. This can have a significant effect on the global C budget, in particular on the atmospheric 

C concentration. The C stock in natural ecosystems is divided into two pools: vegetation, which 

contains 450 to 650 PgC, and the soil which contains 1500 to 2400 PgC (Ciais et al., 2014; 

Carvalhais et al., 2014). Across the world, the soil organic C (SOC) pool is spatially heterogeneous 

in terms of source and physical conditions, leading to variable storage rates between ecosystem 

types. Peatlands are efficient C storage ecosystems. They cover only 3 % of the global terrestrial 

area, but contain from 270 to 455 PgC as SOC, i.e. from 10 to 30 % of the world’s soil C (Gorham, 

1991; Turunen et al., 2002; Limpens et al., 2008). Thus, peatlands are considered as a hot spots for 

SOC storage, and their evolution under current environmental changes deserves attention.  

 As in many other terrestrial ecosystems, many factors affect ER variability in peatlands: 

temperature, soil water content, vegetation, and substrate supply (Luo & Zhou, 2006). All these 

factors are thought to be affected by global change, with unknown consequences on the C balance 

(Limpens et al., 2008). More specifically the temperature affect ER directly (biochemical reaction 

rates are related to temperature) and indirectly (vegetation, and particularly root growth, transport 

rates) (Luo & Zhou, 2006) and is thus largely utilized to model ER. Different temperature may be 

used: either air (e.g., Bortoluzzi et al., 2006), or soil temperature. The most commonly used soil 

temperatures are those at -5 cm (Ballantyne et al., 2014; Görres et al., 2014) and -10 cm (Kim & 

Verma, 1992; Zhu et al., 2015). In some studies, different depths are used and the selected one 

depends on the goodness-of-fit (Günther et al., 2014; Zhu et al., 2015). All these studies use the 
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chamber method to measure gas fluxes and even though most studies use -5 cm soil temperature, no 

clear consensus exists.  

The relationship between ER and temperature is often described using the Q10 indicator, 

which represents the proportional increase of a reaction rate due to a 10°C rise in temperature. 

However, even if the Q10 seems coherent at a global scale (Mahecha et al., 2010), reported values 

show a significant variability at the ecosystem level (Graf et al., 2008). Because the calculated Q10 

are not linked to a single reaction but to multiple processes, numerous issues arise (Davidson et al., 

2006). Among them are the time-scale considered (Curiel Yuste et al., 2004), the depth (Graf et al., 

2008) and the time-delays between ER and soil temperatures (Phillips et al., 2011).  

More specifically Pavelka et al. (2007) and Graf et al. (2008) showed that the relationship 

between ER and temperature is depth dependent since heat transfer in the soil profile is not 

instantaneous and leads to a time-delay between the temperature and the ER signals. One way to 

deal with the time-delays might be to synchronise ER fluxes and temperature measurements 

according to Pavelka et al. (2007). Another issue is the difference between the daytime and 

nighttime ER relationship with temperature. Juszczak et al. (2012), for example, showed that there 

are significant differences between ER modelled with daytime and nighttime data. Assessing these 

differences may be important when working at a daily timescale and when treating data from eddy-

covariance measurements.  

Based on these previous studies, we expected that time-delays in Sphagnum-dominated 

peatlands would be significant, even in the first 10 centimetres depth and that they would lead to a 

better description of observed data once taken into account, especially through data synchronisation. 

To our knowledge no studies have explored the time-delay between ER and soil temperature in 

peatlands yet. To test these predictions, ER fluxes, during the growing season in 4 Sphagnum-

dominated peatlands were measured in 2013. Continuous measurements over 72 hours were carried 

out in each site using static dark chambers. Air and soil temperature were also monitored. 
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Specifically, the relationship between ER and temperature, measured at different depths in peat was 

studied.  

The aim of this study was (i) to highlight any time-delay at the daily timescale between ER 

and soil temperature at different depths in peatlands (ii) to assess the effect of synchronisation 

between ER and temperature in the model representation of the diel ER variations. 

2. Material and methods  

2.1. Study sites  

The study was performed on four French Sphagnum-dominated peatlands: Bernadouze (BDZ, 

Ariège; 3.75 ha, N 42°4809, E 1°2524, 1400 m), Frasne (FRN, Doubs; 98 ha, N 46°4935, E 6°1020, 

836 m), Landemarais (LDM, Ille-et-vilaine; 23 ha, N 48°2630, E 1°1054, 154 m), and La Guette 

(LGT, Cher; 26 ha, N 47°1944, E 2°1704, 145 m). Mean annual air temperatures and annual 

rainfalls were 6, 7.5, 11, 11°C, and 1700, 1400, 870, 880 mm for BDZ, FRN, LDM and LGT 

respectively. During the measurements the water table level remained constant at to -12, -7, -35 and 

-9 cm for BDZ, FRN, LDM and LGT. 

2.2. Data acquisition  

Fieldwork was conducted between July and October 2013. Four plots (replicates) with similar 

plant cover, were chosen at each site. For the most part the plant covers consist of Sphagnum spp. 

Four cylindrical PVC collars (diameter: 31 cm, height: 15 cm) were inserted into the peat the day 

before beginning the measurements. CO2 fluxes were measured in the 4 plots once an hour in 

random order for 72 hours. These measurements were undertaken using a closed static chamber 

(diameter of 30.5 cm, height of 30 cm), with a GMP343 Vaisala probe. ER was measured with a 

transparent chamber covered by an opaque material to avoid input of photosynthetically active 
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radiation. Inside the chamber the air was homogenized with a fan in order to minimize 

concentration gradients (Pumpanen et al., 2004). Measurement lasted a maximum of 5 min with 

CO2 concentration recorded every 5 seconds as well as the relative humidity and the temperature 

inside the chamber.  

At each site a weather station and a data logger were set up near the plots to provide 

meteorological and environmental data recorded every second: air relative humidity, solar radiation, 

peat temperature (at -5, -10, -20 and -30 cm depth below soil surface) and surface air temperature.  

The latter temperature was measured at an altitude as close as possible to the top of the Sphagnum 

capitulum (considered as the zero), which considering the sensor and shelter size was about  15 cm 

above the Sphagnum capitulum. This temperature will be referred as the 0 depth in the figures.  

After the 72 hours of measurements, at each site and for each replicate, one peat core (30 cm 

height and 15 cm diameter) was extracted for physico-chemical characterisation. The results of 

these analyses are shown as supplementary materials. 

2.3. Data synchronisation  

For a specific depth time-serie, temperature averages were calculated for each ER 

measurement time and duration. The average temperatures were correlated with the ER. Then, the 

correlation was repeated with 10 minutes shifts in the temperature time-serie until a 24 hour shift 

(Figure 1), to take into account the effect of temperature heat transfer from surface to soil. The 

whole operation was repeated with each depth. Finally the synchronisation was determined for each 

depth, by selecting the time-delay corresponding to the highest correlation. Negative correlations 

caused by the phase shift were discarded.  

2.4. Sensitivity of ER to temperature  

Three widely used models Fang & Moncrieff (2001) were implemented to study the 
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relationship between ER and temperature: Linear regression (1), exponential models: Q10 (2) and 

Arrhenius (3) 

ER = α + βT     (1)  

ER = α exp(βT) ; Q10 = exp(10∗ β) (2)  

ER = αexp(−β/RT)   (3) 

ER was estimated using air temperature, soil temperatures at -5, -10, -20 and -30 cm depth 

with both non-synchronised and synchronised datasets and using the mean of the replicates. α and β 

are the fitted parameters, ER the Ecosystem Respiration, T the temperature at a given depth, R the 

ideal gas constant. In the Arrhenius equation, β represent the activation energy. Calculations were 

implemented in R, and modelled data were adjusted to measured data using Ordinary Least Squares 

(OLS). The goodness-of-fit was estimated by calculating the regression coefficient (R
2
) and the root 

mean square error normalized by the mean (NRMSE). 

3. Results  

3.1. Air temperature and ER variability 

During the period of experiments, mean surface air temperatures were about 14-15 °C for all 

sites, except for LGT which was 20.8 ± 7.4 °C, (Figure 2 – H). The lowest mean temperature and 

standard deviation were found at BDZ: 14.4 ± 3.3 °C (Figure 2 – E). In LDM and FRN, the mean 

surface air temperatures were respectively 14.9 ± 8.7 °C and 15.0 ± 10.3 °C (Figure 2 – F, G). 

Surface air temperature was the highest in FRN.  

At -5 cm depth, BDZ and LGT had lower mean peat temperatures than their air surface 

counterparts: 14.1 ± 1.5 °C and 20.3 ± 1.7 °C respectively, whereas the opposite was observed in 

FRN and LDM with 16.3 ± 2.4 °C and 15.9 ± 1.0 °C respectively. Mean soil temperatures were still 
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higher at -10 cm for both sites, but only in LDM at -20 cm. At -30 cm the soil temperature 

amplitude ranged from 0.2 in LDM to 0.6 in LGT and FRN. Overall conditions were warmer in 

LGT than in the other sites and LDM, despite a large amplitude of surface air temperature, had a 

particularly low soil temperature amplitude.  

In terms of ER, mean and variability were the lowest in FRN among all sites (1.75 ± 0.83 

μmol m
−2

 s
-1

, Figure 2 – B). The highest variability and mean ER (6.13 ± 2.81 μmol.m
−2

.s
-1

, Figure 

2 – C) were observed in LDM. On this site replicates had different behaviours even though they 

were close to each other and in a similar environment. In BDZ and LGT, ER mean values were 3.12 

± 0.92 and 4.10 ± 1.15 μmol.m
−2

.s
-1

 respectively (Figure 2 – A, B). 

3.2. ER and soil temperature synchronisation  

Figure 2 shows that the deeper the temperature was measured, the greater the shift with 

respect to ER. Taking this shift into account by synchronising soil temperatures with ER led to a 

significant positive linear correlation between the temperature measurement depth and the 

synchronisation time-delay (all sites pooled, R
2
 =0.94, p<0.001; Figure 3). The range of estimated 

time-delays decreased with depth up to -20 cm. At this depth the time-delay was 12 hours, i.e. a 

phase inversion on a daily timescale. For the three sites other than LDM, the slopes of the time-

delay and measurement depth relationship were in a close range: 0.56, 0.54, 0.52 for FRN, BDZ and 

LGT respectively. The relationship for LDM was higher at -30 cm, leading to a steeper slope (0.66) 

than in the other sites (Figure 3). At the other depths, this site always had the highest time-delay, 

though the values were close to those of the other sites. BDZ always had the lowest time-delay, but 

like LDM, the values were close to those of the other sites, although slightly lower at -5 cm depth. 

3.3. ER and temperature relationship  

For both types of model (using non-synchronised and synchronised data), the differences 
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between the 3 tested models were very small. The greatest differences, in R
2
 values, were 0.07 and 

0.05 for non-synchronised and synchronised data respectively, whereas differences in NRMSE 

maximum values were 1.28 and 1.14 (Table B.3). In most cases the linear model led to a slightly 

better R
2
 than the others. As the differences between equations were small, however, we will 

describe the exponential model in the following sections, because (i) it is the most widely used 

model to describe the ER–temperature relationship and (ii) the Q10 value can be derived from this 

equation. This will allow the comparison of the results of our study to others.  

The relationship between air temperature and ER, using the exponential model, was better in 

LGT and FRN (R
2
 > 0.55) than in LDM and LDM (R

2
 < 0.35) (Figure 4). Nevertheless in all sites 

and with both linear and exponential models, using synchronised soil temperatures gave a better 

account of the ER variability than their non-synchronised counterparts (Figure 4). The goodness of 

fit (R
2
) increased on average by 0.26 to 0.35 at -5 cm and -10 cm depth respectively. The degree of 

improvement varied however between sites. For instance, at -5 cm depth R
2
 between synchronised 

and non-synchronised models increased by only 0.04 in BDZ while it increased by 0.47 in FRN. 

The improvement gained by using synchronised data was higher at -5 cm and -10 cm than at deeper 

layers, with 0.12, 0.11 on average for -20 and -30 cm depth (Figure 4).  

A similar observation can be made for NRMSE. Regardless of some exceptions at deeper 

layers especially at -20 cm depth, the NRMSE values show that using synchronised data rather than 

non-synchronised ones improved the model representation of ER variability at a daily timescale, 

indicating that depth measurements dependence is smaller for models using synchronised data than 

for models using non-synchronised data. However with increasing depth R
2
 values still decreased 

and NRMSE values still increased. For FRN, LDM and LGT, synchronised data at -5 cm depth 

gave a better account of the ER variability than surface air temperature (Figure 4). This was not the 

case in LDM, where temperature at the surface was the best descriptor of ER. For both R
2
 and 

NRMSE the values at -20 cm depth were better than those observed at -10 or -30 cm depth. This 
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pattern was observed with different magnitudes among sites, and was particularly visible in FRN 

and LGT. For the most part, the synchronisation of data led to higher R
2
 and smaller NRMSE 

values for models using one soil temperature, at a daily scale on sphagnum-dominated peatlands. 

3.4. Q10 evolution  

The Q10 stood between 0 and 2.5 for non-synchronised data with a maximum at -5 cm depth. 

Average values were 1.4, 2.4 and 1.3, at the surface, -5 and -10 cm depth respectively (Figure 5). 

Average Q10 values at the surface and -10 cm depth were very similar. However there was much 

more variability at -10 cm depth, where the values ranged from 0.1 to 2.1, than at the surface where 

the values stood between 1.3 and 1.5. Beyond -10 cm depth Q10 values fell almost to 0, while for 

non-synchronised data Q10 values greatly increased with depth, reaching meaningless values. Q10 

values estimated with surface temperature were very similar between sites with an average of 1.4 

(Figure 5). It increased to about 2.5 at -5 cm depth, with both synchronised and non-synchronised 

data. Below this depth, Q10 estimated with both methods either decreased downwards (non-

synchronised) or increased (synchronised data) to unrealistic values (Figure 5). 

4. Discussion 

4.1. ER differences between sites  

The ER fluxes calculated in the 4 sites were in the same order of magnitude as those of 

peatlands found in the literature: Bortoluzzi et al. (2006), found ER values ranging from 2 to 5 

μmol.m
−2

.s
-1

 during the same period as this study, i.e. July to October 2004, as well as Juszczak et 

al. (2013) with value between 2.6 to 5.4 μmol.m
−2

.s
-1

 (June to August 2008-2009). In the present 

study, the models performed poorly in 2 sites, BDZ and LDM. For BDZ, amplitudes of both ER and 

temperatures were low (Figure 2 – A, E) making the model representation of ER possible only on a 

short temperature span. With such low ranges of both ER and temperature, it can be assumed that 
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ER variability was due to the variability between plots. For LDM, the ER fluxes were measured in 

plots that were more heterogeneous than expected, resulting in strong variability (Figure 2 – C). 

This observation is consistent with the high NRMSE value calculated for this site (39.3 % for BDZ 

against 26.1 % for LDM) whereas the R
2
 values for these two sites were close, 0.19 and 0.32 for 

BDZ and LDM respectively, using surface air temperature and an exponential relationship. In 

Frasne the NRMSE values were high with respect to R
2
 values, this result can be explained by the 

fact that the mean ER flux was low (1.75 μmol.m
−2

.s
-1

 ) and thus had a strong influence on NRMSE 

as we used mean normalization. Finally at -20 cm depth, models using non-synchronised data 

showed, an increase in R
2
 and a decrease in NRMSE which was more or less observable in the 

different sites. At this depth the temperature and the ER signal phases are opposed making the non-

synchronised models better at representing ER than at -10 or -30 centimetres but with a reverse 

relationship. The ER fluxes thus show different behaviours either in their amplitude or in their 

homogeneity. 

4.2. Time-delay between temperature and ER  

Time-delays between soil temperatures and ER occur in Sphagnum-dominated peatlands. 

They occur even close to the soil surface and increase with depth. The relationship between time-

delays and depth was similar in all the studied sites although LDM had slightly higher time-delays. 

The overall delay observed in peat soils, 0.57 hours per centimetre, was higher than those found by 

Pavelka et al. (2007) in a forest and in a grassland ecosystem and by Parkin & Kaspar (2003) on 

two agricultural soils (0.4 and 0.5 hours per centimetre respectively). This is coherent with the fact 

that peat soil has a lower thermal diffusivity than mineral soils (Farouki, 1981; Arya, 2001). LDM 

was the only site with a slightly higher slope especially at -30 cm. This was expected as soil 

diffusivity increases with wetness (Hillel, 2003) and LDM was the site with the lowest water table 

level. This was confirmed by thermal conductivity measurements conducted on the peat cores (data 



11 

not shown). Overall, it should be noted that the time-delays were similar in all the studied sites 

despite their variability in terms of ER fluxes. 

4.3. Synchronising ER and temperature improves ER sensitivity to temperature  

In spite of the importance of lags between physical phenomenona and biological activities 

(Vargas et al., 2010), few studies have addressed the effect of time-delays between soil temperature 

and global biological activity (ER) at the daily timescale. At this scale, we showed in peatlands that 

using synchronised data improved the model representation of the temperature sensitivity of ER. 

The improvement provided by synchronisation was evidenced at shallow depth. The best goodness-

of-fit obtained with synchronised data and models using one temperature, was found at -5 cm depth. 

The fact that ER was better correlated to synchronized temperature at the depth of 5 cm (in most 

sites) shows that the metabolism of the respiring organisms could not efficiently respond to the 

temperature amplitude imposed at the surface of the soil. Above 5 cm, an increase of temperature is 

not necessarily followed by an increase of respiration. Below 5 cm, the dependence of ER on 

temperature synchronisation with depth decreased, as also found by Pavelka et al. (2007). Such a 

lesser depth effect could be explained by a simultaneous decrease in temperature amplitude. 

Because the goodness-of-fit of the non-synchronised data increases at -20 cm, the synchronisation 

effect strongly decreases at this depth. This pattern is visible, with various amplitudes, in the 

different sites. It is explained by the 12 h time-delay (Figure 3) corresponding to a phase inversion 

that occurs at this depth between the ER and the daily temperature courses. Such a phase inversion 

was found deeper, at -30 cm by Pavelka et al. (2007), due to a higher temperature diffusivity in 

mineral soils. Finally in our study these models, using synchronised -5 cm depth temperature, show 

slightly higher R
2
 and lower NRMSE values than those using surface air temperature. 

4.4. Q10 sensitivity to temperature depth and synchronisation  

In shallow layers (≤ 10 cm), the Q10 values calculated with non-synchronised data in the 
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ranges that are usually reported, i.e. between 1.3 to 3.3 (Raich & Schlesinger, 1992). At deeper 

levels in the peat profile (≥ 10 cm), they reach 0 as the relationship between ER and the temperature 

weakens, and is not compensated by a long term evolution. A similar behaviour was found by 

Pavelka et al. (2007) even if this Q10 decrease with depth is not usually seen and most studies show 

the opposite, namely an increase in Q10 values with depth (Graf et al., 2008). This apparent 

contradiction may be explained by the length of the study. Because of its short duration, the effect 

of the time-delays on ER dominated the temperature effect. Synchronisation also led to meaningless 

high Q10 values because synchronisation can explain a higher proportion of ER flux with a smaller 

temperature variation. Temperature amplitude decreases with depth because of the heat absorption 

along the path of heat propagation. 

5. Conclusions 

We showed that the time-delays between ER and soil temperatures in peat soils at different 

depths are significant on a daily timescale. The signals are shifted approximately 30 minutes every 

centimetre in all studied sites, leading to longer time-delay than those found in mineral soils. At this 

scale the use of synchronised soil temperature, to take into account these time-delays, can improve 

the model representation of ER particularly in the first 10 centimetres. Thus the synchronised 

temperature at the -5 cm depth seems to be well suited to model ER as it is leading, in most sites, to 

higher R
2
 and lower NRMSE than surface air temperature. With high frequency measurements 

(automated chamber technique is increasingly used) the temperature depth used to model ER is 

critical especially to assess processes that occur at a daily time scale. Thus the synchronisation can 

be a way to improve ER model representation. Temperature measurements at different depths are 

easy to conduct, robust to harsh conditions and can be powered by a small solar panel. A calibration 

campaign with human manipulated closed chambers could be carried out to assess ER variability at 

different timescales. Coupling temperature profile and punctual ER measurements and then using 
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synchronised data in models may be a good alternative in sites where automated chambers are not 

easily implantable. 
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Supplementary data  

A. Physico-chemical characterisation of the peat  

In the laboratory, two peat cores from each site were immersed in water for 24 hours to 

saturate the pores. Then, the cores were drained overnight to get rid of the water filling the effective 

porosity (the water not bound to grains). At 5 cm steps, a piece of peat with a known volume (V, 

cm
3
 ) was cut and weighed (W1, g). Then, the samples were dried at 50°C for 48 hours and weighed 

(W2, g). Total porosity (ΦT, dimensionless), retention porosity (ΦR, dimensionless), effective 

porosity (ΦE, dimensionless) and bulk density (Bd, g.cm
−3

 ) were calculated as follows: 

ΦT = 1 – ((W2/ρpeat)/V)   (A.1) 

ΦR = 1 – ((W1–W2/ρpeat)/V) (A 2) 
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ΦE = ΦT – ΦR    (A.3) 

Bd = W2/V   (A.4) 

 

Peat density (ρpeat ) was set at 1.45 according to Kennedy & Price (2005). Then the peat was 

crushed and C, Hydrogen (H), Nitrogen (N) and Sulfur (S) analyses were performed with an 

elemental analyser (Thermo Flash analyser). Elemental compositions were similar in all sites: 1–

3%, 4–6% and <1% for N, H and S respectively (Table A.1). C content was mainly between 40 and 

50 %, except at the deeper levels in LDM and LGT where values were lower (< 32%). 
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Table A.1: Peat chemical properties as a function of depth in cm: content (%) N, C, H, S, the total, retention and 

effective porosity, ΦT , ΦR , ΦE respectively in m
3
.m

−3
 , solid peat volumic fraction in m

3
.m

−3
 and the bulk density (Bd) 

in g.cm
−3

. 

level N C H S ΦT ΦR ΦE solid Bd 

BDZ 

0–5 1.76 41.84 6.05 0.05 0.99 0.47 0.52 0.01 0.03 

5–10 1.99 43.99 6.18 0.07 0.97 0.78 0.19 0.03 0.06 

10–15 2.28 45.38 6.35 0.1 0.96 0.92 0.04 0.04 0.10 

15–20 2.92 44.95 6.23 0.23 0.95 0.82 0.13 0.05 0.11 

20–25 3.14 39.01 5.31 0.23 0.93 0.90 0.04 0.07 0.16 

25–30 2.50 31.15 4.28 0.13 0.89 0.86 0.03 0.11 0.24 

FRN 

0–5 1.73 43.67 6.24 0.00 0.99 0.40 0.58 0.01 0.03 

5–10 1.55 43.35 5.97 0.00 0.98 0.59 0.40 0.02 0.03 

10–15 1.69 43.49 6.17 0.00 0.98 0.89 0.09 0.02 0.05 

15–20 1.63 43.06 5.97 0.00 0.98 0.89 0.09 0.02 0.05 

20–25 1.30 43.68 6.29 0.05 0.98 0.93 0.04 0.02 0.05 

25–30 1.48 43.44 6.21 0.03 0.98 0.87 0.11 0.02 0.05 

LDM 

0–5 1.36 45.63 5.69 0.25 0.97 0.62 0.35 0.03 0.07 

5–10 3.08 47.37 5.37 0.09 0.95 0.74 0.21 0.05 0.11 

10–15 2.73 48.34 5.63 0.10 0.94 0.94 0.00 0.06 0.13 

15–20 2.54 48.67 5.64 0.30 0.96 0.81 0.15 0.04 0.10 

20–25 2.08 46.99 5.80 0.23 0.97 0.89 0.08 0.03 0.07 

25–30 1.57 45.65 6.23 0.21 0.97 0.89 0.08 0.03 0.07 

LGT 

0–5 1.55 38.33 5.23 0.05 0.97 0.61 0.36 0.03 0.05 

5–10 2.35 41.31 4.66 0.20 0.93 0.83 0.10 0.07 0.08 

10–15 2.34 43.81 5.72 0.18 0.91 0.89 0.02 0.09 0.10 

15–20 1.99 43.17 5.45 0.10 0.89 0.87 0.01 0.11 0.13 

20–25 1.90 37.91 4.83 0.05 0.88 0.83 0.05 0.12 0.15 

25–30 1.32 18.95 2.32 0.01 0.79 0.76 0.03 0.21 0.28 
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B. Models parameters and quality indicators (R
2
 and NRMSE) 

Table B1: Non-synchronised models parameters (par) estimate for the three equations. With the standard error (se) and 

p-values: <0.05 (*), <0.01 (**), <0.001(***). (Bernadouze: BDZ, Frasne: FRN, Landemarais: LDM, La Guette: LGT). 

 

 

 

 linear exponential arrhenius 

depth par value se p-value value se 

 
p-value value se 

 
p-value 

BDZ           

0 α 1.2 ±0.22 *** 0.48 ±0.08 *** 13.32 ±1.49 *** 

 β 0.13 ±0.01 *** 0.04 ±0.01 *** -3516.01 ±427 *** 

-5 α -0.92 ±0.44 * -0.2 ±0.15 - 27.44 ±3.08 *** 

 β 0.29 ±0.03 *** 0.09 ±0.01 *** -7568.79 ±886 *** 

-10 α 0.57 ±0.96 - 0.15 ±0.33 - 20.69 ±6.78 ** 

 β 0.19 ±0.07 ** 0.07 ±0.02 ** -5623.83 ±1945 ** 

-20 α 13.2 ±2.80 *** 3.81 ±0.97 *** -57.05 ±20.65 ** 

 β -0.75 ±0.21 *** -0.2 ±0.07 ** 16663.71 ±5919 ** 

-30 α 24.91 ±8.23 ** 7.81 ±2.81 ** -145.42 ±61 * 

 β -1.66 ±0.63 ** -0.51 ±0.21 * 41948.79 ±17582 * 

FRN           

0 α 0.78 ±0.05 *** -0.11 ±0.03 *** 11.23 ±0.49 *** 

 β 0.06 ±0.00 *** 0.04 ±0.00 *** -3104.47 ±140 *** 

-5 α -0.68 ±0.30 * -1.04 ±0.17 *** 26.84 ±3.05 *** 

 β 0.15 ±0.02 *** 0.09 ±0.01 *** -7639.89 ±884 *** 

-10 α 2.79 ±0.55 *** 0.69 ±0.33 * -4.01 ±6 - 

 β -0.07 ±0.04 - -0.02 ±0.02 - 1288.6 ±1732 - 

-20 α 19.81 ±1.50 *** 9.96 ±0.92 *** -188.36 ±18.28 *** 

 β -1.25 ±0.10 *** -0.66 ±0.06 *** 54320.8 ±5261 *** 

-30 α 15.72 ±4.65 *** 8.49 ±2.73 ** -165.41 ±56 ** 

 β -1 ±0.33 ** -0.58 ±0.20 ** 47621.36 ±16176 ** 

LDM           

0 α 3.18 ±0.31 *** 1.22 ±0.05 *** 10.46 ±0.76 *** 

 β 0.18 ±0.02 *** 0.03 ±0.00 *** -2529.07 ±220 *** 

-5 α -0.87 ±2.50 - 0.41 ±0.40 - 25.29 ±7.15 *** 

 β 0.44 ±0.16 ** 0.08 ±0.02 ** -6818.61 ±2068 ** 

-10 α 28.41 ±5.50 *** 4.8 ±0.88 *** -55.31 ±16.3 *** 

 β -1.42 ±0.35 *** -0.2 ±0.06 *** 16473.53 ±4704 *** 

-20 α 104.7 ±18.0 *** 17.18 ±3.01 *** -290.21 ±57 *** 

 β -6.45 ±1.23 *** -1.01 ±0.20 *** 84216.76 ±16414 *** 
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-30 α -116.4 

 

±40.7 ** -14.16 ±6.52 * 310.7 ±127 * 

 β 8.28 ±2.75 ** 1.07 ±0.44 * -88987.6 ±36553 * 

LGT           

0 α 1.55 ±0.13 *** 0.77 ±0.03 *** 9.67 ±0.43 *** 

 β 0.12 ±0.01 *** 0.03 ±0.00 *** -2444.08 ±128 *** 

-5 α -3.36 ±0.66 *** -0.4 ±0.17 * 26.88 ±2.39 *** 

 β 0.37 ±0.03 *** 0.09 ±0.01 *** -7487.92 ±702 *** 

-10 α -2.21 ±1.27 - -0.14 ±0.31 - 23.72 ±4.65 *** 

 β 0.32 ±0.06 *** 0.08 ±0.02 *** -6548.34 ±1364 *** 

-20 α 50.67 ±4.18 *** 12.23 ±1.06 *** -168.07 ±16.5 *** 

 β -2.49 ±0.22 *** -0.58 ±0.06 *** 49464.16 ±4820 *** 

-30 α 60.7 ±8.92 *** 14.87 ±2.22 *** -218.04 ±36.0 *** 

 β -3.16 ±0.50 *** -0.75 ±0.12 *** 63875.6 ±10484 *** 

 

Table B2: Synchronised models parameters (par) estimate for the three equations, with standard error (se) and p-

values: <0.05 (*), <0.01 (**), <0.001(***). (Bernadouze: BDZ, Frasne: FRN, Landemarais: LDM, La Guette: LGT). 

 

 

 

 linear exponential arrhenius 

depth par value se p-value value se 

 
p-value value se 

 
p-value 

BDZ           

0 α 1,2 ±0.22 *** 0,48 ±0.08 *** 13,32 ±1.49 *** 

 β 0,13 ±0.01 *** 0,04 ±0.01 *** -3516,01 ±428 *** 

-5 α -1,36 ±0.44 ** -0,35 ±0.15 * 30,49 ±3.13 *** 

 β 0,32 ±0.03 *** 0,1 ±0.01 *** -8447,34 ±900 *** 

-10 α -6,41 ±1.05 *** -2,07 ±0.36 *** 66,63 ±7.48 *** 

 β 0,69 ±0.08 *** 0,23 ±0.03 *** -18811,31 ±2148 *** 

-20 α -18,59 ±3.68 *** -6,37 ±1.24 *** 160,36 ±26.5 *** 

 β 1,62 ±0.27 *** 0,56 ±0.09 *** -45651,96 ±7586 *** 

-30 α -30,21 ±10.2 ** -10,82 ±3.44 ** 260,94 ±75.1 *** 

 β 2,54 ±0.78 ** 0,91 ±0.26 *** -74402,6 ±21499 *** 

FRN           

0 α 0,78 ±0.05 *** -0,11 ±0.03 *** 11,23 ±0.49 *** 

 β 0,06 ±0.00 *** 0,04 ±0.00 *** -3104,47 ±140 *** 

-5 α -3,3 ±0.21 *** -2,51 ±0.12 *** 52,61 ±2.14 *** 

 β 0,31 ±0.01 *** 0,18 ±0.01 *** -15106,59 ±621 *** 

-10 α -6,87 ±0.44 *** -4,69 ±0.26 *** 94,72 ±4.68 *** 

 β 0,55 ±0.03 *** 0,33 ±0.02 *** -27235,24 ±1354 *** 

-20 α -20,73 ±2.05 *** -13,19 ±1.19 *** 270,09 ±23.4 *** 

 β 1,55 ±0.14 *** 0,94 ±0.08 *** -77593,31 ±6729 *** 

-30 α -35,85 ±5.47 *** -22,82 ±3.20 *** 479,86 ±65.8 *** 

 β 2,7 ±0.39 *** 1,67 ±0.23 *** -137659 

6 

±18885 *** 
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LDM           

0 α 3,18 ±0.31 *** 1,22 ±0.05 *** 10,46 ±0.76 *** 

 β 0,18 ±0.02 *** 0,03 ±0.00 *** -2529,07 ±220 *** 

-5 α -15,25 ±2.51 *** -1,98 ±0.39 *** 68,44 ±7.00 *** 

 β 1,33 ±0.16 *** 0,23 ±0.02 *** -19298,52 ±2024 *** 

-10 α -31,61 ±6.13 *** -5,03 ±0.95 *** 126,15 ±17.51 *** 

 β 2,41 ±0.39 *** 0,43 ±0.06 *** -35947,66 ±5059 *** 

-20 α -92,44 ±20.9 *** -16,3 ±3.24 *** 342,61 ±61.1 *** 

 β 6,46 ±1.37 *** 1,18 ±0.21 *** -98332,62 ±17628 *** 

-30 α -497,5 

 

±92.6 *** -76,84 ±14.7 *** 1533,48 ±286 *** 

 β 34,11 ±6.27 *** 5,32 ±0.99 *** -441100,15 ±82358 *** 

LGT           

0 α 1,55 ±0.13 *** 0,77 ±0.03 *** 9,67 ±0.43 *** 

 β 0,12 ±0.01 *** 0,03 ±0.00 *** -2444,08 ±128 *** 

-5 α -6,5 ±0.49 *** -1,14 ±0.13 *** 37,67 ±1.84 *** 

 β 0,52 ±0.02 *** 230,12 ±0.01 *** -10652,88 ±540 *** 

-10 α -13,26 ±0.85 *** -2,74 ±0.22 *** 62,38 ±3.23 *** 

 β 0,88 ±0.04 *** 0,21 ±0.01 *** -17873,91 ±947 *** 

-20 α -55,65 ±3.51 *** -12,82 ±0.89 *** 223,13 ±13.9 *** 

 β 3,2 ±0.19 *** 0,76 ±0.05 *** -64728,71 ±4071 *** 

-30 α -121,3 ±10.5 *** -28,39 ±2.64 *** 486,01 ±43.0 *** 

 β 7,01 ±0.59 *** 1,66 ±0.15 *** -141068 ±12525 *** 

 

Table B3: R
2
 and NRMSE profile with depth for models using non-synchronised and synchronised data and for the three 

equations 

 Non-synchronised Synchronised 

 linear exponential arrhenius linear exponential arrhenius 

depth R
2
 NRMSE R

2
 NRMSE R

2
 NRMSE R

2
 NRMSE R

2
 NRMSE R

2
 NRMSE 

BDZ             

0 0.22 25.88 0.19 26.09 0.19 26.09 0.22 25.88 0.19 26.09 0.19 26.09 

-5 0.23 25.66 0.20 25.89 0.20 25.89 0.27 25.18 0.24 25.40 0.24 25.40 

-10 0.02 28.92 0.03 29.26 0.03 29.26 0.23 25.72 0.22 25.90 0.22 25.91 

-20 0.04 28.64 0.03 28.98 0.03 28.98 0.13 27.79 0.13 28.16 0.13 28.15 

-30 0.02 28.93 0.02 29.28 0.02 29.28 0.05 29.54 0.05 29.92 0.05 29.92 

FRN             

0 0.66 27.58 0.63 26.74 0.63 26.96 0.66 27.58 0.63 26.74 0.63 26.96 

-5 0.19 42.34 0.21 43.00 0.21 43.01 0.68 26.34 0.68 25.02 0.68 25.06 

-10 0.01 46.73 0.00 48.01 0.00 48.01 0.59 29.98 0.60 29.20 0.60 29.22 

-20 0.34 38.29 0.27 38.78 0.27 38.77 0.34 38.05 0.36 39.17 0.36 39.16 

-30 0.03 46.30 0.03 47.47 0.03 47.47 0.18 43.66 0.19 44.75 0.19 44.74 
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LDM             

0 0.29 38.55 0.32 39.31 0.32 39.24 0.29 38.55 0.32 39.31 0.32 39.24 

-5 0.03 45.18 0.04 46.06 0.04 46.07 0.21 40.63 0.25 41.58 0.25 41.57 

-10 0.05 44.53 0.04 45.45 0.04 45.45 0.13 42.65 0.16 43.71 0.16 43.7 

-20 0.09 43.75 0.08 44.55 0.08 44.55 0.09 43.83 0.12 44.97 0.12 44.97 

-30 0.03 45.09 0.02 46.07 0.02 46.07 0.13 44.94 0.12 46.02 0.12 NA 

LGT             

0 0.61 17.44 0.56 17.30 0.56 17.34 0.61 17.44 0.56 17.30 0.56 17.34 

-5 0.31 23.27 0.29 23.24 0.28 23.26 0.63 16.83 0.59 16.49 0.58 16.51 

-10 0.08 26.89 0.07 27.09 0.07 27.10 0.61 17.21 0.57 16.84 0.57 16.85 

-20 0.30 23.41 0.27 23.30 0.27 23.30 0.54 18.93 0.51 19.01 0.51 19.01 

-30 0.12 26.25 0.11 26.37 0.11 26.37 0.39 22.18 0.36 22.26 0.36 22.26 
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List of figures 

Figure 1: Scheme of the synchronisation process between ER and temperature measurements 

at different depths (0 to -30 cm). For each site and temperature measurement depth the time series 

are shifted with 10 minutes steps until a 24 hour shift. The correlation coefficient (R) is used to 

select the synchronised datasets. 

Figure 2: Ecosystem Respiration (ER), air and peat temperature, in the 4 sites (Bernadouze: 

BDZ, Frasne: FRN, Landemarais: LDM, La Guette: LGT). All data points from all replicates are 

shown. 

Figure 2: Time delay between temperature at different depths and ER, in the 4 sites 

(Bernadouze: BDZ, Frasne: FRN, Landemarais: LDM, La Guette: LGT). 

Figure 4: Profile of R
2
 and NRMSE, (RMSE, normalized by the mean), with depth, in the 4 

sites (Bernadouze: BDZ, Frasne: FRN, Landemarais: LDM, La Guette: LGT) using the exponential 

model. 

Figure 5: Profile of Q10 with depth for synchronised (white) and non synchronised (black) 

data and exponential model in the 4 sites (Bernadouze: BDZ, Frasne: FRN, Landemarais: LDM, La 

Guette: LGT). The inset display the same datas but with their full range extend. 
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