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Abstract 

Predicting hydrological catchment behaviour based on measurable (and preferably widely 

available) catchment characteristics has been one of the main goals of hydrological modelling. 

Residence time distributions provide synoptic information about catchment functioning and 

can be useful metrics to predict their behaviours. Moreover, residence time distributions 

highlight a wide range of characteristic scales (spatial and temporal) and mixing processes. 

However, catchment-specific heterogeneity means that the link between residence time 

distributions and catchment characteristics is complex. Investigating this link for a wide range 

of catchments could reveal the role of topography, geology, land-use, climate and other 

factors in controlling catchment hydrology. Meaningful comparison is often challenging given 

the diversity of data and model structures and formats. To address this need, we are 

introducing a new virtual platform called Catchment virtual Observatory for Sharing flow and 

transport models outputs (COnSOrT). The goal of COnSOrT is to promote catchment 

intercomparison by sharing calibrated model outputs. Compiling commensurable results in 

COnSOrT will help evaluate model performance, quantify inter-catchment controls on 

hydrology, and identify research gaps and priorities in catchment science. Researchers 

interested in sharing or using calibrated model results are invited to participate in the virtual 

observatory. Participants may test post-processing methods on a wide range of catchment 

environments to evaluate the generality of their findings. 

 

Keywords : transit time distribution, modelling outputs, catchment hydrology, 

biogeochemistry, watershed, inter-catchment comparison 
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1. Introduction  

Predicting hydrological catchment behaviour based on measurable (and preferably widely 

available) catchment characteristics has been one of the main goals of hydrological modelling 

since the founding of the field over 150 years ago (Mulvany 1850 in Todini, 2007). Many 

studies have used topography, geology, land-use, and climate to develop models that can be 

applied to both gauged and ungauged basins (e.g. Blöschl et al., 2013; Sivapalan, 2003; 

Soulsby and Tetzlaff, 2008). Technical and theoretical advances in catchment hydrology, 

including the recent proliferation of commercial and open-source modelling software, have 

led to a rich diversity of detailed, catchment-specific modelling studies (Beven et al., 2012; 

Beven and Alcock, 2012; Benettin et al., 2015; Endalamaw et al., 2013; Laudon et al., 2013; 

Leray et al., 2012; Morton et al., 2014). However, many models have specific, sometimes 

proprietary data output formats such as MODFLOW, FEFLOW, HydroGeoSphere and other 

prominent platforms, hindering inter-catchment comparisons and leaving fundamental 

questions of catchment functioning unanswered. Inter-catchment comparisons remain rare 

(McGuire et al., 2005; Tetzlaff et al., 2009b), evidence of how challenging it can be to 

develop general models or approaches applicable for multiple gauged and ungauged 

catchments. 

The mean transit time and whole stream residence time distribution are powerful metrics of 

catchment functioning, providing synoptic hydrological information such as water renewal 

time, heterogeneity of flowpaths, and overall water volume (Godsey et al., 2010; Hrachowitz 

et al., 2010; Marçais et al., 2015; McGuire and McDonnell, 2006; Van der Velde et al., 2012) 

. These hydrological parameters influence catchment biogeochemistry (Ocampo et al., 2006; 

Oldham et al., 2013; Pinay et al., 2015; Tetzlaff et al., 2007), further increasing their value as 
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indicators and predictors of catchment-scale water quality and chemistry. Because these 

parameters are of great general interest they feature prominently in the inputs and outputs of 

many models (e.g. McGuire et al., 2005; Tetzlaff et al., 2009a). In combination with generic 

model results such as flow lines or path lines, residence time distributions represent a 

potential tool to compare a wide variety of models and model types from different climatic, 

topographic and hydrogeological contexts. Such tools may help to bring out general 

approaches for inter-catchment comparison. 

To facilitate the comparison and improvement of hydrological models and general 

understanding of hydrological behaviour at the catchment scale, we have created a working 

group and repository for researchers to share metadata and calibrated model outputs. This 

virtual observatory called Catchment virtual Observatory for Sharing flow and transport 

models outputs (COnSOrT) provides a platform to compare catchment response and to 

extensively test modelling approaches (frameworks, post-processing, lumped etc.). Our main 

objective is to collect model outputs from small catchments in differing geological and 

hydrological conditions to identify controls on biogeochemical and hydrologic functioning in 

a standardized way that allows direct comparison of model out puts. We are proposing that 

RTDs and their parameterization are a global platform to characterize and compare 

catchments. To these ends we are proposing to establish a virtual observatory that will allow 

testing of research questions that are difficult to address individually including: i) How do 

topography and geomorphology influence hydrology across catchments, ii) What modelling 

concepts and approaches perform best across catchments, and iii) What are the relevant 

metrics of catchment vulnerability in regards to contaminant transport or removal for different 

degrees of anthropogenic disturbance? Below we outline the initial rationale for COnSOrT, 
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describe the general data structure, and give an example showing how outputs from different 

modelling platforms can be synthesized. 

2. Time distributions as a comparable metric of catchment hydrology 

2.1. Starting with small catchments and groundwater flow cells 

While the ultimate goal of COnSOrT and catchment hydrology in general is to understand the 

mechanisms regulating hydrological functioning across spatiotemporal scales, there are 

several reasons why it makes sense to start small. All waterways, surface or subsurface, start 

in small catchments. Headwater catchments are typically defined as watersheds smaller than 

100 km
2
, though this definition is strictly operational and cut-offs ranging from 0.1 km

2
 to 

over 100 km
2
 can be found in the literature (Buttle, 1998; Maher, 2011; Moldan and Černỳ, 

1994; Tetzlaff et al., 2008). Headwater catchments occupy an influential position in the 

landscape (Jones et al., 2005), they are a major component of controlling groundwater 

recharge and overall water residence time (Alexander et al., 2007), and they make up the bulk 

of global lotic ecosystems, with 90% of stream length occurring in catchments smaller than 15 

km
2
 (Bishop et al., 2008). Small catchments express a wide diversity of subsurface flow 

configurations (Eberts et al., 2012; Gburek and Folmar, 1999; Sophocleous, 2002; Winter, 

1999) depending on geological and topographical structures, distribution and timing of 

recharge, characteristics of the vadose zone, and free surface dynamics of the underlying 

aquifer (Bresciani et al., 2014; Schumann et al., 2010; Freer et al., 2002; Montgomery and 

Dietrich, 1989; O’loughlin, 1981; Šimŭnek et al., 2003; Voeckler et al., 2014; Dages et al., 

2009; de Vries and Simmers, 2002; Scanlon et al., 2002).  



  

Observatory for sharing models outputs  Thomas et al. 

6 

 

Perhaps most importantly in regards to catchment hydrology, small catchments are a 

convenient and powerful experimental unit. Compared to large catchments, there are fewer 

processes influencing behaviour of small catchments and collecting detailed biogeochemical 

and hydrological data is more feasible at a small scale. It is also easier to find multiple, nearby 

catchments with similar climate and environmental contexts, or conversely catchments with 

distinct characteristics such as fertilization, harvest, or natural disturbance regimes, allowing 

the identification of controls on catchment functioning. While the great diversity of small 

catchment behaviour complicates predictions for ungauged catchments and the regionalization 

of models based on well-monitored sites (Hrachowitz et al., 2013; Schilling et al., 2013; 

Tetzlaff et al., 2010), it emphasizes the importance of inter-catchment comparisons to validate 

model operation and to remove site-specific relationships. Substantial unknowns persist about 

the functioning of small catchments, representing a major gap in our understanding of 

hydrological and biogeochemical functioning of coupled aquatic and terrestrial ecosystems 

(Bishop et al., 2008; Cole et al., 2007; Karlsen et al., 2015). The growing abundance of small 

catchment studies in multiple biomes and ecosystem represents an opportunity to address 

these uncertainties (Benettin et al., 2015; Bormann and Likens, 1994; Jones et al., 2005; 

Laudon et al., 2011; Likens, 2013; Swank and Crossley, 1988).  

Understanding the organization of groundwater flows has been in the center of many 

researches. Tóth (1963) developed a conceptual model in which under a hummocky water 

table, groundwater flows are distributed into local, sub-local and regional flows. Numerous 

studies have used this theory (e.g. Cardenas, 2007; Goderniaux et al., 2013) in order to 

understand groundwater flows at the regional scale (nested catchment scale). Those studies 

emphasize the relation between the topography and the geology to control the regional, sub-
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local and local flows (e.g., Haitjema and Mitchell, 2005; Freeze and Witherspoon, 1967). The 

time distribution has been used in those regional studies in order to identify relationship 

between the time distribution and the nested flow organization (e.g. Kolbe et al., this issue; 

Eberts et al., 2012). 

2.2. Time distribution terms and concepts 

The amount of time water remains in a catchment is one of the key parameters controlling 

biogeochemical functioning and can vary in small catchments from a few days to millennia 

(McDonnell and Beven, 2014; Moldan and Černỳ, 1994; Rodhe et al., 1996; Frisbee et al., 

2013). The mean transit time, or the average amount of time a water molecule stays within the 

watershed boundaries, is an integrated measure of catchment residence time (e.g. Capell et al., 

2012; McGuire et al., 2002; Soulsby and Tetzlaff, 2008). Transit and residence times are two 

common metrics of how long water stays in a system. Transit time is defined as the time that 

water takes to reach the outlet of a system, whereas the residence time is the time since water 

entered the system calculated at any sampling location of interest (McGuire and McDonnell, 

2006). Because these measures are analogous for our purposes, we will hereafter refer to their 

distributions as travel time distributions. The realization that catchment travel time 

distributions are usually very skewed with long tails (Kirchner et al., 2001) has focused recent 

analysis on the whole travel time distribution (Dunn et al., 2010).  

As it is impractical to measure the whole travel time distribution using injected hydrological 

tracers (but see Rodhe et al., 1996), different approaches, such as lumped parameter models, 

particle-tracking, and direct age simulation, have been developed to estimate travel time 

distributions (Turnadge and Smerdon, 2014). Several distribution types have been used in 

catchment studies, including the dispersion model (Kirchner et al., 2001; McGlynn et al., 
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2003; McGuire et al., 2002), the piston flow model (McGlynn et al., 2003), and exponential-

piston flow (Maloszewski and Zuber, 1996; McGlynn et al., 2003; McGuire et al., 2002; 

Timbe et al., 2014). The exponential distribution has been the most widely used (more than 

60% of the studies in several recent reviews; McGuire and McDonnell, 2006; Mueller et al., 

2013; Roa-Garcia and Weiler, 2010; Seeger and Weiler, 2014), though more recently, the 

gamma function has been recognized as more conceptually and mathematically suitable to 

represent catchment behaviour and mixing processes due to its short breakthrough time and 

long tail (Birkel et al., 2012; Dunn et al., 2010; Heidbüchel et al., 2012; Hrachowitz, 2011; 

Hrachowitz et al., 2010; Kirchner et al., 2001, 2000; Soulsby et al., 2011). 

2.3. Controls on time distributions 

Topography is one of the main controls of groundwater flow (e.g., Haitjema, 1995; Tóth, 

1962) and topographic indices are often correlated with stream travel time distribution or 

mean residence time (McGuire et al., 2005; Tetzlaff et al., 2009a). For example, a positive 

correlation between the ratio of flowpath distance to flowpath gradient and the stream mean 

residence time has proven to be robust in an inter-comparison of seven catchments of 

differing size, geology, and climate (McGuire et al., 2005). In a comparison of 8 catchments 

and 55 sub-catchments, in diverse geomorphic provinces, the inverse transit time proxy (a 

ratio of the variability of  18
O in stream water compared with the variability in precipitations) 

was correlated to various topographic indices such as elevation above stream, distance from 

the stream, average gradient along the flowpath to the stream, ratio of flowpath length and 

gradient, though these correlations varied by geomorphic province (Tetzlaff et al., 2009a). In 

general, topography appears to play a greater role in controling transit time high-relief 

catchments (e.g. mountainous catchments) compared to flatter catchments, though soil 
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characteristics can modulate the effect of topography on hydrological function (Hrachowitz et 

al., 2009; Rodgers et al., 2005; Tetzlaff et al., 2009a). 

Geological setting and more particularly the heterogeneity of hydraulic conductivity has a 

strong influence on the organisation of groundwater flow systems and consequently on time 

distribution (Ameli et al., submitted; Cardenas and Jiang, 2010; Freeze and Witherspoon, 

1967; Haitjema, 1995; Jiang et al., 2009; Vitvar and Balderer, 1998; Viville et al., 2006). In 

unconfined aquifers with unconsolidated materials, the vertical profile of saturated hydraulic 

conductivity influences the shape of the travel time distribution. Strong vertical decreases in 

hydraulic conductivity were associated with more dispersed travel time distributions (Ameli et 

al., submitted). There is no clear relationship between catchment size and travel time 

distribution, with some studies finding a correlation (McDonnell et al., 1999; Soulsby et al., 

2011; Wolock et al., 1997) but others finding no correlation (McGlynn et al., 2003; McGuire 

et al., 2005, 2002). 

2.4. Temporal variability 

Most studies assume that travel time distributions are time invariant, with no seasonal or 

interannual changes in the overall volume of stored water (Harman, 2015) and relatively short 

residence times (Van der Velde et al., 2012). Such steady-state systems are described with a 

single travel time distribution (Heidbüchel et al., 2012). While this simplification may 

realistically represent some humid catchments, in most environments, seasonally and event 

driven variations in precipitation and evapotranspiration can violate this assumption, leading 

to time-variant time distributions (Heidbüchel et al., 2012; Hrachowitz et al., 2010; Rinaldo et 

al., 2011; Van der Velde et al., 2015). In addition to low-frequency changes such as seasonal 

or climatic change, antecedent catchment wetness can vary between events, influencing time 
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distributions at a weekly scale (Birkel et al., 2011; Hrachowitz et al., 2009), and variation in 

the contribution of old and young water to the outlet can occur during a single event (Harman, 

2015). In summary, travel time distributions characterize multi-scale and multi-process 

transport mechanisms in surface and subsurface systems, which vary in time and space 

(Eberts et al., 2012). These processes are controlled by natural factors such as topography, 

land cover, hydraulic properties, and low frequency forcing as well as by human disturbance 

such as water redistribution, land use, and alteration of surface permeability (Fig. 1). We 

propose that the comparison of travel time from catchments from differing biomes could lead 

to a more systematic understanding of catchment behaviour and general theory. Because 

biogeochemistry is tightly linked to residence time, a better understanding of the travel time 

distributions will improve the assessment of nutrient removal capacity (Pinay et al., 2015), 

climate change impacts on stream chemistry (Abbott et al., 2015; Goode, 1996; McGuire et 

al., 2005) and exposure time (Ginn, 1999; Frei et al., this issue; Oldham et al., 2013). 

3. The catchment virtual observatory COnSOrT 

There is a movement in many disciplines, to create globally accessible databases and data-

sharing structures. In hydrology this movement is particularly strong (Hrachowitz et al., 2013) 

with efforts including the Experimental Hydrology WIKI (www.experimental-hydrology.net), 

the Distributed Model Intercomparison Project Phase 2 

(http://www.nws.noaa.gov/oh/hrl/dmip/2/), the open GEOSPATIAL Consortium 

(www.opengeospatial.org), and CUAHSI HIS (http://his.cuahsi.org/). These efforts are 

assembling valuable model outputs, however, most calibrated numerical model outputs are 

still not shared, despite the substantial benefits discussed previously. The purpose of 

COnSOrT is to host, at least at the beginning, pathlines from calibrated groundwater models 

http://www.experimental-hydrology.net/
http://www.experimental-hydrology.net/
http://www.experimental-hydrology.net/
http://www.experimental-hydrology.net/
http://www.experimental-hydrology.net/
http://www.experimental-hydrology.net/
http://www.experimental-hydrology.net/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
http://his.cuahsi.org/
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from a wide range of environments. This will allow the comparison of RTD at different sites 

in order to generalize findings on a wide range of catchments. Also, post-processing methods 

will be available on the platform. 

3.1 The need for COnSOrT 

The COnSOrT virtual platform provides benefits for modelers and field researchers. The 

observatory will allow the testing of models in a wide range of catchment environments to 

evaluate model generality with consistent post-processing methods. For example, Marçais et 

al. (2015) used lumped parameter models to infer the residence time distribution at the 

Ploemeur research site in western France. They used modeling and environmental tracers to 

study groundwater flow at the catchment scale. They found that two-parameter distributions 

are suitable to assess and predict the hydrodynamic behaviour of the catchment. This suggests 

that with only two environmental tracers (e.g. Cl
-
, F-, CFC, SF6, or Kr85), it would be 

possible to assess catchment behaviour from a theoretical time distribution and make 

predictions as to how the catchment would respond to different hydrological conditions. But 

is this conclusion a consequence of site particularities or is the model more broadly 

applicable? Similarly, Laudon et al. (2011) analysed the controls on DOC concentration in 

boreal streams. They found that DOC was mainly controlled by landscape type (i.e. forest or 

wetland) and by the connectivity between the different areas of the catchment. They 

concluded that DOC concentration along the stream can be explained using a two-component 

mixing model with contributions from two homogeneous headwater catchments. As for the 

previous example, it is difficult to assess if this conclusion is site-specific or if it is general 

without comparison with other sites. We expect that time distribution obtained from the 

pathlines of a calibrated model can help to understand the nested catchments connectivity. 
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The analysis of different models from a wide range of environments and hydrogeologic 

contexts could methodically address this kind of recurring question. Another benefit of the 

observatory is that scientists with calibrated numerical models can use the post-processing 

methods as a complementary approach to analysing their data. Field scientists with water 

chemistry time series for a watershed could invite modelers associated with the observatory to 

test their models against observed catchment behaviour, building the observatory and 

improving general understanding of small-catchment hydrology. 

3.2  Organisation  

In this section we would like to introduce you to the online platform 

(http://geowww.agrocampus-ouest.fr/smallcatchmentsvirtualobservatory/index.html) and 

present the general organisation and the procedure to submit and retrieve results. Currently, 

only particle path files are being accepted as output files, but as the observatory grows in the 

near future we will accept more outputs, such as concentration field files and other outputs. If 

you have a suggestion for a file type or possible comparison, please contact us. We chose to 

start with particle path files because they are quite generic and can be produced by many 

hydrological modelling packages (e.g. MODFLOW/PMPATH/MODPATH, FEFLOW, 

Hydrogeosphere, H2OLAB). Any file format can be used for the particle path file (e.g. xlsx, 

csv, txt etc.) as long as it is described. In order to be compatible with the software, the 

pathlines file should at least contain the following fields: X, Y, and Z coordinates, the time, 

and the particle number. In addition to the data file itself, metadata such as location, 

topographic information, and hydrology are required. We also ask for helpful information 

about model parametrization (e.g. geometry of flow domain, initial and boundary conditions, 

etc.), calibration, and validation methodology (Fig. 2). Table 1 summarizes metadata available 
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on the website for an example catchment “Le Guyout,” which is a small catchment situated in 

Brittany at the LTER Zone Atelier Armorique (Thomas et al., 2015). For this small 

catchment, flow domain topography as well as subsurface geometry structure (Fig. 3) were 

constructed from a 2m-resolution Lidar digital elevation model and geologic data. The 

FEFLOW numerical model was used to obtain velocity field, flowpaths, and pathlines. Fig. 4 

and Fig. 5 show the particle path file and histogram of the residence time distribution, 

respectively, obtained and shared on the platform. In addition to model outputs, metadata 

inputs and post-processing methods (.exe files or open-source program codes) will be 

available on the platform. The repository of all documents and files will be maintained by the 

Observatoire des Sciences de l’Univers à Rennes (OSUR) (Fig. 2).  

3.3  How to get involved?  

All researchers interested in sharing their model outputs or contributing to new analyses or 

comparisons are invited to contribute and participate with COnSOrT. There is a simple 

process on the website providing a username and institution information which allows users to 

upload and control access of their data and metadata files. No login is required to download 

files and post-processings methods available on the platform. 

Conclusion 

One of the main goals in catchment hydrology is to generate theoretical frameworks that 

accurately reflect processes and behaviours, which can reliably be applied to numerous 

catchments. Eventually, these frameworks may be used to describe ungauged catchment 

behaviour from easily measurable parameters or characteristics. We invite you to join us in 

working towards this goal by participating in this new virtual observatory. COnSOrT collects 

outputs from calibrated groundwater models and observed metadata. There are numerous 
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benefits of COnSOrT including the opportunity to perform large (worldwide) inter-catchment 

comparisons. Another major benefit is the sharing of new approaches to interpret model 

outputs. There are numerous ways to get involved including contributing model outputs or 

observations and testing the post-processing methods on a wide range of catchment 

environments to evaluate the generality of their findings. There is already a growing group of 

committed COnSOrT members but the value of these model outputs and catchment 

information increases with each new researcher that gets involved. We hope you will bring 

your expertise to the table to participate in this exciting opportunity to push forward our 

understanding of small catchment science. 
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Figures 

Figure 1: Controls on hydrological functioning at the catchment scale. This conceptual model 

highlights the physical, biological, and anthropogenic processes and spatial and temporal 

scales that underlie the regulating and driving (forcing) factors that can differ between 

catchments. Quantifying the relative importance of these factors in multiple environments is 

key to generating general understanding of catchment hydrology and biogeochemistry. 

Figure 2: Organizational schema and justification for the Catchment virtual Observatory for 

Sharing flow and transport models outputs (COnSOrT). Metadata, model outputs, and post-

processing techniques will be available through COnSOrT. 

Figure 3: Topographical and geological layers of the example catchment in western France in 

the Zone Atelier Armorique where which particle tracking and time distributions have been 

analysed (Thomas et al., 2015). 

Figure 4: Pathlines from FEFLOW simulation obtained using a forward particle tracking 

method. The colours indicate the time since the water reached the water table and the line 

indicate the path followed by a particle. The land surface is superimpose on the top of the 

pathlines, showing flowpath convergence in topographical lowpoints.  

Figure 5: The residence time histogram for the whole catchment indicates that short (on the 

order of days) and long (on the order of several decades) residence times occur in this 

catchment. 

Tables 

Table 1: Example of Metadata available from the platform. 
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Tables 

Table 1: Example of Metadata available from the platform. 

Location 

Name 

Country 

Zone Atelier Armorique 

France 

 

Basin name  

Sub-catchment 

Le Guyoult 

G-01 

 Outlet Coordinates (WGS84) 48.48,-1.63 

Topography Upstream Elevation (m) 110.0 

 Downstream Elevation (m) 85.0 

 Difference in elevation (m) 25.0 

Soil  Type Silty clay 

 Depth (m) ≥0.8 

Bedrock Granite (% of area) 100.0 

 Schist (% of area) 0.0 

Hydrology Drainage area (km²) 6.4 

 Stream order at the outlet 2.0 

Vegetation 

characteristics 

Hedgerow Density (m.ha
-1

) 104.7 

Contacts 

zthomas@agrocampus-

ouest.fr 
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Highlights of the paper “Constitution of a catchment virtual observatory for sharing 

flow and transport models outputs“ 

 

 A virtual observatory to enhance inter-catchment comparison over a wide range of 

catchment environments.  

 A small catchment virtual observatory to share new approaches and post-processing 

methods to interpret modelled data. 

 The  virtual  observatory  will  contribute  to  the  testing  and  development  of  new  and 

existing theoretical models in the goal of improving ungauged basin assessments. 

 Such  observatory  will help both modelers and field hydrologists  to highlight the main 

controls  on  catchments  vulnerability  and  to  improve  methods  to  assess  ungauged 

catchment behaviors. 

 


