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Abstract. We used the atom-phonon coupling model to explain and illustrate the behavior of a 

linear nano-chain of molecules. The analysis of the system’s behavior was performed using Free 

Energy method, and by applying Monte Carlo Metropolis (MCM) method which take into account 

the phonon contribution. In particular we tested both the MCM algorithm and the dynamic-matrix 

method and we expose how the thermal behavior of a 1D spin crossover system varies as a 

function of different factors. Furthermore we blocked the edge atoms of the chain in its high spin 

state to study the effect on the system’s behavior.  

1. Introduction 

Spin crossover (SCO) is a typical  example of molecular bistability, in which a diamagnetic low-spin (LS) 

and a paramagnetic high spin (HS) states are reversibly switchable by the application of different physical 

causes such as a magnetic field, pressure, light, temperature or electrical field [1-8].. Although the interest 

in SCO materials is essentially directed towards future multi-sensing and nano-electronics devices, the ST 

transition still remains one of the main goals for the physics community. 

The ST transition behaviour which depends not only on external factors but also on internal factors in 

solid state materials, is known to be characterized by different responses such  as a gradual transition, an 

abrupt transition, a multi step-transition with or without hysteresis or an incomplete transition under 

pressure. To explain the competition between the LS and HS states and moreover, to give a clear image of 

the spin transition phenomenon, various models such as the Ising-like model [9-12], the atom-phonon 

coupling model (APC) [13,14] or the mechano-elastic model [15,16], have been developed over the years. 

Considering spring-like atoms characterized by three elastic constants function of the atoms’ state, 

Nasser proposed in 2001 [13] the APC model to give a clear and wide view of the ST process in the SCO 

compounds. In this model three constants are defined such as: λ = CLL - the atoms are in the low spin 

state, µ = CLH - one atom is in the low spin state and the other atom is in the high spin state, ν = CHH - the 

atoms are in the high spin state. 
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2. The model 

Since a detailed description of the model can be found in this paper [14], only some aspects are illustrated  

in this section and only some equations which are prerequisite to describe this work are recalled. To study 

the behaviour of SCO systems in the framework of the APC model, a circular chain of N atoms 

interconnected by a spring is considered. The elastic constant which have already been presented in the 

introduction are assumed to verify the inequalities: λ > µ > ν. To present the electronic state of the atoms, 

each electronic state of the atoms is associated to a fictitious spin operator σ which can take two 

eigenvalues +1 or -1 as a function of the atom state (HS or LS). The Hamiltonian is given as a sum of two 

terms, the spin Hamiltonian and phonon Hamiltonian: 

  spin phononH H H    (1) 

with:        
2



spin iH   and    nhs

phonon iH g B f   (2) 

In equation 2, the spin Hamiltonian depends on Δ, the difference in energy between the two electronic 

levels (LS) and (HS) and the phonon Hamiltonian depends on the degeneracy g
nhs

 and the Boltzmann 

factor B(fi). 

The Hamiltonian given by Equation 1 can be solved in two different cases as discussed in sections 2.1 and 

2.2. 

2.1. Dynamic Matrix method and Monte Carlo Metropolis algorithm 

According to the dynamic matrix method described in [17], the partition function can be written as: 
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In constructing the dynamic matrix, from all the states distribution, it is necessary to group together 

configurations which have the same value of the partition function (Z). Thus the parameter “nbre(nhs)” is 

defined to account for the sum of the configurations with the same “nhs” value and with the same eigen 

values (frequency). 
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Using MCM algorithm described in [18] the switching probability between the old state and the new 

state, P, is given by the next equation:  
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2.2. Free energy 

In the free energy method the magnetization M is calculated as follows: 
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where deg is the number of configurations with the same eigen value. 

The high spin fraction nHS giving the ratio between the number of atoms in the high spin state and the 

total number of atoms is defined as: 

  1 / 2 HSn M   (7) 

Using the following formula to calculate the free energy, F, we are able to study the stability of the 

system’s state: 
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Figure 1. a) the simulated HS fraction, nHS, as a function of the temperature and b) the 

free energy for three different temperature for an A type system. 

 

Figure 1 a) and b) show the evolution of the HS fraction, nHS, as a function of temperature and the free 

energy for three different temperatures. In figure 1 a) besides the red curve, when the temperature is 

increasing and the blue curve when the temperature is decreasing (obtained by transfer matrix method and 

Monte Carlo Metropolis algorithm), the results obtained by the numerical calculation previously 

described are plotted in black. 

3. The role of edge atoms 

To explain the role of edge atoms two types of systems were considered: an A type system in which the 

molecules are either HS and (or) LS and a B type system in which we add and fix at the beginning and at 

the end, one atom in the HS state to an A type system. In this case the system A can be HS……HS-

LS……LS while the system B is of the form HS+LS……HS-LS……LS+HS. The evolution of HS 

fraction, nHS, for an A type system is reported in figure 1 a) with the free energy in figure 1 b). In figures 

2 a) and b) are reported the HS fraction and the free energy for three different temperatures for a B type 

system. The comparison of the results reported in figure 1 a) with figure 2 a) shows that by adding and 

fixing the edge atoms in HS state, the transition temperature is shifted to a lower temperature and the 

width of hysteresis loop is decreased. Moreover the transition is more abrupt. 

4. Conclusions 
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In this work the thermal behaviour of a 1D spin crossover system under the action of edge atoms (HS), in 

the framework of the atom-phonon coupling model is studied, using Monte Carlo Metropolis algorithm 

combined with transfer matrix method and the Free energy method. By taking into account the phonons 

contributions, the hysteretic behaviour of a 1D system is reproduced without having to consider the long-

range interactions. 
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Figure 3. a) the simulated HS fraction, nHS, as a function of the temperature and b) the free 

energy for three different temperatures for a B type system. 
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