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Gyre-driven decay of the Earth’s magnetic dipole
Christopher C. Finlay1, Julien Aubert2 & Nicolas Gillet3

Direct observations indicate that the magnitude of the Earth’s magnetic axial dipole has

decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show

how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal

outer core. The gyre’s meridional limbs on average transport normal polarity magnetic flux

equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to

the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional

flux advection accounts for the majority of the dipole decay since 1840, especially during

times of rapid decline, with magnetic diffusion making an almost steady contribution

generally of smaller magnitude. Based on the morphology of the present field, and the

persistent nature of the gyre, the current episode of dipole decay looks set to continue,

at least for the next few decades.
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A
long-standing problem in geophysics is the origin of the

ongoing decay in the strength of the dipolar part of
the Earth’s magnetic field1–3. Direct measurements of the

field intensity, available since the time of Gauss4,5, indicate that
the dominant axial component of the dipole field, parallel to the
planetary rotation axis, has been decreasing at a mean rate6 of
16 nT yr� 1—see Fig. 1. The decay rate exhibits surprisingly large
fluctuations on relatively short decadal time scales; the field was
decaying twice as fast in 1980 as it is today. The physical process
responsible for the dipole decay must, therefore, also evolve on
fast decadal time scales. The Earth’s magnetic field is generated by
a dynamo operating within the liquid metal outer core. Here fluid
motions stretch, twist, and transport magnetic field lines7–9

converting kinetic energy into magnetic energy, driving the
evolution of the field and maintaining it against Ohmic
dissipation. Improved understanding of the mechanism of
dipole decay thus requires study of the motions taking place
within the core and determining how these produce the observed
diminishing.

The obvious explanation of a free Ohmic decay process,
resulting from the finite electrical conductivity of the core, is
untenable as it is about 20 times too slow. Free decay of the dipole

would take B55,000 years based on the latest estimates of
core conductivity10,11, whereas if the mean decay rate6 between
1840 and 2010 of 16 nT yr� 1 were to continue, the axial dipole
would reach zero within 1,900 years. Furthermore, free decay is
incompatible with the accelerations in the rate of decay observed
during the past 2,000 years12. Two alternative mechanisms, both
driven by fluid motions within the core, have therefore been
proposed. The first is the growth by magnetic diffusion of
reversed flux features at the core–mantle boundary via toroidal
flux expulsion2,13. It is, however, difficult to conclusively
demonstrate that growth of reversed flux patches is occurring at
the rate required to explain the observed dipole decay and its
fluctuations14. A second possibility is that flow in the core acts, on
average, to transport normal magnetic flux towards the equator12

and reversed flux poleward2,15. This meridional flux advection
mechanism operates even in the absence of magnetic diffusion,
and involves the transfer of magnetic energy from the axial dipole
to other field components, rather than a direct loss to heat via
Ohmic dissipation.

The detailed morphology of the large-scale geomagnetic
field and its rate of change is now well established thanks to 15
years of magnetic observations from low-Earth orbit satellites16.
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Figure 1 | Observed and modelled decay of the geomagnetic axial dipole. Axial dipole magnitude g0
1

�� �� since 1840 (inset, red line, units: nT) and its rate of

decay dg0
1 =dt (red shaded area shows one standard deviation uncertainties, units: nTyr� 1), from the COV-OBS6 geomagnetic field reconstruction.

Comparable dipole decay rates are produced by a prototype gyre acting on an asymmetric field (green dot–dashed line, see also Fig. 2a), and by a more

realistic filtered gyre flow, acting on the observed field averaged over 2000–2010 (purple star, see also Methods section and Fig. 2c). The solid black line

with dots is the retrieved axial dipole decay rate from a series of 3D inversions for the field and flow within the core, based on geodynamo model

multivariate statistics22 (see also Methods section and Figs 3 and 4). Each dot represents an independent inversion for the core state; these inversions are

equally spaced in time. For the 3D inversion results, the dipole decay rate can be decomposed into its advective (dark blue line with dots) and diffusive

(light blue line with dots) components. The grey area shows the 1 s.d. spread of an ensemble of 40 geodynamo model forward calculations, initialized using

the estimated core state22 in 2010, with randomized realizations of small scales; the ensemble mean is shown by the black dot–dash line. Corresponding

ensemble mean advective and diffusive contributions are given by the dark and light blue dot–dashed lines. The latest values for the axial dipole and its

decay rate in 2014, as determined using the data from ESA’s Swarm satellite constellation39, are marked by the gold diamonds.
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At the same time, there has been progress in core flow inversion
techniques that now better account for unresolved small
scales17–19, more fully incorporate information on the expected
rotation-dominated structure of flows17,20 and include the effects
of magnetic diffusion21,22. The resulting maps of flow within the
core have highlighted the importance of a planetary-scale
gyre17,19,22,23 consisting of generally equatorward flow around
longitude 100� E, westward flow under the Atlantic hemisphere
and generally poleward flow around 90� W (Fig. 2), that is
remarkably persistent19,22,24 during the time interval for which
core flows can be reliably determined.

Here, we describe the role played by this planetary gyre in
historical geomagnetic dipole decay, and provide new estimates of
the relative contributions of advection and magnetic diffusion to
the dipole decay process. Changes in the Earth’s dipole moment

m are caused by changes in the electrical current density J within
the core and hence, via Ampère’s law, owing to changes of the
magnetic flux density B within the core7

dm
dt
¼ 1

2

Z
r̂� @J

@t
dV ¼ 3

2m0

Z
@B
@t

dV ; ð1Þ

where m0 is the magnetic permeability of free space. Working in
spherical polar coordinates (r, y, f) and substituting from
the magnetic induction equation, qB/qt¼r� (u�B)þ Zr2B,
where u is the fluid velocity and Z is the magnetic diffusivity,
taking the cylindrical axial component ẑ and re-arranging,
the change in the Earth’s axial dipole moment (ADM) may be
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Figure 2 | Gyre-driven dipole decay mechanism. Maps of the core surface showing (a) a prototype example of gyre-driven dipole decay, with a single core

surface flow harmonic (arrows) acting on an axial dipole field with an imposed asymmetry in the southern hemisphere (reversed flux in the west and strong

normal flux in the east); contours show the geometry of the imposed radial magnetic field Br (units: mT) and (b) the associated map of advective

contributions to axial dipole moment (ADM) change from core surface meridional flux transport � 3/2m0 uysinyBr (units As� 1) see equation (2). When

integrated over the core surface, this gives the ADM change. Red indicates contributions to axial dipole decay, blue indicates contributions to axial dipole

growth. (c) Here we see a more realistic case with a filtered gyre flow (arrows), extracted from an observation-based quasi-geostrophic core flow

inversion6,19 (see e) acting on the known core surface field6 (contours), where both field and flow have been averaged over 2000–2010. (d) The associated

map of meridional flux transport contributions to ADM change. (e,f) The same quantities for the full quasi-geostrophic core flow inversion19 which was

filtered to obtain the flow in (c).
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written as12,25,26

dmz

dt
¼ � 3

2m0

Z
uy sinyBr dSþ 3Z

2m0

Z
ẑ � r2BdV : ð2Þ

The first term on the right denotes the contribution from the
meridional transport of flux by advection, while second
describes the contribution from magnetic diffusion. By mapping
� 3/2m0 uysinyBr, it is therefore possible to pinpoint locations
where advective processes contribute most to axial dipole
moment changes12,26.

Results
Simple illustrations of gyre-driven dipole decay. In Fig. 2a,b, we
present a prototype example of our proposed gyre-driven mechan-
ism for dipole decay. The essential ingredients are a departure of the
field from axial symmetry and meridional flows that, on average,
transport normal flux equatorward and reversed flux poleward. In
Fig. 2a, starting with a negative axial dipole field as for the Earth
today, this is achieved by placing strong normal field where there is
equatorward flow and reversed field where there is poleward flow.
Fig. 2b shows the resulting map of � 3/2m0 uysinyBr, which has a
net positive value when integrated over the core surface, indicating
the magnitude of the (negative) axial dipole is decaying. The max-
imum flow speed in this example is 19 km yr� 1, the assumed
magnitude of the axial dipole field at Earth’s surface is � 30,000 nT,
the imposed radial field asymmetries are ±0.8 mT at the core
surface, and the resulting rate of axial dipole decay is 13.6 nT yr� 1

(green line, Fig. 1). Despite its simplicity, this demonstrates how a
gyre with an Earth-like flow speed27, acting on a reasonable field
asymmetry, can produce the observed magnitude of axial dipole
decay.

Fig. 2c,d presents a more realistic scenario involving the known
large-scale radial field at the core surface6, acted on by a recent

observation-based quasi-geostrophic core flow19, that
has been filtered to leave only the planetary gyre structure
(see Methods section). Both this filtered gyre flow and the
earlier prototype flow from Fig. 2a are equatorially symmetric,
as required by the Taylor–Proudman theorem for rotation-
dominated flows17. Both field and flow in Fig. 2c have been
averaged over the decade 2000–2010 during which there are
excellent observational constraints, thanks to the availability of
magnetic data from the CHAMP and Øersted satellites and an
extensive network of ground observatories. The integrated value
of � 3/2m0 uysinyBr mapped in Fig. 2d is again positive, so
meridional flux transport once more causes dipole decay (purple
star, Fig. 1). In this case there is little net contribution to dipole
decay from the northern hemisphere, where intense normal
flux is advected both poleward (under North America) and
equatorward (under Asia). The dipole decay instead originates in
the southern hemisphere, in agreement with the findings
of previous observational studies2,28, due to the vigorous
equatorward transport of intense normal flux south-west of
Australia that is not balanced as there is a lack of intense normal
flux (and presence of some reversed flux) in the region beneath
South America where the flow is poleward. It is this asymmetry in
the southern hemisphere magnetic field, that also results in the
South Atlantic Anomaly29 at Earth’s surface, which enables
the gyre to drive the present dipole decay. Fluctuations of the
meridional flow, particularly in the eastern equatorward limb
of the gyre, can in this configuration easily generate rapid
fluctuations in the dipole decay rate. Fig. 2e presents the
quasi-geostrophic flow averaged over 2000–2010 without
filtering; as shown in Fig. 2f, it produces similar patterns of
meridional flux transport.

Three-dimensional core state inversions. If meridional flux
advection is capable of producing the observed rate of dipole

210–1–2
mT

–40 km yr–1

Figure 3 | Estimated field and flow within the core in 2015. Volume visualization of the estimated magnetic field and flow within Earth’s core in 2015

from a numerical geodynamo31 model forward run initialized with an inferred core state22 for 2010. Orange and blue contours show the intensity of

the radial magnetic field, azimuthally averaged in a meridional plane within the shell, and at the core surface in the inset. The red and dark blue iso-surfaces

are of constant axial flow velocity and illustrate intense columnar convection at the eastern meridional limb of the gyre, as also seen in the inset core

surface flow plot. Field lines within the shell have thickness proportional to their magnetic energy. The inner core is black and the core–mantle boundary is

transparent. The 3D view faces longitude 90� E, with a cutaway between 90� and 180� E.
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decay, what then is the role of the magnetic diffusion that we have
neglected in the above simple examples? Determining the role
of diffusion in geomagnetic field evolution is challenging as it
requires knowledge of the magnetic field structure within the
core. In numerical geodynamo models8, the equations of
conservation of momentum, magnetic induction and heat
transport are time-stepped throughout the core, for prescribed
values of control parameters. Since the magnetic fields and
velocity fields are completely known, the role of magnetic
diffusion can be fully assessed; whether or not the resulting
kinematic processes are relevant to the Earth depends largely on
the magnetic Reynolds number Rm¼UL/Z, whether U is a typical
velocity, L is a typical length scale and Z is again the magnetic
diffusivity; typical estimates11,30 for the Earth’s core are in the
range 1000–1500.

It has recently been demonstrated that multivariate statistics
(linear correlations between fields) collected during a numerical
dynamo forward calculation may be used as prior information in
an inversion to estimate a complete field and flow state within the
core that is consistent both with geomagnetic observations and
that numerical dynamo22. We have examined a series of such
inversions22 based on the COV-OBS6 geomagnetic field model
and taking prior information from a specific numerical
dynamo, hereafter referred to as the coupled earth or CE
dynamo31, with a relatively large Rm¼ 942 that generates a
planetary gyre similar to that indicated by the observations. Fig. 1
presents the axial dipole rate of change obtained from these three-
dimensional (3D) inversions (black line with dots), including a
decomposition into the respective advective (dark blue line with

dots) and diffusive (light blue line with dots) contributions. The
fluctuations in the observed rate of dipole decay are closely
tracked by fluctuations of the advective component. The
contribution of magnetic diffusion to dipole decay is on the
other hand almost constant at about 5 nT yr� 1. We conclude that
meridional advection of flux is usually responsible for majority of
the dipole decay, especially when the rate of decay is rapid. For
example in 1980 more than 80% of the decay rate can be
attributed to advective processes, with maps of � 3/2m0 uysinyBr

showing an enhanced contribution to dipole decay by very strong
equatorward flux transport south-west of Australia. In addition to
the decrease in the magnitude of the axial dipole over the past 170
years, the dipole tilt angle has also simultaneously decreased29,
meaning that the equatorial dipole is decreasing even faster than
the axial dipole; this is also likely to be a primarily advection-
driven process26.

Geodynamo model forward calculations. In a further step, we
started an ensemble of numerical dynamo forward runs starting
from the inferred core state22 in 2010 (see Methods section). The
resulting predictions are delimited by the grey region in Fig. 1 and
show a continuing decay of the geomagnetic axial dipole.
A visualization of an example of the 3D field and flow
estimated within the core in 2015, from one of these dynamo
forward calculations, is presented in Fig. 3. Strong equatorward
flow in the eastern limb of the gyre at the core surface is seen to
be connected with vigorous underlying columnar convection. The
estimated magnetic field within the core is arranged into large-
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Figure 4 | Gyre-driven dipole decay as inferred using the CE dynamo. Maps of the core surface showing (a,c) core surface flow (arrows) acting

on the radial magnetic field Br (units: mT) and (b,d) the associated maps of contributions to axial dipole moment (ADM) change from core surface

meridional flux transport � 3/2m0 uysinyBr, units As� 1. (a,b) Here the situation in 2015 is shown, for the same 3D state presented in Fig. 3, derived from a

forward run of the CE dynamo model31 estimated from the inverted core state22 in 2010. (c,d) The same quantities for the inverted 3D core state in 1980

are shown, when the magnitude of dipole decay was twice as large as in 2015. Note that magnetic diffusion has been taken into account when deriving the

flows presented here, which was not the case for the results presented in Fig. 2.
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scale loops, with toroidal field in some locations being pushed out
towards the core–mantle boundary. Flux expulsion therefore does
take place in this dynamo, particularly at low latitudes, but it is
not the dominant process driving the dipole decay or producing
changes in the dipole decay rate.

The core surface flow, radial magnetic field and the resulting
advective contributions to ADM change, from the estimated core
state in 2015 displayed in Fig. 3, are presented in Fig. 4a,b. Large-
scale characteristics of this flow are found to be similar to those of
the frozen-flux quasi-geostrophic flows of Fig. 2e, even though
magnetic diffusion has now explicitly been taken into account.
Furthermore, the map of the advective contributions to ADM
change in Fig. 4b also shows similar major features to the maps
obtained in our earlier simplified experiments (Fig. 2b,d,f),
particularly in the eastern hemisphere. Comparing with maps of
the estimated 3D core state22 in 1980 (Fig. 4c,d), we find that the
advective contribution to dipole decay from the region south-west
of Australia has notably decreased between 1980 and 2015,
resulting in a decrease in the dipole decay rate from 24 to
10.5 nT yr� 1. Examining the ensemble of dynamo forward
calculations shown in Fig. 1, we find a continuing decrease in
the dipole decay rate between 2010 and 2040.

Analysis of the dipole decay process. In all the presented
examples, the vast majority of positive and negative contributions
from meridional flux advection to ADM change cancel on inte-
gration over the core surface; it is a small unbalanced remainder
that is responsible for driving the dipole decay. In 1980, the ratio
of
R

uy sinyBr dS=
R

uy sinyBrj jdS from the map in Fig. 4d is
0.17 indicating that, even in this case of relatively strong
dipole decay, there was a rather large degree of cancellation in
the meridional flux transport. The same ratio calculated from the
map in Fig. 4b for 2015 is only 0.04 making the origin of the
unbalanced contribution difficult to diagnose. One consequence
of this finely balanced situation is that even minor changes in the
meridional flux transport can cause relatively large changes in the
dipole decay rate. The advective mechanism for dipole decay is
certainly more clearly seen at times when the dipole decay rate is
large, such as in 1980 (see Fig. 4c,d) when a large-scale imbalance
is evident. On the other hand, the small length-scale structure of
Br and uy apparently play a more important role when the dipole
decay rate is smaller (see Fig. 4a,b).

An alternative perspective on the origin of the dipole decay
comes from examining the evolution of the magnetic energy per
spherical harmonic degree at the core surface. First considering the
COV-OBS6 field model, we find that between 1970 (when global
satellite magnetic measurements were first available) and 2010, the
percentage of the total energy (up to spherical harmonic degree 12)
in the dipole field decreased from 45 to 42%, while the energy of
the non-dipole core field increased from 55 to 58%, with the total
energy remaining essentially constant. This is consistent with an
advective transfer of energy from the dipole to the non-dipole
field32. Since a decrease in the energy of some non-dipolar degrees
(particularly 4 and 6) was also observed, it seems that the transfer
of energy is not a simple forward cascade33. Turning to the CE
dynamo forward runs initialized from the inverted core state22 in
2010, we also find an increase in the energy of the large-scale non-
dipole magnetic field during dipole decay, lending further support
to the hypothesis that the presently observed dipole decay is
primarily an advection-driven process.

Discussion
In a long, 130,000 years, forward run of the CE dynamo, we find
that episodes of intense (20 nT yr� 1 or greater) dipole decay are
correlated to increased contributions from advective processes to

the decay rate. During this long forward run, diffusion on average
contributes 3 nT yr� 1 towards dipole decay but it varies only
weakly (standard deviation 2.9 nT yr� 1). On the other hand,
advective processes on average contribute 3 nT yr� 1 to dipole
growth (the CE dynamo is quasi-steady averaging over 130,000
years), but with a standard deviation of 6.1 nT yr� 1, more than
twice that of the diffusive processes. Fluctuations in meridional flux
transport by advection are thus the most important kinematic
mechanism for producing dipole growth and decay in the CE
dynamo. On the other hand, we find no evidence for systematic
increases in magnetic diffusion during the transient rapid dipole
decay events exhibited by the model. It should, however, be
remembered that the CE dynamo is designed to mimic the
morphology of the present geomagnetic field and the historically
observed patterns of secular variation, and not to study variations
on the hundreds of kyr time scales relevant to reversals and
excursions. Since it does not exhibit polarity reversals or sustained
dipole collapse events, care is needed when interpreting the
implications of our results for longer time scales. It remains possible
that more dramatic events, not captured in the CE dynamo, may
require a sustained increase in magnetic diffusion15,34. Despite
these caveats, our results indicate that the presence of large-scale
field asymmetries such as the South Atlantic Anomaly, together
with fluctuations of meridional core flows, may turn out to be
central to the time-dependent nature of the geodynamo. Issues of
great interest for palaeomagnetic studies are now whether field
asymmetries such as the South Atlantic Anomaly were always
present during previous dipole decay episodes, and whether or not
there is any evidence for the long-term persistence of the planetary
gyre and its associated patterns of secular variation.

Our CE dynamo model assumes a well-mixed outer core. It has
recently been argued that the outermost core may be stably
stratified35, and that periodic, axisymmetric, flow oscillations of
such a stratified layer may be responsible for fluctuations in the
axial dipole36. The planetary gyre central to our proposed dipole
decay mechanism is large scale and fairly steady, so it is expected
to penetrate any such stratified layer37 and would in this scenario
still produce dipole decay by the mechanism described above. In
both the models, dipole variations result from fluctuations of the
meridional flow at the core surface. The differences are that in our
model the meridional flow variations are not periodic or
axisymmetric (they are driven by convective fluctuations,
especially in the eastern hemisphere) and that the zonal part of
our flows naturally reproduce the observed decadal changes in the
length of day19,22, whereas flow oscillations in a thin-stratified
layer require additional coupling to unknown deeper flows.

Can the above insights shed any light on how long the present
episode of dipole decay may continue? The necessary
ingredients appear to be field asymmetry and meridional flows
in appropriate locations. The South Atlantic Anomaly has been
present throughout the era of direct geomagnetic observations
(since 1840) and it continues to deepen29. Moreover, core flow
inversions indicate that the planetary gyre and its meridional
limbs have been rather stable over at least the past 175
years19,22,24. We therefore anticipate that the gyre will continue
to drive geomagnetic dipole decay, at least for the next few
decades. Going beyond this statement is presently difficult, as
illustrated by the divergence of our ensemble of dynamo forward
runs in Fig. 1. Better knowledge of small-scale fluctuations of the
meridional flow, and their interactions with the small-scale
magnetic field28,38, are necessary for improved prognostic models
of the dipole decay process. High-quality magnetic observations
now being collected by ESA’s Swarm satellite constellation39,
in combination with improved dynamic models and time-
dependent data assimilation systems40, promise a more
complete means of testing of these ideas.
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Methods
Geomagnetic observations and field models. The geomagnetic dipole change
between 1840 and 2010 is here taken from the COV-OBS time-dependent
geomagnetic field model6. COV-OBS is derived from direct field measurements
between 1840 and 2010 from ground observatories (annual means), collected by
satellites (POGO, Magsat, Ørsted, SAC-C and CHAMP) and from ground surveys.
The data compilation is the same as that previously used for the gufm1 field model3

but with updated observatory and satellite data sets. COV-OBS was determined via
a stochastic inversion, with a second-order auto-regressive stochastic process prior
in time, permitting jerk events and time spectra in agreement with observatory
data. The model includes spherical harmonics up to degree and order 14, and
consists of both a mean model and second-order statistics in the form of a model
covariance matrix. Fig.1 also presents the axial dipole and its rate of change in 2014
as determined from initial data collected by the Swarm satellite constellation39.

Quasi-geostrophic core flows. The quasi-geostrophic core flow model presented in
Fig. 2e was obtained by a frozen-flux inversion of the COV-OBS field model, with the
flow restricted to an equatorially symmetric, columnar basis19. Time-correlated
modelling errors owing to interactions between unresolved core surface motions and
magnetic fields (from degree and order 15 to 30) were accounted for by recursive
estimation of an ensemble of flows, updating at each iteration the covariance matrix
for the flow coefficients. Quasi-geostrophic flows up to spherical harmonic degree and
order 20 were produced at yearly intervals. Here, we used the time average between
2000 and 2010 of the ensemble average of these flows, up to degree and order 15. The
filtered gyre flow of Fig. 2c was obtained by gridding this flow in physical space,
removing flow from the polar regions, the Pacific region, the equatorial region and in
the gyre centre and then projecting back onto the divergence-free poloidal–toroidal
basis. The resulting filtered gyre flow was renormalized so the maximum amplitude of
westward flow was identical before and after filtering.

Geodynamo inverse and forward modelling. Estimates of the magnetic field and
flow within the core were also derived from the COV-OBS field model, but utilizing
a priori statistics from a 3D numerical dynamo simulation via the inverse
geodynamo modelling procedure20,22. This involves first performing a stochastic
inversion for the magnetic field throughout the core to spherical harmonic degree
30, from the COV-OBS poloidal field to degree 13, utilizing an a priori covariance
matrix derived from a large collection of geodynamo model states18,22,41. Next,
the core surface flow is inferred from the observed poloidal secular variation
(again provided by COV-OBS), with diffusive effects included via the 3D core field
estimated in the previous step22. Finally, the flow throughout the core is estimated
by an additional stochastic inversion, again using a priori covariances from the
geodynamo model states.

The numerical geodynamo model providing the prior information attempts to
simulate as best as possible observed patterns of geomagnetic secular variation, in
particular the westward drift and the Pacific–Atlantic dichotomy. Known as the
CE dynamo model31, it solves for Boussinesq convection, buoyancy transport and
magnetic induction in a spherical shell (inner/outer shell radii ratio 0.35) of
electrically conducting liquid. This is coupled to a solid inner core with the
same electrical conductivity and to an insulating solid outer spherical shell
(mantle). Electrically conducting and no-slip boundary conditions are applied at
the inner-core boundary. Electrically insulating and free-slip boundary
conditions are applied at the core–mantle boundary. The mass anomaly flux at
the inner-core boundary has a longitudinal hemispheric heterogeneity, which is
maximum at longitude 90� E. while the core–mantle boundary has a heterogeneity
motivated by lower-mantle seismic tomography31. The Ekman number
Ek¼ n/OD¼ 3� 10� 5 (where n is the fluid viscosity and D the fluid shell depth),
the mass anomaly flux Rayleigh number is Ra¼ gof/rO3D2¼ 9.3� 10� 5 (where go

is the gravity at the core–mantle boundary and r is the fluid density). The Prandtl
and magnetic Prandtl ratios between the fluid viscosity, thermal and magnetic
diffusivities n, k, l are set to Pr¼ n/k¼ 1 and Prm¼ n/l¼ 2.5. The numerical
scheme involved a second-order finite differencing scheme in radius with 160
non-uniformly distributed points, and horizontally used spherical harmonics up to
degree and order 133. Time-stepping was of second-order, semi-implicit type. The
a priori statistics needed for the inverse geodynamo modelling were obtained from
a model run of length half a magnetic diffusion time, where 800 complete state
snapshots were stored at a spacing of 100 years.

Regarding the forward runs started in 2010, an ensemble of 40 states, each
derived using the inverse geodynamo technique applied to the COV-OBS field
model in 2010 (but with randomized realizations of the small-scale field and flow,
compatible with the prior multivariate statistics) were used as the initial conditions
for a series of short forward runs of the CE dynamo model.
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