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Abstract As a major sink of atmospheric nitrogen oxides (NOx=NO+NO2), nitrate (NO3
�) in polar snow

can reflect the long-range transport of NOx and related species (e.g., peroxyacetyl nitrate). On the other hand,
because NO3

� in snow can be photolyzed, potentially producing gas phase NOx locally, NO3
� in snow

(and thus, ice) may reflect local processes. Here we investigate the relationship between local atmospheric
composition at Summit, Greenland (72°35′N, 38°25′W) and the isotopic composition of NO3

� to determine
the degree to which local processes influence atmospheric and snow NO3

�. Based on snow and atmospheric
observations during May–June 2010 and 2011, we find no connection between the local atmospheric
concentrations of a suite of gases (BrO, NO, NOy, HNO3, and nitrite (NO2

�)) and the NO3
� isotopic composition

or concentration in snow. This suggests that (1) the snow NO3
� at Summit is primarily derived from long-range

transport and (2) this NO3
� is largely preserved in the snow. Additionally, three isotopically distinct NO3

�

sources were found to be contributing to the NO3
� in the snow at Summit during both 2010 and 2011. Through

the complete isotopic composition of NO3
�, we suggest that these sources are local anthropogenic particulate

NO3
� from station activities (δ15N=16‰, Δ17O=4‰, and δ18O=23‰), NO3

� formed from midlatitude NOx

(δ15N=�10‰, Δ17O= 29‰, δ18O= 78‰) and a NO3
� source that is possibly influenced by or derived

from stratospheric ozone NO3
� (δ15N= 5‰, Δ17O= 39‰, δ18O= 100‰).

1. Introduction

Nitrogen oxides (NOx=NO+NO2) are short-lived radicals that influence the oxidizing capacity of the atmo-
sphere via interactions with ozone (O3) and hydroxyl radical (OH). Nitrate (NO3

�), the end product of NOx

oxidation, is an abundant anion in polar snow. Because NO3
� can be subject to postdepositional processes such

as photolysis and/or evaporative loss [e.g., Honrath et al., 1999; Rothlisberger et al., 2000], NO3
� in snow can

reflect a combination of distant sources and chemistry, as well as local processing and therefore local chemistry.
As a result, it can be unclear to what extent NO3

� that is ultimately archived in ice cores reflects local post-
depositional processing and/or loss versus that which is representative of regional scale atmospheric chemistry.

The dominant fraction of oxidized nitrogen (NOy=NOx+HNO3+HONO+PAN+ , etc.) transported to Summit is
peroxyacetyl nitrate (PAN) [Kramer et al., 2015]. While the amount of PAN transported to Summit decreases in
the summer, it remains the dominant species year-round due to formation of PAN in source regions and its long
lifetime. PAN can be thermally decomposed to NOx at any point during its transport, but conditions at Summit
are nearly always too cold for this to be a significant contributor to local NOx [Kramer et al., 2015]. It is, therefore,
thought that amain source of NOx in the lower atmosphere above central Greenland is a photochemical release
from snowpack NO3

� [Honrath et al., 1999; Thomas et al., 2012b, 2011].

A number of studies have investigated the degree to which NO3
� is lost from the snow upon photolysis

(Figure 1, arrows a and b), with the primary reaction pathways

NO3
� þ hν þ Hþð Þ→ NO2 þ OH (R1)

NO3
� þ hν→ NO2

� þ O 3P
� �

(R2)
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While the concentration of NO3
� pro-

vides some information about proces-
sing of NO3

� in the snow, more recent
studies have shown that the isotopic
composition of nitrate can provide
more details. NO3

� in low snow accu-
mulation areas (~10 cm yr�1 snow
accumulation), such as on the East
Antarctic Ice Sheet, shows significant
mass loss and redistribution such that
a strong decrease in NO3

� concentra-
tion is observed with depth [Blunier
et al., 2005; Erbland et al., 2013; Frey
et al., 2009; Shi et al., 2015]. In these stu-
dies, the NO3

� found below the surface
in snowpits is generally highly enriched
(δ15N> 300‰) in the heavier isotope
of nitrogen (δ15N = (15N/14Nsample)/
(15N/14NN2 in air (reference))� 1×1000‰),

as a result of preferential loss of NO3
�with greater 14N. Based upon theoretical and laboratory-based predictions

of the fractionation factor associated with photolysis of NO3
� (e.g., �40 to �74‰ [Berhanu et al., 2014; Frey

et al., 2009]), the highly enriched values observed in East Antarctica are explained by significant photolytic loss
of NO3

� from the snowpack [Erbland et al., 2013].

In contrast, at Summit, Greenland (~65 cmyr�1 snow accumulation), the NO3
� in the snow is largely preserved.

Hastings et al. [2004] found little changes in the isotopes of NO3
� in snow sampled on the surface in March and

resampled in snowpits at 33 cmdepth in August. Recently, Fibiger et al. [2013] found a strong, linear relationship
between the oxygen isotopes of NO3

� (δxO= (xO/16Osample)/(
xO/16OVSMOW)� 1×1000‰, where x=18 or 17;

Δ17O= δ17O� 0.52 × δ18O). With the current understanding of photolysis of nitrate in snow, the associated
isotopic fractionation for Δ17O and δ18O in NO3

� remaining in the snow, and possible exchange of oxygen
atoms in the snow, this relationship could not be explained in the presence of significant postdepositional
loss or processing of NO3

� [Fibiger et al., 2013].

Based on snow NO3
� data from both 2010 and 2011, the relationship found between δ18O and Δ17O indicates

that NO3
� in the snow at Summit is influenced, primarily, by two oxidants of differing isotopic composition.

From the linear relationship (Δ17O=0.46× δ18O� 6.9, R2 = 0.9), the high end-member (δ18O=100‰ and
Δ17O=39‰) is similar to that expected for ozone, while the low end-member (δ18O=15‰ and Δ17O=0‰)
is closest in isotopic composition to diatomic oxygen. In the absence of significant NO3

� loss from the snow,
δ15N-NO3

� in snow and ice at Summit may reflect NOx sources [Hastings et al., 2009] or some combination of
source δ15N and fractionation with processing (e.g., PAN chemistry) during transport. The δ18O and Δ17O-NO3

�,
meanwhile reflect the relative abundance of oxidants implicated in the NO3

� formation pathway [e.g., Hastings
et al., 2004; Morin et al., 2008].

While the isotope studies suggest very little loss or redistribution of NO3
� from the snow at Summit, there are

significant NOx concentrations observed above the snow [Dibb et al., 2002; Honrath et al., 2002; Yang et al.,
2002]. The surprisingly high NOx concentrations, up to 50 pptv measured in the boundary layer, have been
ascribed to photolysis of NO3

� in the snow. Based on modeling of observed concentrations of a suite of gases
at Summit, only a 2% loss of NO3

� from the snow, prior to burial below the photic zone, is required to explain
the NOx concentrations above the snowpack in summertime [Thomas et al., 2011]. This minimal loss fits with
isotopic observations of nitrate at Summit thus far. However, recent modeling of the isotopic composition of
nitrate under conditions of postdepositional photolytic loss at Dome C on the East Antarctic ice sheet
[Erbland et al., 2015] suggests that a significant amount of recycling of NO3

� can take place locally (Figure 1,
arrows a, c, and d)—i.e., NO3

� is photolyzed and NOx escapes the snow, this NOx reacts in the gas phase above
the snow and is either transported away (Figure 1, arrow b) or redeposited locally as NO3

� (Figure 1, arrows
c and d). If this process was important at Summit as well, the δ15N of NO3

� in the snow should reflect both

Figure 1. Possible paths for NO3
� deposition and loss at Summit. NO3

� can
be photolyzed in surface snow (arrow a) releasing NOx to the atmosphere
above, which can be transported away (arrow b) or reacted with local oxi-
dants to regenerate NO3

� (arrow c). NO3
� deposited back to the snow via

this mechanism (arrow d) will contain an isotopic composition that reflects
photolysis and oxidation by local gases. Alternatively or in addition, snow
NO3

� could reflect NOx transported in from outside of Summit that is locally
oxidized (arrows e, f, and g) or could represent long-range transported NO3

�

that is deposited and preserved in the snow (arrows h and i).
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photolytic loss and redeposition, while we would expect the δ18O and Δ17O of NO3
� in the snow to reflect the

local oxidant composition and any fractionation with redeposition.

The photolytic processing of NO3
� can also include reactions of the photolytic products which remain in the

condensed phase. NO3
� can be photolyzed to NO2

�, which will be converted back to NO3
� in the snow.

These reactions will alter the oxygen isotopic composition of the snow NO3
�, without altering the δ15N.

The change in δ18O and Δ17O depends on the isotopic composition of the water that makes up the snow
[McCabe et al., 2005]. This oxygen exchange happens simultaneously with nitrate photolytic loss from the
snowpack, and therefore, both isotopic effects are expected.

If the NO3
� in the snow is the result of NOx that is transported in from outside of Summit and then converted

to NO3
� and deposited (Figure 1, arrows e, f, and g), then the δ15N should reflect long-range transport of NOx

or NOy to Summit as a result of midlatitude NOx emission sources, while the oxygen isotopic composition is
expected to reflect local oxidizing conditions. For instance, in the presence of sunlight, any NO2 lost from the
snow as a result of photlysis will cycle rapidly with NO, erasing the original oxygen isotopic content of the NO.

NO2 þ hv → NOþ O 3P
� �

(R3)

NOþ O3 → NO2 þ O2 (R4)

Eventually, the NO2, which now reflects the isotopic composition of local O3, will be further oxidized to HNO3.

NO2 þ OH → HNO3 (R5)

In this case, the isotopic composition of HNO3 will be two thirds derived from O3 and one third from OH. The
isotopic composition of OH is currently not well constrained, but it is assumed to be in isotopic equilibriumwith
water vapor, depending on local conditions [Morin et al., 2007]. Calculated for average summertime conditions
at Summit, the OH should contain greater than 98% the isotopic composition of water. This will result in a Δ17O
not significantly different than that of H2O vapor (~0‰) and a δ18O that either directly reflects that of H2O
vapor (~�10‰) or includes fractionation. The most current estimate of the fractionation of OH in equilibrium
with water is ~�40‰ [Michalski et al., 2012], and in this case, OH at Summit would be expected to have a δ18O
of ~�50‰. The isotopic composition of O3 is unique among oxidants, with typical Δ17O of ~26‰ and δ18O of
~115‰ [Vicars and Savarino, 2014]. As demonstrated by Vicars and Savarino [2014, and references therein],
these values reflect the properties of bulk O3, while the reactions that produce NO3

� interact with the terminal
oxygen atoms of O3, such that the isotopic composition transferred to NO3

� is ~40‰ for Δ17O and ~128‰ for
δ18O. These isotopic values reflect tropospheric O3, while stratospheric O3 values have been observed to be
higher, close to 35‰ for bulk Δ17O (53‰ for terminal Δ17O) [Krankowsky et al., 2007].

Attempts to model the oxygen isotopic composition of NO3
� at Summit, Greenland, generally underestimate

the Δ17O-NO3
� observed in spring and summer due to the expected dominance of (R5) [Alexander et al.,

2009; Kunasek et al., 2008]. Both Alexander et al. [2009] and Kunasek et al. [2008] posited that local halogen
chemistry could account for this difference. In particular, the spring BrO concentrations of up to 5.5 pptv
[Liao et al., 2011b] at Summit could be high enough to increase the simulated Δ17O-NO3

� to better match
observations. BrO imparts a high δ18O and Δ17O on to NO3

� because its oxygen originates from O3, as follows:

Brþ O3 → BrOþ O2 (R6)

BrOþ NO→ NO2 þ Br (R7)

NO2 þ BrOþM → BrONO2 þM (R8)

BrONO2 þ H2O → HNO3 þ HOBr (R9)

The resulting HNO3 in (R9) would have a much higher δ18O and Δ17O-NO3
� than that formed in (R5) because

of the greater influence of O3 [e.g.,Morin et al., 2012, and references therein]. The higher than predicted snow
NO3

� oxygen isotopic values would then be explained as a result of the local recycling of photolysis-derived
NOx and redeposition of NO3

� (Figure 1, arrows a, c, and d) [Alexander et al., 2009; Kunasek et al., 2008]. Jarvis
et al. [2009] also suggested that local recycling of NO3

� (Figure 1, arrows a, c, and d) at Summit may influence
the NO3

� in the snow, based on an observed offset in δ18O-NO3
� in the snow and air, despite similar

δ15N-NO3
� in snow NO3

� and HNO3 captured from the air (via mist chamber). Fibiger et al. [2013], however,
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found that postdepositional loss and/or recycling are not prominent processes at Summit during spring and
early summer. The NO3

� in snow, rather, is interpreted as a direct, atmospheric signal, which is representative
of long-range transport (Figure 1, arrows h and i). We investigate these contrasting findings by examining
whether there are direct connections between atmospheric composition and the concentration and isotopic
composition of NO3

� in surface snow and the atmosphere at Summit.

2. Methods
2.1. Snow Concentration and Isotope Measurements

Two 5week field seasons were conducted in late spring at Summit, Greenland: 17 May to 22 June 2010 and
24 May to 26 June 2011. Throughout both seasons, surface snow samples comprising the dominant strati-
graphic layer, as described in Dibb et al. [2007], were collected at 4 or 12 h intervals. This surface layer typically
ranged from 0.5 to 3.0 cm in depth and 100 to 400 cm2. All snow samples were collected within a 2 × 10 m
area in the clean air sector (approximately 1.0 km to the south of the station). This area is generally upwind
of the station, though there are periods of “north winds” during each field season when air passes over the
station before the sampling area or the winds are low enough that there may be station influence on the
snow. North wind conditions are defined as wind between 342 and 72° or less than 2m s�1. During these
events, camp activities that may pollute the snow are limited as much as possible, though the generator is
run continuously. At each time point three adjacent samples of 100–400 cm2 were collected. (The mass of
each sample is reported with the data set at ACADIS, see Acknowledgments below.) Every tenth bottle, a
blank was collected, which was handled identically to the samples, with approximately 10mL of 18 MΩwater
added in place of the snow. Samples were stored frozen in high-density polyethylene (HDPE) bottles until
analysis in laboratories at University of New Hampshire (UNH) and Brown University. Snow samples were first
analyzed on a Dionex ion chromatograph (IC) for a suite of ion concentrations, including chloride (Cl�),
bromide (Br�), sulfate (SO4

2�), NO3
�, sodium (Na+), ammonium (NH4

+), potassium (K+), magnesium (Mg2+),
and calcium (Ca2+). Immediately upon melting in the UNH lab, aliquots where taken for the IC analysis, and
the remainder was refrozen for subsequent transfer to Brown. The analysis and QA/QC followed protocols
described in Dibb et al. [2007] and yielded an uncertainty of 10%.

The NO3
� was analyzed for the complete isotopic composition (δ15N, δ18O, Δ17O) at Brown University. The

isotopes were determined using the bacterial denitrifier method, explained in detail in Casciotti et al. [2002],
Sigman et al. [2001], and Kaiser et al. [2007]. In short, denitrifying bacteria that lack the N2O reductase enzyme
quantitatively convert NO3

� (and NO2
�) in solution to gaseous N2O. Using helium as a carrier gas, the analyte

N2O is then measured on a Thermo-Finnegan Delta Plus isotope ratio mass spectrometer at m/z 44, 45, and
46 to determine δ15N and δ18O of NO3

�. Isotopic reference materials, USGS34, USGS35, and IAEA-N3 were
prepared in 18.2 MΩ water and analyzed in each set via the same analytical process as samples, and the
samples are corrected to a linear fit of the standard values [Kaiser et al., 2007]. (Note that USGS35 is not used
as a standard for δ15N.) For the δ15N/δ18O analysis, all samples and standards were injected so the amount of
NO3

� was 10nmol. For determination of Δ17O-NO3
� (Δ17O= δ17O� 0.52× δ18O), the N2O was passed through

a gold tube heated to 770°C, resulting in N2 and O2 [Kaiser et al., 2007]. The O2 is then measured at m/z 32, 33,
and 34 and corrected based upon linearly fitting reference materials USGS35 and USGS34 to known values.
All Δ17O analysis was done on 50 nmol of NO3

�. The reference material values and reproducibility for each
isotopic quantity are detailed in Table 1.

To calculate the isotopic composition of NO3
� for each snow-sampling event, a weighted average of the values

for the triplicate samples was taken. For example:

δ18O� NO�
3 ¼ NO�

3

� �
1 H2Omassð Þ1δ18O1 þ NO�

3

� �
2 H2Omassð Þ2δ18O2 þ NO�

3

� �
3 H2Omassð Þ3δ18O3

NO�
3

� �
1 H2Omassð Þ1 þ NO�

3

� �
2 H2Omassð Þ2 þ NO�

3

� �
3 H2Omassð Þ3

(1)

where H2Omass is the mass of snow collected and the same process used for δ15N and Δ17O.

2.2. Atmospheric Concentration and Isotope Measurements

Atmospheric gas phase soluble ion concentrations (Br�, nitrite (NO2
�), NO3

�) were measured in 0.5 h inter-
vals using a mist-chamber (MC) system coupled to a Dionex IC. The automated two-channel sampling and
analysis system has been described previously [Dibb et al., 2010]. In previous studies independent inlets were
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used for each channel to assess gradients (with height above the snow, or between firn air and the atmosphere).
In this study a single inlet fitted with a Millipore 90mm Fluoropore PTFE 1μM pore size filter to remove parti-
culates was employed to sample air approximately 1m above the snow throughout the field season, resulting
in paired samples in 2010. Particulate NO3

� is a very small fraction of NO3
� found in Greenland; only about 3%

of total atmospheric NO3
� at Summit is in the aerosol phase [Dibb et al., 1994; Jaffrezo and Davidson, 1993;

Silvente and Legrand, 1995]. Therefore, the mist chamber HNO3 is expected to be representative of NO3
� in

the atmosphere at Summit. The filter was changed every 2–3 days or when blocked by snow. In 2011, a third
MC was added to increase the volume of air sampled during each sampling interval, and hence the mass
of NO3

� collected, to facilitate the isotopic measurements. The atmospheric sampling was located ~200m
from the snow sampling.

At the end of each sampling interval 5 ml of the ultrapure water in one of the samplers was injected into the IC.
For NO2

�, Br�, and NO3
�, there is a detection limit of 0.5 pptv and uncertainty of 15%. Any sample solution

remaining in that MC was transferred into an amber HDPE bottle. The entire samples in the second (2010
and 2011) and third (2011) MCs were transferred to separate HDPE bottles. The collection bottles for isotope
analysis were changed every 12 h and then frozen for shipment to the laboratory at Brown for analysis of δ15N
and δ18O of NO3

�.

In theseMC samples, [NO3
�] was low enough that they could not be analyzed directly via the bacterial denitrifier

method. The samples were concentrated by anion exchange resin, which has been used previously by several
groups [Erbland et al., 2013; Frey et al., 2009; Silva et al., 2000]. A 0.3 cm3 Bio-Rad AG 1-X8 200–400mesh chloride
form ion exchange resin was used to capture NO3

� from the sample; the NO3
� was then eluted from the resin

with 10mL of 1MNaCl solution. The NaCl always has a small, but significant, NO3
� blank or NO3

� impurity asso-
ciated with it. Within a single batch of NaCl (Fisher brand) the NO3

� had a constant concentration and isotopic
composition. For the NaCl used with samples here, different bottles were found to have a range of 0.5–1μM
NO3

� in 1MNaCl solution (determined colorimetrically by aWestco Scientific SmartChem200 discrete chemistry
analyzer). The δ15N of the NaCl ranged from �2.7 to +0.6‰ and the δ18O from 13.4 to 30.6‰, depending on
the batch of NaCl used. To eliminate the influence of the NO3

� impurity on sample isotopemeasurements, 18.2
MΩwater of a similar volume to the samples was put through the same conditions as samples with each sample
set. The resultant concentration and isotopic values were corrected out of the sample and reference materials.
This is important, even in higher concentration samples, if the isotopic value of NO3

� in NaCl is significantly dif-
ferent from that of the material being analyzed. Additionally, there is some fractionation associated with the
concentrating method, so 0.1μM standards USGS34, USGS35, and IAEA-N3, were put through the concentra-
tion method with each analytical set. Thus, a three-step correction was required: first, all concentrated samples,
concentrated standardmaterials, and NaCl impurity “blanks”were linearly corrected to typical USGS34, USGS35,
and IAEA-N3 that are analyzed with every sample set to account for the denitrifier method and mass spectro-
metry uncertainties [Kaiser et al., 2007]; second, the NO3

� contained in the NaCl solution was subtracted out by
mass balance to remove the influence of this impurity; finally, the samples were corrected based on linear
fitting to the known reference material values (USGS34, USGS35) that had been run through the concentration
method. In general, the additional corrections (second and third) resulted in a 2–3‰ change in the δ15N, with
a maximum change of 5‰ and a 5–15‰ change in δ18O of the standards, with a maximum change of 25‰.
The NO3

� impurities accounted for the vast majority of this additional correction and the positive δ18O of
NO3

� in the NaCl accounts for the large range in δ18O corrections. Despite the use of the concentratingmethod,

Table 1. Error Statistics for Isotopic Standards and Snow Sample Replicates

δ18O, 1σp (‰)a δ18O, nb
δ18O Standard
Value (‰)c Δ17O, 1σp (‰)a Δ17O, nb

Δ17O Standard
Value (‰)c δ15N, 1σp (‰)a

δ15N Standard
Value (‰)c

IAEA-N3 0.37 160 25.6 -- -- -- 0.02 4.7
USGS34 0.79 158 �27.9 0.48 246 �0.292 0.02 �1.8
USGS35 0.46 160 57.5 0.72 241 21.6 -- --
Sample replicates 0.7 271 -- 0.9 271 -- 0.2 --

aσp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1
ni � 1ð Þs2i =

Xk

i¼1
ni � 1ð Þ

q
, where ni and si

2 are the size and variance of the ith set of samples, respectively, and k is the total number of sample sets.
bn is the number of standards or sample replicates (n is the same for δ18O and δ15N).
cδ18O standard values from Böhlke et al. [2003] and Δ17O standard values recalculated from Böhlke et al. [2003] using the linear Δ17O (Δ17O= δ17O� 0.52 × δ18O).
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there were times when several samples had to be combined for the 10nmol of NO3
� required for analysis. This

caused variable time resolution (12–48 h, sometimes discontinuous) and eliminatedmost of the duplicate sam-
ples at any time point. Additionally, there was insufficient NO3

� in the atmospheric samples for analysis ofΔ17O.

BrO was measured by Chemical Ionization Mass spectrometry (CIMS). The configuration of the CIMS has been
described by Liao et al. [2011b]. The primary reagent ion was I�•H2O. BrO was ionized inside the CIMS and
measured as BrO•I� [Neuman et al., 2010].

BrOþ I� • H2O → BrO • I� þ H2O (R10)

Due to the unstable nature of BrO, direct calibration of BrO in the fieldwas unavailable. Br2 from a permeation tube
(Kin-tek) was added periodically into the inlet to track the CIMS sensitivities in the field (R10), while the sensitivities
to BrO were obtained in the laboratory by comparing sensitivities to BrO and Br2 [Liao et al., 2011b]. The emission
rate of Br2 permeation tube was measured in the field by spectroiodometric technique [Wu et al., 1963].

Br2 þ I� • H2O → Br2 • I� þ H2O (R11)

During the 2010 campaign, sensitivity to BrOwas 5–15Hzpptv�1 and the detection limit was ~1–1.5 pptv based
on 1min averaged data. During the 2011 campaign, sensitivity to BrO was 10–35Hzpptv�1 and the detection
limit was <0.3 pptv based on 1min averaged data. The detection limit was significantly improved during the
2011 campaign, partially due to increased sensitivities with a new detector and ion source. The total uncertainty
was ~30% for BrO measurements in both years.

NO and NOy were measured by the chemiluminescence method described by Ryerson et al. [2000]. The instru-
ment has two channels: one channelmeasured NO directly by chemiluminescence, and the other was equipped
with a heated Molybdenum converter which converts all NOy species into NO, and the product NO was mea-
sured to quantify NOy. During the 2011 campaign, high-frequency noise was observed on both NO and NOy

channels, probably due to a deteriorating photomultiplier; therefore, a low-pass filter with a cutoff of 0.05Hz
was applied to the raw data. During the two campaigns the detection limit was ~1–1.5 pptv, and the total
uncertainty was ~10% for both NO and NOy channels.

2.3. Transport Modeling

We used the Lagrangian FLEXible PARTicle Dispersion Model (FLEXPART) [Stohl et al., 2005] to evaluate (1) the
seasonal transport patterns at Summit during our two seasons in 2010 and 2011 and (2) transport events on
22–25 May 2010 and 24–26 June 2011. In both model investigations, FLEXPART was driven using European
Center for Medium-range Weather Forecasting model (0.25° × 0.25° horizontal resolution, 92 vertical levels)
global meteorological fields. FLEXPART was run in twoways. First, themodel is used to study seasonal transport
to Summit during the two campaign years (2010 and 2011 seasons). For this, we calculate the mean transport
during 17 May to 22 June 2010 and 24 May to 26 June 2011. Simulations are conducted backward in time, as
this provides a more efficient way to calculate a source-receptor relationship when one is interested in a single
receptor. The model was configured with 3-hourly releases of 90,000 particles each from a grid box local to
Summit. The particles were parameterized as a passive tracer with a 20day lifetime. This parameterization
removes the particles after 20 days and is intended only to provide an air mass history. In this configuration,
one may use the FLEXPART model to produce maps of potential emission sensitivity (PES) (in units of s kg�1),
which is proportional to the particle residence time in that cell. It is a measure for the simulated mixing ratio
at the receptor that a source of unit strength (1 kg s�1) in the respective grid cell would produce. By taking
the lowest model layer (<100m above ground level) one can create a map of residence time or sensitivity
to source regions. This provides information on where and when the air mass would be sensitive to surface
emissions. When conducting transport simulations over a long period (e.g., several weeks of the campaign),
these values must be normalized so that patterns separate from immediate local transport can be seen. We
normalized the seasonal average using the long-term mean transport climatology from Summit for the period
of January 2000 to December 2011. The resulting data provides seasonal transport anomaly from the long-term
mean transport for each season. Second, the model is run for specific events. Separate FLEXPART runs in back-
ward mode were completed for each day with releases (100,000 particles) from 9:00–17:00 UTC in 2010 and
13:00–21:00 UTC in 2011, bracketing the times of largest isotope anomaly. Using the plume-clustering algorithm
included in FLEXPART, we are able to map the air mass transport history immediately prior to the observations
[Dorling et al., 1992; Stohl et al., 2002].
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3. Results

In both the 2010 and 2011 campaigns, the same suite of gas phase and snow measurements was made. Both
campaigns showed high variability in both concentration and isotope measurements, which is typical of what
has been observed at Summit in the past (detailed below). We first consider the gas phase concentrations of
NO, NOy, BrO, and soluble gases, followed by the snow NO3

� concentration and isotopes, and, finally, context
for our discussion and interpretation based on transport modeling.

3.1. Gas Phase Concentrations

Themixing ratios of reactive nitrogen oxides and active bromine above the snow at Summit were quite different
in some regard, between the two field campaigns. Focusing first on compounds that are believed to be
dominated by emissions from the snowpack [Thomas et al., 2012a], we note that hourly means (and medians,
not shown) of NO were consistently higher by several pptv during summer 2011; this enhancement was largest
(>4 pptv) from17:00 to 23:00Western Greenland Standard Time (WGST) (Figures 2a and 2b). In contrast, soluble
NO2

� mixing ratios were much higher in 2010, particularly from about 11:00–23:00 WGST (Figures 2c and 2d).
Reactive bromine (both BrO and the soluble Br� measured by MC/IC) was also higher by at least a factor of
5 throughout the day during 2010 (Figure 2). Nitric acid above the snow can be enhanced by long-range transport
events, but it has been suggested that local production from NO and HOx emitted from the snowpack can be
the dominant source for much of the summer at Summit [e.g., Dibb et al., 2002; Dibb and Fahnestock, 2004;
Thomas et al., 2011]. Hourly mean HNO3 mixing ratios were similar in 2010 and 2011, but we observed several
hour offset in the timing of the daily peak (12:00–14:00WGST in 2011 versus 14:00–18:00 in 2010) and note that
the nighttimeminimumwas not as deep in 2010 (Figures 2c and 2d). The afternoon and evening enhancement
of HNO3 in the 2010 campaign is more pronounced in the hourly medians (not shown). Mixing ratios of NOy

increased just 10–20 pptv from early morning minima to broad afternoon maxima in both seasons, 2011 had
higher levels by 20–30 pptv throughout the average daily cycle (Figures 2a and 2b).

The nitrogen oxide species have been measured in a series of Summit campaigns extending back to 1998, but
the only previousmeasurements of reactive bromine weremade as part of the Greenland Summit Halogen-HOx
Experiment (GSHOX) experiment in 2007 and 2008 (summarized in Thomas et al. [2012b]). Most of these prior
campaigns emphasized the fast photochemistry linking NOx and HOx cycles above the snow and focused
on model simulations around midday when this chemistry was most active. Comparing our observations
during midday to those from GSHOX reveals that NO mean and median mixing ratios were quite low in 2010
(Table 2). Looking further back, the NOmeans and medians in 2008, 2010, and 2011 were all 1.5–2.5-fold lower
than reports for midday during campaigns in 1999, 2000 [Yang et al., 2002], 2003 [Chen et al., 2007], and a

Figure 2. Hourly averages (black diamonds) and all data (grey points) for gas phase NO, NOy, and BrO in (a) 2010 and
(b) 2011. Soluble Br�, NO2

� and HNO3 in (c) 2010 and (d) 2011 in Western Greenland Standard Time (WGST). BrO values
are significantly higher in 2010 than 2011, while NO and NOy have similar average values, but different distributions. Br� and
soluble NO2

� values are significantly higher in 2010 than 2011, HNO3 has similar values with a different time distribution.
No hourly averages of soluble Br� are reported in 2011 because there are too few data points above the detection limit.
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springtime campaign in 2004 [Grannas
et al., 2007]. On the other hand, mid-
day soluble NO2

� in 2010 was more
than fourfold higher than during either
GSHOX campaign (Table 2). The mean
and median soluble NO2

� mixing
ratios reported in 2008, however, were
the lowest out of nine campaigns, with
the 1999, 2000, 2003, and 2004 results
all in the 7–13pptv range like 2007,
and in 1998 themiddaymean (median)
was 42.7 (42.1) pptv [Grannas et al.,
2007]. Midday HNO3 during our recent
campaign varied between the two
years, but was within the same range

reported for GSHOX (Table 2). During the 1999 and 1998 campaignsmidday HNO3mean (median)mixing ratios
were 16.9 (9.4) and 44.3 (9.4) pptv, respectively [Grannas et al., 2007].

3.2. Snow Nitrate Concentration

In the surface snow, the NO3
� varied significantly between the 2010 and 2011 seasons sampled at Summit

(Figure 3). The [NO3
�] in the snow ranged from 0.7 to 9.7μM in 2010, with a mean of 2.8μM, and in 2011 it

ranged from 1.0 to 15.5μMwith a mean of 5.16μM. This range of [NO3
�] is similar to that observed in surface

snow in May/June 2006 by Jarvis et al. [2009] (1 to 6μM), Honrath et al. [2002] (1.2 to 8μM), and Hastings et al.
[2004] (0.8 to 5.9μM).

3.3. Isotope Measurements

The snow δ18O-NO3
� in 2010 ranges from 37.4 to 93.4‰with amean of 78.5‰; while the range is similar in 2011

(28.9 to 93.6‰), themean of 70.1‰ is significantly different. In contrast, the δ15N-NO3
� has similar mean values

in the two years (�1.3 and�1.4‰) as well as similar ranges (2010:�8.7 to +14.1‰, 2011:�8.2 to +13.4‰). The
snow NO3

� oxygen isotopic composition is similar in range to that observed by Jarvis et al. [2009], where they

Table 2. Mean (Median) Midday (10:00�15:00 WGST) Gas Phase Mixing
Ratios (pptv) During Recent Campaigns at Summit

2011 2010 2008a 2007a

Species 5/24 to 6/26 5/17 to 6/22 5/13 to 6/13 6/10 to 7/8
NO 9.8 (8.1) 7.5 (4.6) 11.4 (8.6) 17.2 (12.8)
NO2

�b 11.2 (10.6) 32.5 (30.9) 5.8 (4.7) 7.3 (6.5)
HNO3 15.5 (8.3) 11.7 (11.0) 11.5 (5.5) 15.9 (12.9)
BrO 0.5 (0.4) 3.0 (2.9) 2.0 (1.5) 2.0 (1.8)
Soluble Br�c --d (--d) 0.5 (0.3) 0.3 (0.3) 0.7 (0.6)

aFrom Liao et al. [2011a] and Dibb et al. [2010].
bThis is strictly soluble nitrite (NO2

�) as sampled and quantified by the
MC/IC system.

cSee Liao et al. [2012] for discussion of soluble bromide.
dDuring the 2011 season bromidewas only above detection limits in 211

out of 1406 half-hour mist chamber samples, making summary statistics
highly uncertain.

Figure 3. Comparison of snow and air NO3
� isotopic composition and concentration. Snow (blue) and air (white) from

2010 and 2011 are compared for (a) δ18O and (b) δ15N. NO3
� concentration for both years is compared for (c) snow

and (d) air. The lines in each diagram show the median value, the boxes show the upper and lower quartiles. The individual
points are more than 1.5 times the interquartile distance. Note that the snow NO3

� concentration and δ18O-NO3
� above,

in addition to the Δ17O-NO3
� of the same samples, are reported in Fibiger et al. [2013].
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found δ18O-NO3
� from 40 to 110‰. The δ15N-NO3

� in snow observed by Jarvis et al. [2009], however, is lower
(δ15N-NO3

� from �15 to +5‰) than seen in 2010 or 2011.

In contrast to Jarvis, however, the δ15N-NO3
�in the snow is significantly different from the δ15N-HNO3 in the air.

Both seasons had similar δ15N-HNO3 in the atmospheric samples, whereas δ18O-HNO3was very different between
the years. (Figure 3). In 2010, the mean δ15N-HNO3 in the atmosphere was�16‰, and in 2011,�13‰. The δ18O-
HNO3 was 54‰ in 2010 and 91‰ in 2011. The atmospheric isotopic data, however, represent only 60% of the
2010 field season and 10% of the field season in 2011. In 2010, these data are evenly distributed over the season,
while in 2011, all atmospheric data fall during the period of high [HNO3] from 10 June to 16 June (Figure 5).

In both 2010 and 2011 there is a strong correlation between δ18O and Δ17O of NO3
� in the snow. As shown

in Fibiger et al. [2013], the relationship of Δ17O=0.46 × δ18O�6.9 cannot be explained with any significant

Figure 4. Time series of atmospheric (a–d) and snow (e–h) data for 2010. The atmospheric constituents are on top and
marked with stars. The snow measurements are indicated with dots. The black bars at the bottom indicate times Summit
Station was under north wind conditions (winds between 342 and 72° or less than 2m s�1). The bar length indicates the
inverse of the wind speed (longer bars are slower speeds). The dark grey line between Figures 4a and 4b shows the time
coverage of the atmospheric NO3

� isotopic values summarized in Figure 3. All snow samples were collected at 4 or 12 h time
intervals in triplicate. The [NO3

�] is a mean of the triplicates, while the isotopic values are weighted by NO3
� amount (see

section 2.1). The atmospheric observations represent 5 h back averages from the time each snow sample was collected.
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postdepositional processing of NO3
� in the snow. NO3

� loss or local recycling of NO3
�would perturb the linear

relationship. Instead, the NO3
� in the snow is interpreted as a direct atmospheric signal of long-range trans-

ported NO3
�. There is no relationship found between any of the isotopes of NO3

� in the snow and any of
the atmospheric constituents measured (Figures 4 and 5). Additionally, in the snow, there is no correlation
between δ15N-NO3

� and the oxygen isotopes of NO3
�. In the atmospheric samples, there is no relationship

between δ15N-HNO3 and δ18O-HNO3.

In both seasons, there occur isotope deviations in the NO3
� in the snow, in which the δ18O and Δ17O both

decrease significantly while the δ15N increases (Figure 6). The most obvious event occurs in 2010 on 25 May. In
2011, these excursions bookend the observations: occurring in the first days of sampling (27 and 28 May) and

Figure 5. The time series of atmospheric (a–d) and snow (e–h) data for 2011. (a–d) The atmospheric constituents are on top and
marked with stars. (e–h) The snow measurements are indicated with dots. The black bars at the bottom indicate times Summit
Station was under north wind conditions (winds between 342 and 72° or less than 2ms�1). The bar length indicates the inverse
of the wind speed (longer bars are slower speeds). The dark grey line between Figures 5a and 5b shows the time coverage of
the NO3

� atmospheric isotopic values summarized in Figure 3. All snow samples were collected at 4 or 12 h time intervals in
triplicate. The [NO3

�] is a mean of the triplicates, while the isotopic values are weighted by NO3
� amount (see section 2.1). The

atmospheric concentrations represent 5 h back averages from the time each snow sample was collected.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD024187

FIBIGER ET AL. NITRATE IN SNOW AT SUMMIT, GREENLAND 5019



at the very end of the season (26 June). These events do not correspond with any significant changes in atmo-
spheric NO3

�, BrO, or NOy. They all, however, happen concurrently with relatively high concentrations of NO, with
the 2010 and 26 June 2011 events corresponding with season-high NO concentrations (Figure 6). These unusual
NO events seem to be driven by pollution from the camp. Additionally, all the events occur during times when
winds are bringing air over camp and then over the sampling area or when the wind speed is less than
0.5ms�1, indicating that NO3

� pollution from camp may be impacting the samples collected during this time.

3.4. Transport Modeling

Atmospheric transport modeling for each season showed distinct transport patterns and source regions.
In 2010 the bulk of air arriving at Summit had a source origin spanning a band from approximately 40°N to

Figure 6. A more detailed look at the NO3
� isotope and concentration behavior during an isotope deviation in 2010 and

one in 2011. Gas phase data is a 5 h back average from the time point of snow collection. Both deviations occur at the same
time as the highest NO concentration, indicating the presence of local anthropogenic pollution. Both excursions show a
large decrease in δ18O and Δ17O, with a simultaneous increase in δ15N and [NO3

�].
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50°N reaching from the western Pacific across central North America and into the North Atlantic. This air mass
source region history would indicate preferential sampling of North American emissions, particularly with the
strong source region of the North Atlantic, which is a primary transport pathway for emissions leaving the U.S.
From a day-by-day analysis (not shown), there were two brief periods early in the season when air masses
arrived from Europe, but aside from these episodes transport was distinctly from thewest (Figure 7a). This trans-
port pattern is typical of Summit in the early summer period duringwhich sampling took place [Kahl et al., 1997].

During 2011, a more unusual pattern emerges: the source region for air was heavily influenced by Eurasian
emissionswith amix of Arctic and North Siberian airmasses aswell (Figure 7b). The latter two prove to be some-
what episodic but do have an influence on the overall mean climatology. In general, air masses arriving at
Summit have a character of both North American and European sensitivity, depending highly on the move-
ment of low-pressure systems south of Greenland as they track across the North Atlantic. Aside from a brief
episode from 10 to 13 June (corresponding with the time of higher atmospheric [HNO3]), air sampled during
the campaign was almost entirely from Europe. Leading up to and following the brief incursion of North
American air during mid-June 2011, there was a period of stable regional flow from Europe. The latter half of

Figure 7. Potential emission sensitivity for transport to Summit, Greenland for (a) 17 May to 22 June 2010 and (b) 24 May to
26 June 2011 as evaluated by the FLEXPART model. The plots show the air mass histories, or residence time, of air in the
lowest 100m of the atmosphere over the period of observation in each of the two seasons. They are normalized by the
long-term (2000–2011) mean transport climatologies. It can be seen that during the 2011 season, air was predominately
from Eurasia, distinct from the 2010 season which showed typical Westerly transport from North America.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD024187

FIBIGER ET AL. NITRATE IN SNOW AT SUMMIT, GREENLAND 5021



the campaign period experienced relatively fast transport, heavily dominated from Europe with 20 day potential
emission sensitivity (PES) reaching into the center of the continent.

4. Discussion
4.1. Local Chemistry at Summit

Previously, it was thought that local recycling of NO3
� might be important at Summit [Jarvis et al., 2009; Kunasek

et al., 2008]. If this were true, however, there should be some connection between local gas phase concentrations
and the isotopes of NO3

� in the snow. If HNO3were formed locally and deposited by cloud-to-ground scavenging
of NO3

� in the snow (Figure 1, arrows d and g), then BrO concentrations above 1pptv should be influencing NO3
�

in the snow [Kunasek et al., 2008; Morin et al., 2007] via reactions (R6) through (R9). In particular, we expect that
when BrO is high, the Δ17O and δ18O of nitrate would also be high, as BrO retains the anomalous isotopic signa-
ture of the O3 fromwhich it is derived. The local signal, if important, should be present in the snow as the lifetimes
of NO and HNO3 at Summit are only a few hours. This is evident in the atmospheric HNO3 and NO concentrations
at Summit, as both approach zero at low solar zenith angle. This is evidence that there is some loss or recycling of
NO3

� from the snow in Greenland [Honrath et al., 1999], but as noted above, as little as 2% of NO3
� loss from the

snow can account for observed NOx concentrations above the snow [Thomas et al., 2011]. This photolysis of NO3
�

to NOx has a significant influence on local NOx concentrations and the δ15N-HNO3 in the atmosphere at Summit,
but appears small enough to not have a significant effect on the residual NO3

� in the snow. If photolysis of NO3
�

to NOx followed by deposition of locally formed HNO3 (Figure 1, arrows a, c, and d) was having a strong influence
on the NO3

� in the snow, we would expect that snow NO3
� concentrations would reflect NO and HNO3 atmo-

spheric concentrations. There was, however, no connection found between the local concentrations of BrO, NO,
or NOy and any of the isotopes of NO3

� or [NO3
�]. This lack of relationship was found using 3, 5, and 12 h back

averages of the gas phase data, from each time point that a snow sample was taken, accounting for potential var-
iations in the lifetime of NOx against deposition as NO3

-. This indicates that local chemistry, either through recy-
cling of NO3

� or local conversion of NOx to NO3
�, is not influencing the NO3

� preserved in the snow. This lack
of relationship is true both across each season and over shorter timescales within. For instance, in 2010 the highest
BrO concentrations were found between 3 and 6 June, but the δ18O andΔ17O of NO3

� in the snowwere typical of
that found during the field season. Additionally, during that time period the BrO concentration is highly variable
and that variation is not reflected in the oxygen isotopic composition of NO3

� found in the snow at Summit.
Finally, as shown by Fibiger et al. [2013] photolytic processing of the NO3

� does not have a significant influence
on the oxygen isotopes of NO3

� observed in the snow at Summit. Taken together, the above all suggest that
the NO3

� found in snow at Summit is not a result of local chemistry and scavenging. Rather, the snow NO3
� at

Summit represents a larger pool of atmospheric NO3
� that is transported to Summit and deposited.

There are also significant differences in the NO3
� in the snow and atmosphere at Summit in 2010 and 2011, which

can be enlightening on their own. First, it is clear that BrO is not having an influence on NO3
� formation at

Summit. If it were, we would expect the NO3
� collected in the MC to show a higher δ18O and Δ17O when there

ismore BrO (Δ17O=19.5 to 35‰, δ18O=60 to 100‰, if it directly reflects O3, bothmay be up to 1.5 times higher if
only the terminal oxygen transfers in formation of BrO [Johnston and Thiemens, 1997; Vicars et al., 2012]). In 2010,
the δ18O-NO3

� in the atmosphere has an average value of 54‰, while in 2011 it is 91‰. In 2011 there is very little
BrO in the atmosphere, with concentrations never exceeding 2.0 pptv, and during the time of high atmospheric
HNO3 (when atmospheric isotopemeasurements were possible), it was around 0.5 pptv. In contrast, in 2010 BrO
levels ranged between 0 and 10 pptv and were consistently over 2 pptv. This should have resulted in a high
δ18O-HNO3 in 2010 if local chemistry were playing an important role in HNO3 formation. The 2010 season,
however, had a significantly lower average δ18O-HNO3 (Figure 3a). Therefore, we conclude that BrO chemistry
does not have a significant influence on the formation of local HNO3 at Summit.

It has been suggested in a number of studies that the relatively high accumulation rate at Summit may prevent
postdepositional processing of NO3

�; however, it does not appear that snowfall rates, alone, dictate the lack of
photolytic processing of snow NO3

�. There was a significant difference in surface height change between the
two study periods. In 2010, there was a 14 cm increase in height during the observation time, while during the
2011 study period there was only 3 cm of increased height (from ftp://summitcamp.org/pub/data/GEOSummit/
Bales_UCM/Bamboo%20Forest/). The 2010 change would be sufficient to reduce the photolysis of NO3

�by one
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e-folding depth (8–10 cm at Summit [Galbavy et al., 2007], but in 2011, the height change should leave all
deposited snow in the most active portion of the photic zone. The two years, however, both show the same
δ18O–NO3

�, Δ17O-NO3
- relationship and the same set of contributing NO3

� sources (section 4.2, below).

Local photochemistry is not a major driver of the variations in [NO3
�] or isotopes of NO3

� in the snow, but
there are still differences in the measurements of snow at consecutive time points. The driving force for these
variations seems to be, primarily, spatial heterogeneity in the snow. The triplicate samples represent only a
few tens of centimeters spatial scale, which should be capturing only about 25% of the variation observed
over tens of meters [Dibb and Jaffrezo, 1997].

4.2. Snow and Atmosphere NO3
�

The relationship between the isotopes and concentrations of NO3
� in the snow and atmosphere at Summit

provide further evidence of the lack of locally formed HNO3 influencing snow NO3
�. The δ18O-NO3

� in the
snow is different from the δ18O-HNO3 in the air and is also significantly different between 2010 and 2011. In fact,
in 2010 the δ18O-HNO3 in the air is significantly lower than δ18O-NO3

�in the snow (Figure 3a). In 2011, the
relationship is the opposite with δ18O higher in the gas phase than in the snow. In the snow, the [NO3

�] is
higher in 2011 than in 2010. In the air, there are higher concentrations achieved in 2011, but the mean concen-
trations are similar (Figures 3c and 3d). While the atmospheric isotopic samples in 2011 cover a small portion of
the season, the snow isotopic values in that period are representative of the season on average.

These interannual differences in air-snow offsets provide further evidence that local gas phase HNO3 is not
significantly influencing the NO3

� in the snow. If the local gas-phase HNO3 were influencing the isotopes
in the snow, we would expect the δ18O-NO3

� in the snow in 2011 to be higher on average than in 2010,
as the isotopes of gas phase HNO3 exhibit. The snow, however, shows the opposite pattern with higher
δ18O-NO3

� in 2010 than 2011.

There is a consistent offset between δ15N-NO3
� in the snow and air at Summit. In both 2010 and 2011 the

difference in mean values is 10‰. Due to the resolution of the atmospheric HNO3 isotope measurements, it
is not possible to look at the offset at any one point in time. The average offset, however, is markedly different
than the only other similar observations [Jarvis et al., 2009], where gas phase HNO3 and snowNO3

�were found
to have similar δ15N of approximately�4‰, similar also to the values found in the snow in 2010 and 2011. The
HNO3 in the air, however, is distinctly different between the two studies, with mean δ15N-HNO3 in the air found
to be �12.6‰ in 2010 and �17.7‰ in 2011. The offset in δ15N-NO3

� in the atmosphere and snow could be
consistent with photolysis of NO3

� in the snow (Figure 1, arrow a), such that lower δ15N-NOx leaves the snow
to then form HNO3 locally (Figure 1, arrow c). Given the lack of relationship between the atmosphere and snow
concentration and isotopes, however, this process must represent a very small portion of the NO3

� in the snow.

4.3. NO3
� Sources to Summit

There is no correlation between δ15N and the oxygen isotopes of snow NO3
�, but plotting them against each

other reveals an interesting relationship (Figure 8). The surface snow samples from both 2010 and 2011 fall
within a triangle, indicating a mix of three isotopically distinct forms of NO3

� at Summit. The three sources
contribute NO3

� of distinct isotopic composition: δ15N = 16‰, Δ17O= 4‰, and δ18O= 23‰; δ15N = 5‰,
Δ17O= 39‰, and δ18O= 100‰; δ15N=�10‰, Δ17O= 29‰, and δ18O= 78‰. The relative contribution of
each NO3

� source to any snow sample can be quantified by the relative distances from each of the three
end-members. While source attribution is difficult due to limited and conflicted studies of δ15N of NOx from
various sources [Fibiger et al., 2014;Walters et al., 2015], we can use the complete isotopic composition of the
NO3

�, the interannual variations and transport analysis to develop ideas on potential NO3
� sources.

4.3.1. Seasonal Transport to Summit
The 2010 and 2011 seasons at Summit show distinct transport patterns and air source regions. In 2010, the air
is primarily derived from North America, while in 2011 it is primarily from Eurasia, with particular influence
from the Ob River, an area of heavy industrial activity. It is notable that in 2011 there is a short period of time
(10–13 June) when the air is transported from North America and the atmospheric [HNO3] during this time
is more reflective of “typical” Summit conditions. The very different transport patterns over the two years
are reflected in differing isotopic compositions of NO3

� in the snow across the two years. The interannual
isotopic variation may reflect differing isotopic compositions derived from different regional sources, potential
fractionations during transport to Summit, or a combination of the two.
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4.3.2. Midlatitude NOx

The NO3
� source end-member with δ15N of �10‰, Δ17O of 29‰, and δ18O of 78‰ is consistent with obser-

vations of midlatitude NO3
�. In a typical spring, the vast majority (85%) of air transported to Summit is sourced

from North America, based on 10 day, 700hPa back trajectories [Kahl et al., 1997]. This air should be influenced
by a mixture of anthropogenic and natural NOx sources that can be found in northern North America. Biomass
burning should be a prominent natural NOx source in the region [Emmons et al., 2015] and NOx from biomass
burning has a δ15N ranging from �7 to +12‰, but the value should depend on the biomass type [Fibiger and
Hastings, 2013]. Over northern North America significant emissions are derived from burning of boreal forests
that are nitrogen limited and contain a negative δ15N [Amundson et al., 2003], so the NOx emitted should be
closer to the low end of the above range. In addition, vehicle emissions should be important and have been
measured with a δ15N from �19 to +10‰ [Ammann et al., 1999; Heaton, 1990; Moore, 1977; Walters et al.,
2015]. While the entire range (�19 to +9.8‰) has been measured in North America [Walters et al., 2015], it is
not clear if those direct tailpipe emissions are reflective of the NOx undergoing long-range transport. The only
roadside measurements done by Ammann et al. [1999] were collected passively and the study was not con-
ducted in North America, so it is unknown how applicable that range (�4.7 to +10‰) may be. Coal burning
for electricity generation should also be a prominent anthropogenic NOx source in North America and the
reported δ15N-NOx ranges from 9 to 26‰ [Felix et al., 2012;Heaton, 1990; Snape et al., 2003]. Microbial processing
of N in soils can also release NOx and the δ

15Nmeasured ranged from�47 to�28‰ during progressive release
of NOx over several days in the laboratory [Li andWang, 2008]. Lightning produces NOxwith a δ

15N from�0.5 to
+1.4‰ [Hoering, 1957]. Given this large range in NOx emission source isotopic values, many combinations could
result in a δ15N-NOx close to the noted �10‰. Ideally, better-constrained source values could contribute to a
more quantitative understanding of the mix of sources [Fibiger et al., 2014].

Still, the 2011 season has a heavy influence of Eurasian emissions, compared with both 2010 and typical clima-
tology for Summit (Figure 7). Thus, the end-member with δ15N of �10‰, δ18O of 78‰, and Δ17O of 29‰,
which ismore important in 2011 than 2010 (Figure 8), may be indicative that the isotopes are sensitive to source
region rather than directly representing the δ15N of a NOx emission source.

The oxygen isotopes fall well within the expected range for tropospheric O3, with bulk δ
18O ranging from 973 to

120‰ (terminal δ18O 103 to 137‰, calculated from Michalski and Bhattacharya [2009]) and Δ17O from 20 to
27‰ (terminal Δ17O 30 to 40‰) [Johnston and Thiemens, 1997].
4.3.3. High δ18O and Δ17O End-Member
The high δ18O and Δ17O end-member has NO3

� with δ15N of 5‰, Δ17O of 39‰, and δ18O of 100‰ (Figure 8).
The very high Δ17O and δ18O are reflective of a significant influence of O3 on the formation of NO3

�. Based on

Figure 8. The relationship between δ15N and δ18O-NO3
� in surface snow in both 2010 and 2011. The green diamonds

represent 2010 snow samples and the orange triangles represent snow samples from 2011. The samples all fall within a
triangle with vertices at δ18O = 23‰, δ15N = 16‰; δ18O = 78‰, δ15N =�10‰; δ18O = 100‰, δ15N = 5‰, (Δ17O = 4, 29,
and 39‰, respectively, not shown) each representing a distinct NO3

� source to Summit.
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the ranges observed and the expectation that terminal oxygen isotopes of O3 are involved in NO3
� formation,

either tropospheric or stratospheric O3 could be implicated. The values observed in the snow, however, are very
high compared to prior observations of δ18O or Δ17O of NO3

� in the midlatitudes or other regions of the
Arctic. Outside of Greenland, Arctic observations are limited, but at Alert, Nunavut, Canada, the maximum
Δ17O-NO3

� observed has been 35‰ and the maximum δ18O 92‰ [Morin et al., 2007; Morin et al., 2008]. In
Svalbard, the maximum δ18O-NO3

� found was 81‰ [Vega et al., 2015]. In the midlatitudes, the maximum
observed δ18O and Δ17O of NO3

� is even lower, with maximum Δ17O of 30‰ and δ18O of ~80‰ [Michalski
et al., 2012, and references therein]. This makes the observations of NO3

� at Summit uniquely high in both
Δ17O and δ18O for the Northern Hemisphere. So this either indicates unusual spring/summer chemistry involving
only tropospheric O3 with no participation of other oxidants (OH, HO2, or H2O), or the oxygen isotopes are derived
from stratospheric O3, with its higher Δ17O and δ18O and the possibility of involvement of other oxidants.

Stratospheric O3 is a large fraction of the O3 throughout the Northern Hemisphere in the springtime, and seeing
that influence on NO3

� production in the troposphere is not unexpected [Wespes et al., 2012]. The δ15N of stra-
tospheric NO3

� has never been measured directly, but has been calculated as 19±3‰ from the fractionation
of the reaction N2O+O(1D), the primary source of NO in the stratosphere [Savarino et al., 2007] and higher than
the observed end-member value of 5‰ (Figure 8). Therefore, the complete isotopic composition raises three
possibilities: (1) the NO3

� is formed in the stratosphere and the 5‰ reflects additional fractionations in NO
oxidation to NO3

� and deposition, (2) the NO3
� reflects tropospheric sources and chemistry but reflects only

O3 oxidation (which has not been previously reported), or (3) the NO3
� is forming in the troposphere but shows

oxidation by stratospheric O3 that has been mixed down. In any case, the high δ18O, Δ17O end-member shows
greater influence in 2010 than 2011 (Figure 8), so that input must be different between the field seasons.

In case 1, where the NO3
� is stratospheric in origin, there are significant differences in stratospheric chemistry

between the two years. This observation fits with the Arctic ozone hole observed in 2011 [Manney et al., 2011],
as less stratospheric O3 should result in lower production of NO3

� by the stratospheric O3 pathway. In case 2,
tropospheric sources of NOxmust be oxidized by O3 alone, which has not been observed in the middle or high
latitudes of the Northern Hemisphere. Observed midlatitude Δ17O- and δ18O-NO3

� show seasonal cycles, with
highest values in winter (when O3 chemistry should dominate) and lowest in the summer [Michalski et al., 2012].
The springtime shows intermediate values. There are no observations of spring or summer NO3

�, which has
only been influenced by tropospheric O3 and no other oxidants. While local BrO is not affecting the NO3

� found
in the snow, regional halogen chemistry could influence the NO3

� observed [Morin et al., 2007]. If only terminal
atoms of O3 are involved in NOx oxidation, BrO should have the same isotopic influence on NO3

� as O3.

The third case, where the NO3
� may be formed in the troposphere but shows influence of stratospheric O3,

would explain the unusually high δ18O and Δ17O while still allowing for more typical spring and summer
chemistry. As explained by Vicars and Savarino [2014], however, photolysis of O3, whether stratospheric or
tropospheric in origin, should cause the isotopic composition to reset to local conditions. In Grenoble, France,
Vicars and Savarino [2014] estimated this would take approximately 30min during daylight hours. If the strato-
spheric O3 weremixed into the troposphere near dusk or at night, however, this time should be extended up to
several hours, particularly, if the NOx concentrations are low. While at Summit in May and June, sunlight is
constant, this is not true in the midlatitude source regions that influence Summit (Figure 7). In particular, over
the remote marine boundary layer, NOx concentrations should be very low, so the nighttime lifetime of O3

against photolysis could allow for significant oxidation of NOx to NO3
�. There is no diurnal cycle in the frequency

of stratospheric intrusion events [Lefohn et al., 2011]. To see the influence of stratospheric O3, both the
stratosphere-troposphere exchange and the NOx oxidation would have to occur near dusk, so this scenario
would likely only happen under limited circumstances.
4.3.4. Local Anthropogenic Influence
The final NO3

� source, with δ15N of 16‰ and δ18O of 23‰, has themost surprising isotopic composition. The
δ18O, which corresponds with a Δ17O of 0‰, is extraordinarily low to find in atmospherically derived NO3

�

[Kendall et al., 2007; Michalski et al., 2012]. This point of the triangle is filled out by NO3
� snow samples from

the isotope deviations (Figure 6), implying that this NO3
� is formed locally at Summit. The δ15N and δ18O are

comparable to measurements by Proemse et al. [2012] of NO3
� produced in stacks of a bitumen processing

facility in the tar sands of Alberta, Canada. The PM2.5 stack emissions had a mean δ15N of 16.1‰±1.2‰ and
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δ18O of 17.6‰± 1.8‰. Furthermore, snow samples from several shallow snow pits were sampled in an area
that is typically downwind of the camp generator. All the samples showed relatively high δ15N and low δ18O
of NO3

�. The δ15N in these snowpits ranged from 2 to 10‰, with six out of eight samples δ15N> 6‰. The δ18O
ranged from 42 to 66‰ and Δ17O from 10 to 21‰. The δ18O-NO3

� of 23‰ is consistent with the isotopic
composition ofmolecular oxygen, 23.9‰ [Barkan and Luz, 2005], which should be the primary oxidant available
in the dark generator stack.

Great efforts are made to minimize the local anthropogenic influence at Summit. It is, however, inevitable that
some fossil fuel combustion occurs, particularly a diesel generator (burning Jet A-1 fuel) and several diesel-
powered heavy equipment pieces used to groom the skiway and dig snow for water. Heavy equipment usage
is minimized during conditions when air is carried over the station before the clean air sector (i.e., north winds)
or when wind speed is minimal (<2ms�1). The generator, however, is always operating. Prior work has shown
that elemental carbon (EC) from camp activities causes concentrations 1.8–2.4 times higher at 1 km than 10 or
20 km from camp [Hagler et al., 2008]. While this study focused on EC as a tracer of local emissions, it raises the
expectation of similar results for other atmospheric species.

Perhaps the most confounding thing about these anomalous isotope events is the fast recovery to prior isotope
values (Figure 6). This seems best explained by a physical loss of nitrate from the snow, as any chemical loss should
result in fractionation that would not return to prior values in both δ15N-NO3

� and δ18O-NO3
�. The largest events

(14May in 2010 and 26 June in 2011) occur during very lowwind speeds (<2ms�1). The recovery in 2010 occurs
after winds increase to over 2ms�1, perhaps resulting in scouring of the top layer of snow. This could remove
the snow contaminated with the locally produced NO3

� and return the NO3
� isotopes to their prior values.

Event-basedmodeling of atmospheric transport to Summit also indicates that this NO3
� is likely derived from

local pollution (i.e., the generator). During the largest 2010 event, occurring on 24 May, the air is derived from
south of Summit, over maritime Canada (Figure 9a). The two days prior and day following, at the same times
as the event (7:00–15:00 WGDT, 9:00–17:00 UTC), show very similar origins to air during the event, despite the
snow samples having very different isotopic composition. In 2011, during the largest event on 26 June, the air
is all derived from north of Summit (Figure 9b). Again, the two days prior to the event (the event occurred
on the last day of sampling, so the following day was omitted in 2011) show very similar air mass origins
to the day of the event. The difference in air mass source between the two events that show similar isotopic
composition indicates that the NO3

� with the anomalous isotopic composition is not being transported in.
Additionally, the similarity over the days before and after indicates that it is not a change in air source that
is driving the radical change in NO3

� isotopic composition. All of this indicates that the NO3
� during the

events is being driven by locally formed NO3
�, but that NO3

� is still not reflecting local atmospheric conditions

Figure 9. The pathway of air arriving at the measurement site on the days preceding, during, and after the anomalous
isotope events on (a) 24 May 2010 and (b) 25 June 2011. The trajectories are the centroid locations of the particle clusters
from a FLEXPART backward simulation for the period. While transport patterns are very different between the two events, they
are very similar in the days surrounding each event.
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measured. This implies that the NO3
� is formed under different chemical conditions than that observed over

the clean air sector, likely in the generator stack.

Only while the winds are carrying station pollution directly over the sampling area is local anthropogenic NO3
�

the dominant form of NO3
� in the snow, but it is nearly always present in the snow. With the sampling area

approximately 1 km away from the main station, it is expected that there is a strong influence of local pollution
during certain wind events, but the degree of influence at other times is notable, as the only samples with no
influence of local pollution fall directly on themixing line between the two higher δ18O andΔ17O end-members
(Figure 8). In both seasons, but particularly in 2011, NO3

� sourced from local combustion is an important
portion of the NO3

� pool in the snow.
4.3.5. Role of OH in Nitrate Production
It is surprising that NO3

� derived from midlatitude NOx shows no influence of OH on the oxygen isotopic com-
position. As shown in Fibiger et al. [2013], the closest fit of the linear relationship betweenΔ17O and δ18O of NO3

�

at Summit is a mixing line between O2 (Δ
17O=0‰, δ18O=23.9‰ [Barkan and Luz, 2005]) and O3 (Δ

17O=39‰
and δ18O=100‰). This is consistent with the end-members shown in the three-pointmixing in Figure 8, with the
“local anthropogenic influence” point corresponding to O2 isotopic composition and the stratospherically influ-
enced point fitting with the maximum O3 Δ

17O and δ18O presented (39‰ and 100‰, respectively). The “mid-
latitude” point on the three-point mixing falls along that line because it is also O3, but with lower Δ17O and δ18O.

In contrast, OH is expected to have a δ18O between �10‰ and �50‰ (depending on fractionation from the
isotopic composition of H2O [Michalski et al., 2012]) andΔ17O of 0‰. These values are very far from the observed
δ18O of 18 to 23‰ for the lowest δ18O and Δ17O end-member. One possible explanation is that OH is not
involved in the formation of NO3

� in the summertime, though that seems unlikely, based on numerous labora-
tory, field, and modeling studies [e.g., Donahue et al., 1997; Logan et al., 1981; Monks, 2005; Stroud et al., 2003].
Another possibility is that the assumed isotopic composition of OH is incorrect. The current predicted ranges
assume either complete equilibrium with water, fractionation from H2O or some (minimal) influence of O3 as
a source of OH [Morin et al., 2007; Michalski et al., 2012]. Either that assumption is wrong or the calculated
fractionation of that equilibrium [Michalski et al., 2012] is incorrect. Further isotopic work will be needed to
determine which of these scenarios is correct.

5. Conclusions

In two May–June field seasons at Summit, Greenland, NO3
� in the surface snow reflects long-range transported

NO3
� deposited primarily via snowfall. There is no relationship between the isotopes of NO3

� observed in the
snow and the overlying atmospheric composition. Additionally, the interannual variability in the oxygen isotopes
of NO3

� in the snow shows the opposite relationship to the oxygen isotopes of NO3
� in the air. There are three,

isotopically distinct, sources of NO3
� to Summit. The first, with δ15N=5‰, Δ17O=39‰, and δ18O=100‰may

indicate influence by stratospheric O3, or may be primarily derived from North American emission sources com-
bined with halogen-mediated oxidation chemistry or O3 oxidation alone. Another source, with δ15N=�10‰,
Δ17O=29‰, and δ18O=78‰, is most appropriately described as NO3

� derived frommidlatitude NOx, possibly
indicative of Eurasian emissions and tropospheric ozone. The final source, δ15N=16‰, Δ17O=4‰, and
δ18O=23‰, is most fittingly characterized as local anthropogenic pollution from Summit Station activities.
Based on the observations, local halogen chemistry cannot explain the underestimation of Δ17O in models
[Alexander et al., 2009; Kunasek et al., 2008]. Overall, the observations indicate that local photolytic processing
of NO3

� is not important to NO3
� preserved in the snow, as no direct relationships exist between gas phase

chemistry, including local atmospheric NO3
� and the snow NO3

� concentrations and isotopic composition.
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