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ABSTRACT

Context. Changes in the spectral solar irradiance (SSI) are a key driver of the variability of the Earth’s environment, strongly
affecting the upper atmosphere, but also impacting climate. However, its measurements have been sparse and of different quality.
The ‘‘First European Comprehensive Solar Irradiance Data Exploitation project’’ (SOLID) aims at merging the complete set of
European irradiance data, complemented by archive data that include data from non-European missions.
Aims. As part of SOLID, we present all available space-based SSI measurements, reference spectra, and relevant proxies in a
unified format with regular temporal re-gridding, interpolation, gap-filling as well as associated uncertainty estimations.
Methods. We apply a coherent methodology to all available SSI datasets. Our pipeline approach consists of the pre-processing of
the data, the interpolation of missing data by utilizing the spectral coherency of SSI, the temporal re-gridding of the data, an
instrumental outlier detection routine, and a proxy-based interpolation for missing and flagged values. In particular, to detect
instrumental outliers, we combine an autoregressive model with proxy data. We independently estimate the precision and stability
of each individual dataset and flag all changes due to processing in an accompanying quality mask.
Results. We present a unified database of solar activity records with accompanying meta-data and uncertainties.
Conclusions. This dataset can be used for further investigations of the long-term trend of solar activity and the construction of a
homogeneous SSI record.
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1. Introduction

Changes in the spectral solar irradiance (SSI) strongly affect
the upper atmosphere, but also impact climate. In particular,
a consistent dataset of SSI changes serves as an input for cli-
mate models (Lean et al. 1995; Ermolli et al. 2013; Thuillier
et al. 2014) as well as a central parameter for space weather
predictions. These models are in need of datasets spanning sev-
eral decades of continuous and radiometrically accurate mea-
surements. However, satellites measuring SSI usually have a
life span of a few years up to a decade, before instrument deg-
radation, equipment failure, or end of mission financing stops
the data flow. Not a single instrument has measured SSI for
two or more solar cycles, and even for those instruments that
have measured an entire solar cycle, e.g. SUSIM,1 instrument
stability is not sufficient to properly assess the existence of
long-term trends.

To merge SSI observations and reconstruct missing obser-
vations, we need models. These models are often driven by
solar proxies. Frequent choices include the sunspot number,
which has been measured since the beginning of the 17th cen-
tury, solar radio flux measurements, with a popular example
being the 10.7 cm radio flux available since 1947, and spectral
ratios such as the MgII core-to-wing ratio (Viereck et al. 2004).
There are two kinds of models: empirical ones, where one or
more solar proxies are directly fitted to data using some criteria

of best-fit, and semi-empirical ones, which involve physical
modeling of some solar phenomena such as surface flux trans-
port of the solar photospheric magnetic field. In this latter case,
the proxy data are coupled to some underlying physical quan-
tity. For example, sunspot area is used to infer magnetic field
strength, which in turn is used to estimate the SSI (Domingo
et al. 2009; Ermolli et al. 2013).

Both empirical (e.g. Tobiska 2004) and semi-empirical
(e.g. Yeo et al. 2014) designs have been used for various SSI
models. Proxy-based models can be very accurate for the cal-
ibration time period, but they are usually calibrated and
compared to a specific instrument. For example, the semi-
empirical NRLSSI (Lean 2000) model is calibrated against
UARS/SOLSTICE. Relying on a single instrument makes it
difficult to distinguish between the solar signal and instrumen-
tal artifacts; it also limits the long-term temporal calibration to
two solar minima.

A homogeneous uncertainty estimation is essential for the
delivery of a single composite. Such a single composite is one
of the explicit goals of the SOLID project. In Bayesian statis-
tics, the influence of the data is proportional to the uncertainty
of the data. As such, it is important that the same methods are
used for each instrument to determine the uncertainty. How-
ever, even though data providers usually present the accompa-
nying uncertainties, their uncertainty budget often accounts for
different sources of uncertainty. These include the standard
deviation over short (sub-daily) time spans, modeled
instrument response functions, aspects of manufacturing, and

1 The expansion of acronyms used in this work is given in
Appendix A.
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calibration constants. All these sources determine the final
uncertainty budget. Ideally, proxy-based models would be
simultaneously calibrated to different instruments covering
several time spans. Yet, there are many obstacles that have pre-
vented scientists from doing so, including instrumental arti-
facts, uncertainty of the instrument stability, and the offset to
the true zero. Addressing these challenges requires a common
estimate of uncertainties, and a common data format that
would allow for a combination or comparison of different
instrumental data would certainly be helpful.

DeLand & Cebula (2008) already provide an SSI compos-
ite of the ultraviolet (UV) based on six instruments, specifically
the SBUV instrument on Nimbus-7, SBUV/2 on NOAA-9 and
NOAA-11, SME on board SOHO, and the SUSIM and
SOLSTICE instruments on UARS, together with synthetic
proxy-based models in the case of missing instrumental data.
Out of these instruments they selected one specific instrument
for different temporal (November 1978 to August 2005) and
spectral (120–400 nm) regions. The uncertainties were directly
derived from the original data. However, the instruments cho-
sen limited the temporal and spectral ranges, and, due to the
methods of combining the data, instrumental artifacts were
not accounted for in the composite.

To obtain homogeneous SSI datasets, our approach is thus
as follows. We develop a coherent methodology to estimate the
precision and stability for all datasets, and we evaluate the
uncertainties induced by each method. We rescale all data into
a common time grid with daily resolution and remove non-
physical values. We take advantage of spectral coherency to
estimate missing data in one wavelength band from a combina-
tion of other bands that display a similar temporal variability.
We detect instrumental artifacts by taking advantage of an
autoregressive model and combine the model with proxies as
a qualitative indicator. Finally, we use proxy interpolation to
handle data gaps.

Our final product consists of three datasets per instrument:
first, the original, unified dataset converted to common units
including independent precision estimates; second, a homoge-
nized and stratified ‘‘close-to-original’’ dataset that does not
change any data except for re-gridding in time, accompanied
by independent uncertainty estimates and quality flags; and
third, a ‘‘best-estimate’’ dataset where missing data and identi-
fied outliers have been replaced by values obtained from
proxy-based models. This systematic approach to attain homo-
geneous SSI datasets in a unified format is part of the First
European Comprehensive SOLar Irradiance Data Exploitation
project (SOLID, http://projects.pmodwrc.ch/solid), whose
objective is to attain a long-term SSI composite of daily reso-
lution covering the satellite space-age era by utilizing all avail-
able data. This can be used by modelers of the Earth
atmosphere and climate, researchers in stellar physics, plane-
tary science or astrobiology, and as a cross-comparison for
other models and instruments.

Subsequently, Section 2 provides, after a short historic
overview of SSI measurements, a description of all data incor-
porated in SOLID. Section 3 presents our uncertainty estima-
tions. Section 4 details our pipeline approach, consisting of
the pre-treatment of the data (Sect. 4.1), the interpolation of
missing data (Sect. 4.2), the re-gridding of the data (Sect.
4.3), the outlier detection (Sect. 4.4), and the proxy-based
interpolation (Sect. 4.5). Section 5 specifies the content, avail-
ability, and the future of the SOLID database, while Section 6
concludes our paper. For better readability, we include most of

our tables in Appendix A, followed by a formal description of
the data format in Appendix B and our algorithms in pseudo-
code in Appendix C.

2. Data

Scientists have long struggled with making long-term SSI
observations. As Schmidtke (2014) describes in his historical
overview of SSI measurements, the first attempts at obtaining
SSI were not suitable for long-term recording of the variable
solar spectrum. While E. Regener and V. H. Regener, in
1932, used balloons flying up to an altitude of 33 km to obtain
a spectrum of the visible to the far ultraviolet (UVC, 200 nm–
280 nm) region, Baum et al. (1946, cited by Schmidtke) used
V2 rockets to obtain the first SSI measurements in the extreme
ultraviolet (EUV) band. Though innovative, their methods,
based on photographic film, were restricted by the necessity
of instrumental retrieval. Therefore, they represented only a
snapshot of solar activity. Del Zanna & Andretta (2011) col-
lected an exhaustive list of rocket flights, measuring the EUV.
It was the development of photoelectric diodes in the 1960s that
allowed for satellite-based long-term measurements. Using
these diodes, the EUVS experiment aboard the AE-E satellite
showed, for the first time in history, the variability of the
EUV from 20 to 185 nm over the course of 3 years from a solar
minimum in 1976 to a solar maximum in 1979 (Hinteregger
1981). This was the beginning of long-term SSI measurements.
The first instrument observing a full solar cycle was UARS/SU-
SIM (Upper atmosphere research satellite/Solar Ultraviolet
Spectral Irradiance Monitor), 1991–2005 (Rottman et al. 1993).

Starting with data from the AEE/EUVS experiment in
1967, we have collected and processed data from 26 instru-
ments over a wavelength range from 4 nm to 2.4 lm. Our
space-based observations cover the time range of 1977–2015.
We also provide nine reference spectra, with our first spectrum
by Arvesen et al. (1969) and our latest one by Woods et al.
(2009), as well as 14 proxies of solar activity. We utilize these
proxies to enhance instrumental data by detection of possible
outliers (Sect. 4.4) and by interpolation of missing data
(Sect. 4.5). Figure 1 presents an overview of all instruments,
reference spectra, and proxies available in the SOLID database.
Not all existing data have been included, either due to bad
quality or missing availability. Notably, the Airglow Solar
Spectrometer Instrument (ASSI) data from the San Marco mis-
sion and the EUVS from the Orbiting Solar Observatory
(OSO) III mission are not included. Other data, such as the
broadband filter radiometer LYRA on PROBA2, will be used
to verify the composite.

To establish a common data format, we follow the Net
Common Data Format (NetCDF) Climate Forecast standard,
version 1.6,2 which provides standardized variable names,
well-defined field names for global meta-information such as
author, data source, and creation date, meta-information for
each variable such as units, flag description for masks, and
cross-references to other variables.

In Appendix A, we present an overview of all the data
together with references, sources, and key information such
as time spectral ranges below in tabular form. Table A.1 lists
all instruments included in the SOLID database, Table A.3
contains all nine reference spectra, Table A.4 displays all prox-
ies, and Table A.5 presents the three composite time series in

2 http://cfconventions.org/
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the database. Two of the composite time series, the Woods
et al. (2000) Lyman a composite and the Fröhlich (2006)
TSI composite, are also used as proxies for SSI. The third com-
posite, the aforementioned DeLand SSI composite has been
included in the database, but will not be used for the construc-
tion of our composite. Instead we will use the original instru-
mental data. Altogether, we currently have 53 datasets in the
database. Any new dataset incorporated into SOLID will also
be made available at the SOLID homepage.

3. Uncertainty estimation

As discussed above, the definition of uncertainties and the
inclusion of different uncertainty sources differ for each instru-
ment. Hence, it is not surprising that the final uncertainty esti-
mates vary considerably between instruments. A particularly
pronounced example are the measurements of total solar irra-
diance, as shown in Figure 2, where uncertainties vary over
three orders of magnitude and the highest uncertainties are
given for the first fully-calibrated instrument, TIM, due to
the inclusion of accuracy in its uncertainty estimates. In con-
clusion, any meaningful interinstrument comparison of uncer-
tainties must take into account their sources and definitions.

A few words on terminology are necessary first. While pre-
cision corresponds to what is commonly known as the random
error or noise, stability and accuracy both make up the system-
atic error. Stability, here, describes a time-dependent estimate

Fig. 1. A graphical summary of Table A.1 (Instruments), A.3 (References), A.4 (Proxies), and A.5 (Composite datasets) representing almost
all the datasets incorporated in SOLID versus time and wavelength. The upper panel presents all available proxies, together with two spectral
composites. The lower blue line, labeled Radio, represents the 3.2, 8, 10.7, 15, and 30 cm radio fluxes from the Nobeyama and Penticton radio-
observatories. The time range shown corresponds to the available times in the SOLID database, which truncates all proxies but the radio fluxes
at 1969. The lower panel presents the temporal and spectral ranges for all instruments in the database. Vertical lines represent the time point
and spectral range of the reference spectra. Instruments with fewer than 20 channels are shown as light boxes with a horizontal line at the
wavelength of the central frequency of each channel. While the 21st century is well covered both in temporal and spectral dimensions, previous
data are only available for selected wavelengths. Only the UV between 170 nm and 400 nm has been covered continuously since 8 November
1978.

Fig. 2. Instrument uncertainties for different TSI instruments. They
differ by up to three orders of magnitude with the highest
uncertainties for a modern instrument, TIM. This is due to different
definitions used for what an instrumental uncertainty is. For that
reason, these values cannot be meaningfully compared.

M. Schöll et al.: SOLID I - Observations, uncertainties and methods
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of the instrumental drift, in other words, a trend; accuracy
stands for the offset from the ‘‘true zero’’ at the beginning of
the mission, i.e. the bias of the absolute value. As the same
concept often comes with different names, we provide our
own naming convention in Table 1.

Since uncertainty estimates given by data providers vary
enormously in definition and quality, it is necessary to provide
an independent and homogeneous uncertainty estimate, which
can be meaningfully compared between instruments. We pro-
vide two such estimates for precision and stability. There is
no way to independently assess accuracy without resorting to
external data, except as to refer to the absolute ground and
on-board calibration. Therefore, only instrument teams can
provide these estimates and we do not attempt to estimate them
independently. If they are provided, we include them in the
SOLID database.

As discussed above, uncertainty estimates provided by the
PI (principal investigator) cannot be directly compared with
each other. However, they do contain valuable information,
such as satellite off-pointing or different integration time,
and as such, they are also provided. Each PI presents these esti-
mates differently: They can be provided as absolute or relative
values for each data-point, as time- or wavelength-independent
fractional values or percentages or as a global estimate. We
considered two possibilities: either the uncertainty estimates
are provided for each data-point of the time series, in which
case we convert them (if needed) into absolute values, or the
provided uncertainties are time- or wavelengths-independent,
in which case they are expressed in fraction of the data. In
the latter case, we did not multiply the uncertainty by each
data-point (which would have provided an uncertainty estimate
in the same format as in the first case) to reduce the file size.
This results in the somewhat cumbersome situation that the
uncertainties may differ in units and dimensions from one
dataset to the other: in some cases, they have the same units
as the timeseries, in other cases, they are unit-less fractions.
The correct unit is always given in the corresponding field
attribute.

As for precision, we provide both the original precision
estimates given by data providers and our own estimate, which
we describe here. Most data display either Poisson or Gaussian
noise statistics or a mix of the two. Noise is generally estimated
from the high-frequency component of the data, where its
impact is often strongest. As a consequence, estimators usually
involve some time differencing, followed by a measurement of
the dispersion, for example by taking the standard deviation.
Today, the wavelet methods (e.g. Mallat 2009) are among the
most powerful means for estimating the noise level. The gen-
eral idea, which was formalized by Donoho & Johnstone
(1995), is to decompose the time series into different time
scales by means of a discrete wavelet transform, then to con-
sider wavelet coefficients wi that correspond to the smallest
time scale only, and finally to use median ðjwiðxÞjÞ=0:6748

as an estimate of the noise level. The use of the median allows
one to exclude the few unusually large wavelet coefficients that
may be associated with sudden transients, such as sunspot
darkenings, and to focus only on the bulk of the fluctuations.
The 0.6748 correction factor allows this quantity to be equated
with the standard deviation in the case of additive white noise.
For details regarding the wavelet decomposition we refer to
Donoho & Johnstone (1995). The choice of the mother wave-
let, i.e. the unscaled wavelet, is not critical here, as long as its
regularity is sufficient. In our case, the 4th order Daubechies
wavelet gives satisfactory performance.

While this estimator works well for quantifying random
errors stemming from counting processes (i.e. with a Poisson
distribution) and, more generally, for white noise, it does not
provide a good estimate of the colored noise level, whose
power spectral density is not flat. Noise color is defined by
the power b of the spectral density per unit frequency. White
noise is defined by a flat spectral density (b = 0), while inte-
grated white noise, also known as Brownian noise, corresponds
to b = �2 (Pink noise corresponds to b ¼ �1). On the other
side of the spectrum we have differentiated white noise,
namely violet noise, that is defined by b ¼ 2 and describes
noise that varies more strongly in the short term. Blue noise
is defined as b ¼ 1.

Using this definition of noise, we modify the Donoho noise
estimator to take into account all the wavelet coefficients
(named Donoho-FULL). This underestimates blue and violet
noise levels. Our solution is to adapt the Donoho noise estima-
tor by combining the Donoho and the Donoho-FULL estimator
using a weighted average, yielding a good estimate of white,
blue, and violet noise, as shown in Figure 3. The weights are
determined empirically such that they provide a best fit over
b 2 ½0; 2�. This does not only estimate the white noise level
correctly, but also blue and violet noise levels which may be
present in the case of a positive feedback loop.

However, we are not aware of a reliable method to deter-
mine Brownian noise level without resorting to external data.
As such, we cannot take into account possible Brownian con-
tribution, despite the fact that most observations are likely to
have a negative b. Therefore, for consistency, and although
we know that this is not optimal, we assume our data to be free
from Brownian noise and use our adapted Donoho estimator as
a systematic means for comparison. Our stability estimator
does use external data in the form of proxies. Hence, the red
noise can be estimated as part of our stability estimate.

Another important limitation of our precision estimator is
that its upper limit equals the variability of the data. In other
words, our signal-to-noise ratio never gets below 1, as shown
in the lower panels of Figure 4 in the visible wavelength range.

Thus, our precision estimation consists of this adapted
Donoho estimator, calculated with a running window of a max-
imum length of 100 days, and the uncertainties induced by
interpolation (Sects. 4.2 and 4.3) and the outlier detection

Table 1. Different sources and properties of uncertainties, together with synonyms and their inverses. The unit of the uncertainties depends on
the unit of the data, which is abbreviated as ud. Inverse is used in the sense that the larger the value of the uncertainty, the lower the value of the
inverse. We also indicate whether we present our own estimation of the uncertainty and whether the uncertainty is time dependent. Time-
dependent uncertainties are provided with the same temporal resolution as the data.

Name Synonyms/inverses Unit Estimated in SOLID Time-dependent
Precision Repeatability/Noise, Random Error ud Yes Yes
Stability Long-term Stability/Drift, Shift ud/yr Yes Yes
Accuracy Exactness/Bias, Offset, Systematic Error ud No No
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routine (Sect. 4.4). The maximum window length of 100 days
has been chosen to allow for temporal changes in the precision,
while keeping the statistical properties stable. The full

algorithm is given in Section C.2.4. We include estimates of
these uncertainties for each data-point in the final uncertainty
budget. The combined precision is presented in the NetCDF
attribute solid_precision (Sect. B.3.6).

As for stability, that is the uncertainty on the drift, the prob-
lem is a bit different. Instruments that have on-board monitor-
ing systems (using calibration lamps or star observations) can
provide an estimate of the drift with its uncertainty. Not all
datasets, however, contain such stability estimates. Further-
more, the stability estimates for some instruments rely on
assumptions based on the correlation between irradiance and
solar proxies (e.g. the SBUV datasets). Although we cannot
provide a completely independent estimate of the stability,
there is a need for a common and homogeneous stability esti-
mate for each dataset. The estimation of the stability (i.e. long-
term uncertainties) is a very challenging task and can only be
formally done through instrument intercomparison. Mean-
while, we can estimate medium-term uncertainties (on a yearly
time scale) and use this as a first guess for stability. We do this
by fitting each time series with a combination of proxies (Mag-
nesium II, daily sunspot area, and the radio fluxes at 3.2 cm,
10.7 cm, 15 cm, and 30 cm) and by distinguishing the short
(<108 days) and long (>108 days) time scales, the 108-day
limit corresponding to four solar rotations. The fitting is
designed in a flexible way (e.g. by including proxies that cap-
ture various solar features) in order not to force the irradiance
to follow specific solar proxies and to keep the independent
nature of the measurements. The stability at each time step
is defined as the difference in the yearly slope of the observed
and fitted time series at each wavelength. This method and its

(a)

(b)

Fig. 4. (a) Measured SSI (black) of UARS SOLSTICE at 248.5 nm (left) and SME at 214.5 nm, along with the precision provided by PIs
(long-dashed red) and our own estimate of precision (short-dashed blue). We also mark the times where we have detected outliers (red circles).
Two strong outliers are visible in June, while two possible, but unlikely outliers are around 20 February 1996. The interpolated data from end of
January have also been correctly classified as outliers. (b) The 1 � r standard deviation of the spectral variability (solid black) for each
wavelength and the provided (long-dashed red) and estimated (short-dashed blue) averaged uncertainties per wavelength of the two instruments
from (a), but for the full time-range (3 Oct 1991 to 29 Sept 2001 for UARS/SOLSTICE and 8 Oct 1981 to 12 Apr 1989 for SME/UV). As
discussed in the text, our own estimates are, by definition, bounded by the variability of the data.

Fig. 3. Comparison of the three presented noise estimators for
different colors of noise. We show the original Donoho noise
estimator (solid black), a wavelet estimator that takes into account
all wavelet scales (Donoho-FULL, short-dashed red), and our
adapted Donoho estimator (long-dashed blue). The b value,
representing the power of the spectral density, is varied from �2
(Brownian noise) to 2, where 2 is violet noise (1 would be blue
noise). Each point represents the estimated noise level of a one
thousand point randomly generated time series of the specified
power. The spread indicates the standard deviation of the estimator
from one hundred trial runs. While the classical Donoho estimator
overestimates all noise for b > 0, but using all wavelet components
underestimates the noise of the same data, the adapted Donoho
estimator provides a better estimate.
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results are described in a forthcoming paper (Kretzschmar
et al., in preparation).

The different components of uncertainty need to be com-
bined into a single value. Here we present two different
methods to calculate the absolute and relative uncertainty.
Equation (1) determines the absolute uncertainty for a point
in time, that is, taken the given value, it determines how accu-
rate the data are in absolute terms, given accuracy, precision,
and stability, while Eq. (2) calculates the uncertainties between
two points in time to determine the accuracy of a trend.

ek tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
k þ p2

k tð Þ þ
Z t

0

s tð Þdt
� �2

s

; ð1Þ

ek t1; t2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
k t1ð Þ þ p2

k t2ð Þ þ
Z t2

t1

s tð Þdt
� �2

s

; ð2Þ

with p representing precision, a accuracy as estimated by the
PI, s stability, and t time, where t ¼ 0 corresponds to the time
of calibration.

As the discussion above shows, the accompanying uncer-
tainties are an integral part of the data. To sum up, we provide
the uncertainties as given by data providers, converted to stan-
dardized units, as well as our own independent estimates of
precision in the form of the adapted Donoho estimator and
stability of the data as estimated by the proxy-based model.

4. Methods

Here we present the pipeline for the data preparation for each
individual dataset, providing methods that can be applied to all
datasets and uncertainty estimations that allow different data-
sets to be compared in a meaningful way. Our pipeline
approach entails the following steps: pre-processing, interpola-
tion of missing data, re-gridding in time, outlier detection, and,
finally, a proxy-based interpolation of erroneous or missing
data. We provide uncertainty estimates for each step in the
processing pipeline.

Figure 5 presents a graphical overview of all steps to con-
struct the final composite, marking all steps discussed in this
paper.

Appendix B includes a complete and formal description of
the data format, while Appendix C provides the formal
description of all methods in meta-code. The following sec-
tions describe the methods and the underlying rationale for
their selection.

4.1. Pre-treatment

Our first step in the processing queue consists of the pre-treat-
ment of the data: setting up a unified format, re-gridding the
data on a two-dimensional time-wavelength grid, and removing
the most extreme outliers. First, we convert the data format
into one common format using the NetCDF Climate Forecast
standard, version 1.6.

Next, we arrange the data on a two-dimensional time-
wavelength grid with the axes conforming to wavelength in
nanometers and time in days since 1980 without further
data adjustments. As we will describe below (Sect. 4.3), we
regularize the temporal grid at a later point in our pipeline.

This approach is justified since most statistical methods either
require or are easier to use when applied to regularly gridded
data without any missing data.

Finally, it is necessary to remove obvious errors, that is val-
ues that are well outside the physical realm, as some methods,
notably least-square fits, can be heavily influenced by those
outliers. Figure 6 displays an example of a time series with
such outliers. We flag and remove all data that are farther than
16 r away from the mean. Even though the choice of 16 r is
somewhat arbitrary, it eliminates the most extreme non-
physical outliers, while guaranteeing that we do not eliminate
large amplitude transients, which are more frequent in the UV
bands. The goal here is not to detect all outliers, but to elimi-
nate the possibility of a single value dominating the statistics of
a dataset.

All these changes are tracked in an accompanying quality
map of the same dimension as the data field (formal descrip-
tion in Sect. B.3.5) with its entries representing the sum of

Fig. 5. A graphical overview of all steps to construct the final
composite. The input data (red) are provided by instrument teams
(References can be found in Appendix A). This work discusses the
construction of the homogeneous individual datasets (green,
numbers link to the corresponding sections), while the stability
estimation (magenta) is discussed in a separate paper. The
combination of all these datasets will be provided in the future
(blue).
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binary flags. The numeric value of each flag is a unique power
of two – 1, 2, 4, etc. – and the entry on the quality map is the
sum of all the values of the present flags. For example, a value
of 12 represents two flags, corresponding to the values 4 and 8.
Any processing applied to the data is indicated in the quality
map.

4.2. Interpolation of missing data

Most instruments incorporated in SOLID feature missing data
with notable exceptions being SME/UV and SNOE/SXP. Miss-
ing data result from various problems, including faulty trans-
missions, eclipses, temporary device failures, and outages
when the satellite is put in safe mode. Whatever its origin,
we need to systematically deal with it for each instrument.

To reconstruct missing data, we rely on the high coherency
of spectral solar variability. This coherency implies a strong
redundancy of the observed variability, in the sense that tempo-
ral variations in a given spectral band can be adequately recon-
structed by linear combination of typically 1–5 time series.
This property has been exploited by Dudok de Wit (2011) to
build an interpolation scheme that relies on Singular Value
Decomposition (SVD, Kalman 1996). What follows is a
description of this method. First, we temporarily flag and
replace all missing data by a two-dimensional linear interpola-
tion. Theoretically, any value can be used. Other possible
choices are the average of the data or random sampling from
the underlying distribution of the data. The improvement
gained by a good estimate is a faster convergence of our
method. Once we have a preliminary estimate, we recursively
replace the missing data with a first rank SVD approximation
until convergence is achieved. When converged, we increase
the rank of the SVD by one and replace all missing data
with the second rank SVD approximation until convergence.
This is done repetitively up to the 10th rank. Missing data
are also marked as such in the quality map, using the flag
Interpolated. Figure 7 presents an example of the resulting
interpolation of SORCE/SOLSTICE at 144 nm. While most
data gaps can easily be interpolated due to neighboring channels
providing data, gaps due to instrumental outage, which affect the
whole instrument, are also flagged as missing and temporarily
interpolated linearly. For the final data product, we use proxies

to provide the temporal information. However at this step we
refrain from inducing any external data into the dataset. The
error induced by this method is estimated via bootstrapping.

Table A.2 presents an overview of all data adjustments,
including the interpolation of data. These adjustments result
in a dataset without any missing value on a two-dimensional
time-wavelength grid with accompanying uncertainties.

4.3. Re-gridding in time

This section describes our regridding of the datasets onto a reg-
ular time grid. This procedure is necessary for several reasons.
First, the autoregressive model utilized in our outlier detection,
described in Section 4.4, requires a regular time grid. Also, a
regular time grid is helpful to directly compare data with each
other and to apply multiscale decomposition methods, as
planned for future work.

Luckily, most datasets are already available with daily res-
olution, centered at noon. Only three datasets, namely AEE/
EUV, ENVISAT/SCIAMACHY, and ISS/SolACES, need to
be adjusted in time. Another dataset, NIMBUS7/SBUV, has
multiple data values for the same time. We take the average
of these and adjust the uncertainties by calculating the standard
deviation. Table 2 provides the statistics of these datasets.3

We re-grid these datasets to a constant time grid of daily
resolution centered at 12:00 UTC via a linear interpolation
scheme and estimate the interpolation-induced uncertainty by
a linear error regression of the variability. For this, we assume
an independent error propagation, and, since the wavelet noise
estimator is an accurate short-term noise estimate, we use the
wavelet estimator of the original nearest neighbor as the non-
weighted starting point. This estimate is weighted by the dis-
tance of the re-gridding. A proxy-based interpolation scheme
is used for the final interpolation (Sect. 4.5); linear interpola-
tion is used in intermediate steps for its cheap computational
costs and simple statistical properties.

This procedure presents a classic chicken-and-egg prob-
lem. While the autoregressive model, utilized in our outlier
detection, requires a regular time grid, the regularization of this
time grid, based on interpolation, dilutes precisely these outli-
ers. Though this problem may be solved through an iterative
approach, we prefer to first interpolate the data including the
outliers at the risk of diluting the latter and to later remove
them. Our procedure yields similar results, but is more efficient
than the iterative approach. Furthermore, since our final inter-
polation, described in Section 4.5, does not distinguish
between missing data and outliers, this problem does not affect
the final data values, but only the accompanying estimates of
the precision.

4.4. Outlier detection

The following section describes our outlier detection routine
based on an autoregressive model (AR, Chatfield 2003).
Figure 8 provides a quick overview of this procedure, consist-
ing of the aforementioned AR model together with a proxy-
based quality estimator to differentiate physical outliers from
instrumental artifacts.

Before addressing the procedure above in greater detail, it
is necessary to discuss the nature of outliers. Having removed

Fig. 6. UARS/SUSIM at 239.5 nm as provided by the instrument
team and the 16 r thresholds (dashed). All points outside of the
thresholds are marked as outliers, replaced by linear interpolation.
Further possible outliers are selected and handled in Section 4.4. We
define their uncertainties as the difference from the original data to
the interpolated points. In the case of SUSIM, these outliers occur
directly after instrumental data gaps, giving further credence to the
possibility of instrumental, non-physical, outliers.

3 This time shift affects all data-points and is the only change
applied to the original data not marked as such in the quality map
solid_flags.
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the most extreme outliers during pre-treatment (Sect. 4.1), we
now aim at distinguishing instrumental artifacts from peculiar
data corresponding to actual physical phenomena such as solar
flares and huge sunspots. As they may have the same magni-
tude, they cannot be distinguished by a simple threshold. We
also want to include sunspots but flag solar flares due to their
short time spans, and, as such, their inclusion into each instru-
mental dataset strongly depends on internal characteristics like
integration time and data selection, i.e. whether, for example,
averaged daily data or a single daily measurement has been
provided.

We resort to an autoregressive model to detect both instru-
mental artifacts and physical outliers. The approach is concep-
tually similar to that developed by Mann & Lees (1996), and it
assumes that each record can be modeled by a linear time-
invariant model. The discrepancy between this model and the
observations is then used for detecting outliers. An AR model
is a linear model of p + 1 parameters, which assumes that each
point is linearly dependent on the p previous points,
yt ¼ et þ

Pp
i¼1biyt�i, with yt corresponding to the data at time

t, b the coefficients of the AR model, and et the error at time t.
These models are specified by their order p, and the parameter

b can be estimated by a least-squares fit to y (Priestley 1981).
The higher the model order, the better the fit, but also the
higher its complexity. To determine the optimal order of the
model, we apply the corrected Akaike information criterion
(AICC, Burnham & Anderson 2002, see below Eq. (3) for a
version applied to AR), which weights the goodness-of-fit ver-
sus the complexity of the model. The lower C in AICC, repre-
senting ‘‘corrected’’, accounts for the possibility of overfitting
a data series of small size by multiplying the number of model
parameters, p þ 1 with a correction factor.

dAICC ¼ nðlog r2
p þ 1Þ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

goodness-of -fit

þ 2ðp þ 1Þ
zfflfflfflfflffl}|fflfflfflfflffl{

complexity

n
n� p � 2

zfflfflfflfflfflffl}|fflfflfflfflfflffl{

correction factor

; ð3Þ

with n the sample size, p the order of the tested AR
model, and rp the standard deviation of the AR model of
order p.

For most models, the estimated AICC reaches its maximum
for 4th order models. Hence, here, we construct a stationary
4th order AR model. However, it should be noted that, espe-
cially for the visible light spectrum, this parameter can increase
significantly and that an adaptive parameter may improve the
predictability and, thereby, the quality of the model.

Our model assumes that the Sun is a steady system per-
turbed by magnetic active regions that remain stable over the
course of a few days. However, the Sun may also display fast
transients that cannot be predicted by an autoregressive model,
e.g. rapidly emerging sunspots and flares. Here, we account for
the possibility of such physical outliers using an external refer-
ence in the form of solar proxies to relax the outlier detection
criteria. Yet solar flares, as another type of physical outliers, are
removed from our datasets, as our solar proxies do not contain

Fig. 7. Coherency interpolation at different points in time for the 144 nm channel of SORCE SOLSTICE A, which contains 65 channels in
total (115 nm–179 nm). Each color represents a reconstruction of the 144 nm channel using a sequence of datasets of which some contain gaps
for the days marked by a black horizontal line that were filled using the SVD interpolation. We show the original data (solid thick black),
interpolated data where only this channel has been removed and re-interpolated (long-short dashed, blue), data where not only the 144 nm
channel has been removed, but also its lower and upper 10 channels, i.e. everything from 134 nm to 154 nm (short-dashed green), and data
where everything but the outermost channels (the two channels at 115 nm and 179 nm) have been removed for the selected days (long-dashed
red). We also show our estimated precision (dotted black). The lower plot displays the error introduced by the SVD interpolation, smoothed
over four days for better visibility. Due to the high spectral coherency, the error in the reconstruction is not significantly affected when
removing not only the neighboring two, but 21 channels. Removing all but two channels does increase the error up to 100%, yet most data are
still below our own estimation of the precision.

Table 2. An overview of all datasets that are interpolated in time.
We present minimum, median, maximum, and standard deviation of
the absolute time shifts. Time is given in hours (hh:mm).

Name Min. Med. Max. Sth
AEE/EUV 0:00 6:35 11:55 3:19

SCIAMACHY 0:57 5:57 9:23 0:37
SolACES 0:01 4:26 11:57 2:58
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flare information and the flare detection strongly depends on
the instrument.

We flag all instrumental outliers and increase their uncer-
tainty in three steps, proportional to our confidence that they
are actual outliers. First, we use the aforementioned 4th order
AR model to flag all outlier candidates, both instrumental and
physical, and calculate the standard deviation of the differ-
ences, preliminarily flagging all data where the difference of
the model to the data is greater than nr, with n ¼ 4. Second,
to account for the possibility of outliers being of physical ori-
gin, the parameter n is increased by 2 if at least 70% of our
solar proxies are also flagged as outliers. Third, all such
flagged data, as well as data that have been modified in a pre-
vious method, are temporarily replaced by linear interpolation.
This procedure is repeated until convergence is reached. The
linear interpolation is replaced by a more advanced scheme
in a later step. Typically, this process converges within three
steps, but the number of steps necessary for convergence
increases when long data gaps have been interpolated in a pre-
vious step. We have empirically determined the required
parameters, that is n, the increase by 2, and the percentage
threshold of the proxies.

Finally, we convert the replaced data into uncertainties
while keeping the original data in place, with the final step,
coherency interpolation, only applied after all processing is
finished. This is described below in Section 4.5.

The estimated uncertainty induced by outliers is defined
as the absolute difference between the original and predicted
data.

Applying the outlier detection routine as discussed above
to our datasets yields results which we found to be physically
consistent. We present an application of our routine to SOHO-
SEM in Figure 10. As this figure shows, after the removal of
the most extreme outliers, our method still detects not only
several obvious instrumental artifacts, but also data-points that
are below any meaningful direct threshold. In some cases, as in
the case of SUSIM (Fig. 6), they appear before a data gap, giv-
ing further credence that they are due to instrumental artifacts.
Our routine also correctly flags all linearly interpolated data as
non-physical. Some values are possibly flagged as outliers
erroneously. However, the proposed replacement barely differs
from the original value, and, hence, it only slightly affects the
induced uncertainty.

4.5. Final interpolation of missing data

Finally, we interpolate all data that have been flagged using the
coherency interpolation scheme as described above in
Section 4.2, this time including proxies as additional channels.
While this interweaves instrumental data with proxy data for
all data-points that are missing from the original dataset, it
attains temporal variability during times of instrumental
outages when no channel has data.

(a)

(b)

(c)

Fig. 9. A sample of the three provided levels of UARS/SUSIM, the
original data, named level 0 (a), re-gridded and missing data
interpolated as level 1 (b), and our best-estimate, level 2, where
outliers have been removed and re-interpolated (c). One solar proxy,
Mg II, is shown for comparison (black dots). The error bars
represent our estimate of the precision, including the induced
uncertainty of each method. Also shown are the values of all set
flags. For example, a value of 24 means that bits 3 (23) and 4 (24) are
set, marking this data-point as both being detected as an outlier (8)
and re-interpolated in the final interpolation (16).

Fig. 8. Flowchart of the outlier detection with the possibility of
physical outliers. First, we construct an autoregressive model of the
time series. Then we flag all values whose difference to the model is
greater than a given threshold n as possible outlier candidates. To
account for the possibility of physical outliers, we relax this
condition if proxies flag the same data as outliers.
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5. Results

Based upon these methods, we provide three kinds of datasets:
first, the original data converted into the common data format;
second, the original data accompanied by uncertainty estimates
and interpolated data; and, third, a ‘‘best-estimate’’data product
with possible outliers replaced by proxy interpolation. Figure 9
displays these three datasets, together with the accompanying
flags and precision estimation.

As our database now contains three different types of data-
sets, the question ‘‘Which one is best for a given purpose?’’
naturally arises. This depends largely on the chosen method,
as the subsequent examples illustrate. As a simple least-square
fit can be dominated by outliers, it is of vital importance that
instrumental artifacts be removed. Thus, the third type of data-
set should be used for least-square fitting.4 However, if a
weighted leastsquare fit or, more generally, any method that
takes into account the uncertainties of data is used, the second
type of dataset is more appropriate. The first type of dataset
serves primarily as a reference and starting point, as it does
not include independent uncertainty estimates.

All datasets are available at ftp://www.pmodwrc.ch/pub/
projects/solid/database. The database will be updated regularly
as new data become available, including modeled data, which
will complete temporal and spectral coverage. Using standard-
ized methods to homogenize the data makes the inclusion of
new data, or new versions of already available data, easily
achievable.

6. Conclusion

As part of SOLID, we provide homogeneous datasets of avail-
able space-based SSI measurements with uncertainty estimates
and accompanying meta-data in a unified format, following
standard conventions.

Several challenges, however, remain. Even though we have
put much effort into developing an independent and homoge-
neous uncertainty estimate, we do recognize that we have not
yet solved the problem of combining these with the PI

provided uncertainty estimates. As for now, we provide both
sets of estimates, and it is up to the user to combine them.
Furthermore, our methods are designed to be generic and
applicable to all instruments incorporated in SOLID, but con-
sequently, they do not reflect all properties specific to each
instrument. Some datasets, for instance, are accompanied by
flags describing the origin, the processing method, and the
quality of the data or the number of measurements per data-
point. Though provided in our database, these flags are not part
of our processing.

Notwithstanding these challenges, our datasets are a start-
ing point to merge all available data into one single homoge-
neous dataset. A follow-up paper will present a new
approach to create such an SSI composite, which will also
eventually be available at the above address. In any case, the
present database will help to provide an SSI reconstruction
of the satellite era, and, thereby, it will foster diverse research
in solar science, space weather, and climate studies.
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Appendix A. Tables

We have moved most of our tables to this separate section for better readability purpose. Here we present all instruments (Table A.1),
an overview of all flags and their percentage applied to each dataset (Table A.2), and the list of all reference spectra (Table A.3) and
proxies (Table A.4).

Table A1. The list of all instruments in the SOLID database, together with the data version if provided and the wavelengths and time ranges.
Below each dataset name we expand the acronym of the mission and instrument name and provide a reference publication and the source URL
if available. The dates correspond to the start and end dates of the database. These can differ from the mission dates. This is always the case for
ongoing missions.

Name Version Wavelength (nm) Time interval
Sources and References

AEE/EUV 17.1–121.6 01 Jul 1977–09 Jun 1981
Atmospheric Explorer-E/Solar EUV monitor; Hinteregger et al. (1973)

AURA/OMI 265.0–499.5 08 Apr 1991–07 Dec 1997
Aura (Latin for breeze)/Ozone Monitoring Instrument; Marchenko and
DeLand (2014)

ENVISAT/SCIAMACHY 212.5–2,385.0 02 Aug 2002–07 Apr 2012
Environmental Satellite/SCanning Imaging Absorption spectroMeter
for Atmospheric CHartographY; Burrows et al. (1995),
www.iup.uni-bremen.de/~weber/SOLARDATA/SCIAMACHYSSI.7z

GOES 13/EUVS 11.7–123.2 07 Jul 2006–27 Oct 2014
Geostationary Operational Environmental Satellite 13/Extreme
Ultraviolet Sensor; Evans et al. (2010), ftp://satdat.ngdc.noaa.gov/sem/
goes/data/new_avg/2014/new_euv_temp/

GOES 14/EUVS 11.7–123.2 24 Jul 2009–20 Nov 2012
Geostationary Operational Environmental Satellite 14/Extreme
Ultraviolet Sensor; Eparvier et al. (2009); Viereck et al. (2007),
ftp://satdat.ngdc.noaa.gov/sem/goes/data/new_avg/2014/new_euv_temp/

GOES 15/EUVS 11.7–123.2 07 Apr 2010–26 Oct 2014
Geostationary Operational Environmental Satellite 15/Extreme
Ultraviolet Sensor; Eparvier et al. (2009); Viereck et al. (2007),
ftp://satdat.ngdc.noaa.gov/sem/goes/data/new_avg/2014/new_euv_temp/
GOES 15/E is scaled to SORCE/SOSLTICE

ISS/SolACES 16.5–57.5 04 Jan 2011–24 Mar 2014
International Space Station/SOLar Auto-Calibrating EUV/UV
Spectrophotometers; Schmidtke et al. (2014), private comm.
(Robert Schafer)

ISS/SOLSPEC 175.2–340.6 05 Apr 2008–10 Dec 2013
International Space Station/SOLar SPECtral Irradiance Measurements;
Eparvier et al. (2009), private comm. (David Bolsee), calibration in
progress

NIMBUS7/SBUV 170.0–399.0 08 Nov 1978–28 Oct 1986
Nimbus (Latin for rain cloud) 7/Solar Backscatter Ultraviolet; DeLand
and Cebula (2001), http://sbuv2.gsfc.nasa.gov/solar/

NOAA9/SBUV2 170.0–399.0 14 Mar 1985–05 May 1997
National Oceanic and Atmospheric Administration 9/Solar Backscatter
Ultraviolet Model 2; DeLand et al. (2004), http://sbuv2.gsfc.nasa.gov/
solar/

NOAA11/SBUV2 170.0–399.0 05 Dec 1988–15 Oct 1994
National Oceanic and Atmospheric Administration 11/Solar Backscatter
Ultraviolet Model 2; Cebula et al. (1998); DeLand & Cebula (1998),
http://sbuv2.gsfc.nasa.gov/solar/

NOAA16/SBUV2 170.0–406.2 10 Nov 2000–30 Apr 2003
National Oceanic and Atmospheric Administration 16/Solar Backscatter
Ultraviolet Model 2; DeLand & Cebula (2008), http://
sbuv2.gsfc.nasa.gov/solar/

SDO/EVE 5 5.8–106.2 29 Apr 2010–21 Oct 2014
Solar Dynamics Observatory/EUV Variability Experiment;
Woods et al. (2012), http://lasp.colorado.edu/eve/data_access/
evewebdata/products/level3/

SDO/EVE-1 nm 5 5.5–106.5 29 Apr 2010–21 Oct 2014
Solar Dynamics Observatory/EUV Variability Experiment-1 nm binned
(SOLID product)

(continued on next page)
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Table 1. (continued)

Name Version Wavelength (nm) Time interval
Sources and References

SME/UV 115.5–302.5 08 Oct 1981–12 Apr 1989
Solar Mesosphere Explorer/Ultraviolet Solar Monitor Experiment;
Rottman et al. (1982); Mount & Rottman (1983), http://
lasp.colorado.edu/lisird/tss/sme_ssLcsv

SNOE/SXP 4.5–4.5 11 Mar 1998–30 Sep 2000
Student Nitric Oxide Explorer/SNOE Solar X-ray Photometer;
Bailey et al. (2000), http://lasp.colorado.edu/home/snoe/data/

SOHO/CDS 3.1 (1998) 31.4–62.0 23 Apr 1998–14 Jun 2010
Solar and Heliospheric Observatory/Coronal Diagnostic
Spectrometer;
Harrison et al. (1995); Del Zanna and Andretta (2011),
private comm. (Guilio Del Zanna)

SOHO/CELIAS-SEM 3.1 (1998) 25.0–30.0 01 Jan 1996–05 Jun 2014
Solar and Heliospheric Observatory/Charge, Element, and Isotope
Analysis System-Solar Extreme Ultraviolet Monitor; Wieman et al.
(2014), http://www.usc.edu/dept/space_science/sem_data/sem_
data.html

SOHO/VIRGO-SPM 402.0–862.0 17 Apr 1996–11 Jan 2006
Solar and Heliospheric Observatory/Variability of Solar Irradiance
and Gravity Oscillations-Solar Photometers; Fröhlich et al. (1995),
ftp://ftp.pmodwrc.ch/pub/data/irradiance/virgo/SSI/spm_level2_d_
170496_010206.dat
The long-term trends of the SPM are not understood well enough to
assess the solar cycle variability of the spectral channels.

SORCE/SIM 21 240.0–2,412.3 14 Apr 2003–12 May 2015
Solar Radiation and Climate Experiment/Spectral Irradiance
Monitor; Rottman et al. (2005), http://lasp.colorado.edu/home/sorce/
data/

SORCE/SOLSTICE-FUV 13 115.0–179.0 14 May 2003–12 May 2015
Solar Radiation and Climate Experiment/SOlar Stellar Irradiance
Comparison Experiment-Far UV; McClintock et al. (2005);
Snow et al. (2005), http://lasp.colorado.edu/home/sorce/data/

SORCE/SOLSTICE-MUV 13 180.0–309.0 14 May 2003–12 May 2015
Solar Radiation and Climate Experiment/SOlar Stellar Irradiance
Comparison Experiment-Middle UV; McClintock et al. (2005);
Snow et al. (2005), http://lasp.colorado.edu/home/sorce/data/

SORCE/XPS 10 0.5–39.5 10 Apr 2003–08 Dec 2014
Solar Radiation and Climate Experiment/XUV Photometer System;
Woods & Rottman (2005), http://lasp.colorado.edu/home/sorce/data/

TIMED/SEE-EGS 11 27.1–189.8 08 Feb 2002–16 Feb 2013
Thermosphere Ionosphere Mesosphere Energetics and Dynamics/
Solar EUV Experiment-EUV Grating Spectrograph; Woods et al.
(1994), http://lasp.colorado.edu/home/see/data/

TIMED/SEE-XPS 11 1.0–9.0 22 Jan 2002–09 Nov 2014
Thermosphere Ionosphere Mesosphere Energetics and Dynamics/
Solar EUV Experiment-XUV Photometer System; Woods et al.
(1999), http://lasp.colorado.edu/home/see/data/

UARS/SOLSTICE 11 9.5–419.5 03 Oct 1991–29 Sep 2001
Upper Atmosphere Research Satellite/SOlar Stellar Irradiance
Comparison Experiment; Woods et al. (1996),
http://lasp.colorado.edu/lisird/tss/uars_solstice_ssi.csv

UARS/SUSIM 22 115.5–410.5 12 Oct 1991–01 Aug 2005
Upper Atmosphere Research Satellite/Solar Ultraviolet Spectral
Irradiance Monitor; Rottman et al. (1993); Floyd et al. (2003),
http://wwwsolar.nrl.navy.mil/uars/v22/
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Table A2. An overview of the amount of data adjusted by each method. Each flag corresponds to a
specific method: interpolation of missing data (1, Sect. 4.2), averaging multiple data-points (2, Sect. 4.3),
outlier detection (3, Sect. 4.4), and proxy interpolation (4, Sect. 4.5). The flags are further described in
Section B.7. Generally, all interpolated data are detected as outliers and interpolated by our coherency
interpolation scheme. The CDS instrument does not provide daily observations, and, as such, has most
data points interpolated. The last column corresponds to the number of channels in the instrument.

Name Percentage of flagged data-points Channels #

1 2 3 4
AURA/OMI 0 0 2.54 98.33 26
GOES 13/EUVS 0 0 2.66 68.06 3
GOES 14/EUVS 0 0 1.21 57.35 3
GOES 15/EUVS 0 0 0.90 6.93 3
ISS/SolACES 0 0 0 77.15 42
ISS/SOLSPEC 0.15 0 0 73.58 486
NIMBUS7/SBUV 0.19 2.40 0.71 30.43 230
NOAA11/SBUV2 0.07 0 1.26 18.98 230
NOAA16/SBUV2 6.63 0 6.91 15.44 1616
NOAA9/SBUV2 1.75 0 3.29 14.99 230
ENVISAT/SCIAMACHY 41.98 0 42.45 44.60 826
SDO/EVE 3.83 0 6.20 10 5020
SME/UV 0 0 0.25 0.26 188
SNOE-SXP 0 0 0.64 7.59 1
SOHO/CDS 0 0 0.38 99.05 58
SOHO/CELIAS-SEM 11.45 0 15.35 20.67 2
SOHO/VIRGO-SPM 4.68 0 7.13 7.13 3
SORCE/SIM 0 0 1.62 8.76 1217
SORCE/SOLSTICE-FUV 0 0 0.34 8.03 65
SORCE/SOLSTICE-MUV 0 0 0.53 8.72 130
SORCE/XPS 0 0 4.14 20.97 40
TIMED/SEE-EGS 1.24 0 1.53 2.29 1519
TimedSEESSI 1.70 0 2.40 3.92 190
TIMED/SEE-XPS 76.07 0 79.66 83.07 8
UARS/SOLSTICE 4.79 0 6.68 6.68 301
UARS/SUSIM 1.62 0 2.34 14.05 296

Table A3. A list of all reference spectra currently available in the SOLID database.

Name Reference Wavelength (nm) Time
Arvesen 1969 Arvesen et al. (1969) 205–2,495 01 Nov 1969
Thekaekara 73 Thekaekara (1974) 115–400,000 01 Jan 1973

Hall Anderson 78 Anderson & Hall (1989) 200–310 01 Jan 1978
Kurucz 04 Kurucz (1992) 200–200,000 01 Jan 1994
Kurucz 05 Kurucz (2006) 299–1,000 01 Jan 1995
Colina96 Colina et al. (1996) 119.5–2,500 01 Jan 1996

ATLAS Comp.1 Thuillier et al. (2004) 0.5–2,397 26 Dec 2004
ATLAS Comp. 3 Thuillier et al. (2004) 0.5–2,397 26 Dec 2004

WHI-2008 Reference Spectra Woods et al. (2009) 0.9–2,399 27 Mar 2008
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Table A4. Total of 14 available proxies. For the SOLID database we truncate all proxies at 1969.

Name Full Name Provider Time interval
References and web sites

ISN International Sunspot Number WDC-SILSO 1818 – present
SILSO World Data Center (1970–2015) http://sidc.oma.be/silso/
(full daily coverage since Dec. 1848)

f10.7 10.7 cm Radio Flux Penticton 1947 – present
Tapping (2013), ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux/daily_flux_values/,

f3.2 3.2 cm Radio Flux Nobeyama 1950s – present
f8 8 cm Radio Flux
f15 15 cm Radio Flux
f30 30 cm Radio Flux

http://solar.nro.nao.ac.jp/norp/html/daily_flux.html
MgII Mg II Core-to-Wing Ratio LASP, Boulder 1978 – present

Viereck et al. (2004),
ftp://laspftp.colorado.edu/pub/solstice/composite_mg2.dat

MPSI Magnetic Plage Strength Index Mt. Wilson Obs. 1970–2013
http://www.astro.ucla.edu/~obs/150_data.html

MWSI Mount Wilson Sunspot Index Mt. Wilson Obs. 1970–2013
http://www.astro.ucla.edu/~obs/150_data.html

SEM 0-order Intensity in 26–34 nm Band SOHO/SEM 1995 – present
Dominated by the Hell line

CaK Normalized Intensity of Ca IIK Sacramento Peak 1976 – present
Keil et al. (1998), ftp://ftp.nso.edu/idl/cak.parameters,
http://nsosp.nso.edu/cak_mon

DSA Daily Sunspot Area Greenwich Obs. 1874 – present
Wilson & Hathaway (2006), http://solarscience.msfc.nasa.gov/greenwch/

PSI Photometric Sunspot Index 1874–2013
Balmaceda et al. (2009)

Table A5. Composite time series, their wavelength ranges, and time intervals. Below each entry we provided a reference and the source URL.

Name Wavelength (nm) Time interval
Sources and references

DeLand SSI Composite 120.5–399.5 08 Nov 1978–01 Aug 2005
DeLand & Cebula (2008), http://lasp.colorado.edu/lisird/cssi/

Ly a composite 121.0–122.0 0 2 Feb 1947 – present
Woods et al. (2000), http://lasp.colorado.edu/lisird/lya/

Total Solar Irradiance Integrated 17 Nov 1978 – present
Fröhlich (2006), http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/
SolarConstant ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite

Appendix B. Data format

All data are provided in NetCDF CF-1.6 (see Footnote 2) format. In the following we give the detailed information provided in
NetCDF, including global attributes, the dimensions of the data, the notation of variables used, instrument precision, instrument sta-
bility, instrument accuracy, and the use of flags.

B.1. Global Attributes

Each NetCDF file has one set of global attributes, i.e. attributes that are not bound to a specific variable. For our file format they are
as follows:

creation_date Creation date of the dataset, given in ‘‘YYYY-MM-DD HH:MM:SS UTC+00’’
title Name of the dataset
institution Name of the institution where the dataset was created, currently always LPC2E/CNRS.
reference Reference to the relevant publication that describes the original dataset.
reference_ads The reference key corresponding to the astrophysics data system key.
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http://nsosp.nso.edu/cak_mon
http://solarscience.msfc.nasa.gov/greenwch/
http://lasp.colorado.edu/lisird/cssi/
http://lasp.colorado.edu/lisird/lya/
http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
http://ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite


source The source of the data, this is usually a URL from where to retrieve the data.
instrument_version The data version as provided by the instruments team.
Conventions Convention used to name the variables and their properties. Currently this is the NetCDF Climate and Forecast

(CF) Metadata Conventions, version 1.6 (see Footnote 2), given as ‘‘CF-1.6’’.
history A history of the dataset, i.e. when was it converted to which level.
SOLID_data_type The data type can be one of Instrument, Proxy, Reference, Composite, or Model.
SOLID_creation_date Date of the file creation of the SOLID data file.
SOLID_version SOLID data version. This specifies version of the used processing program.
SOLID_system Name of the platform where the program was run, e.g. ‘Matlab 8.1.0.604 (R2013a)’
SOLID_level Processing level of the data, an integer between 0 and 5, corresponding to the processing steps described in this

paper.

B.2. Dimensions

All our datasets have two dimensions, time and wavelength. For ease of use and generic application, the same scheme has also been applied
to proxy data. In these cases, the wavelength dimension is the number of proxies in the data file and the wavelength entries are negative
indices, that is �1 for the first proxy, �2 for the second, and so on. The names of the proxies are stored in the field proxy_names.

time The number of distinct time points.
wavelength The number of distinct wavelengths in the data file.

B.3. Variables

First, a general description of a variable with the main common attributes, followed by specific variables.

B.3.1. Variable Name(dimension1, dimension2, ...)

The name of the variable containing the following attributes. Here we give a short description of the attribute names generic to all
variables. In the subsequent sections, we provide the actual values of these attributes.

standard_name The standard name as mandated by CF-1.6. This is a unique and precise version of the variable name.
long_name The long name as mandated by CF-1.6. This is the human-readable format.
units The unit of the variable. This may depend on the dataset.
valid_min, valid_max Minimum and maximum values allowed for this variable.
missing_value A value that defines a missing value in the dataset.

B.3.2. time(time)

A one-dimensional array containing the time given in days since January first, 1980.

standard_name ‘time’.
long_name ‘Time’.
units ‘days since 1980-01-01 00:00:00 UTC+00’.
calendar The calendar used, this is always ‘standard’.

B.3.3. wavelength(wavelength)

This variable contains the second dimension of the data variable. For irradiance datasets this contains the wavelength in nanometers,
otherwise it contains negative indices. While the variable name wavelength does not make sense in the latter case, we keep it for
consistency, but use the correct values for the attributes.

standard_name ‘radiation_wavelength’ or ‘data_index’.
long_name ‘Wavelength’ or ‘Index’.
units Wavelength are given in nanometers, ‘nm’, unless the dataset does not contain irradiances. This is the case for e.g. proxy

data, in which case the unit is ‘‘negative index’’ and the variable wavelength contains -1, -2, ..., -n.
valid_min If the variable contains irradiance data, it is ‘0’, otherwise it is not set.

B.3.4. data(wavelength, time)

The actual data stored as a matrix of dimension time � wavelength. The values of most properties depend on the actual dataset.
However, it does differ in the case of e.g. a proxy dataset.
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standard_name For an irradiance dataset: ‘downwelling_spectral_irradiance_in_vacuum’, otherwise data dependent.
long_name ‘Spectral Irradiance’ for spectral irradiance, otherwise data dependent.
units For irradiance datasets we use ‘W/(m2 nm)’, otherwise data dependent.
valid_min For most datasets this is ‘0’.
ancillary_variables ‘solid_flag solid_precision solid_stability instrument_precisioninstrument_stability instrument_accuracy’

or a subset of these variables. This depends on the actual data.
SOLID_name The proxy tables have named indices that are given in this attribute, one for each wavelength index.

B.3.5. solid_flag(wavelength, time)

This is an ancillary variable of data, containing the quality flag mask of the dataset. Each processing step corresponds to an entry in
the data mask. A description of all the values is presented in Section B.7. To determine the presence of a flag, one may either use the
bitwise ‘and’ operator on integers and test for non-zero.

standard_name ‘downwelling_spectral_irradiance_in_vacuum status_flag’.
long_name ‘Spectral Irradiance Quality’.
units ‘level’.
valid_range ‘0, 15’.
flag_masks ‘1, 2, 4, 8’ as unsigned integers.
flag_meanings ‘Interpolated Multiple_Time_Values AR_Fitted FinalInterpolation’.

B.3.6. solid_precision(wavelength, time)

This is an ancillary variable of data, containing our estimated precision of the dataset.

missing_value ‘-1.e+99’.
_FillValue ‘-1.e+99’. We use the same values for _FillValue and missing_value to indicate that the data has no default value.
standard_name ‘downwelling_spectral_irradiance_in_vacuum standard_error’
long_name ‘Spectral Irradiance Precision’.
units same as the units attribute of the data variable.
description ‘Estimated Precision’.

B.3.7. solid_stability(wavelength, time)

This is an ancillary variable of data, containing our estimated stability of the dataset. Each entry corresponds to an entry in the data
mask.

_FillValue ‘-1.e+99’.
missing_value ‘-1.e+99’.
standard_name ‘downwelling_spectral_irradiance_in_vacuum standard_error’
long_name ‘Spectral Irradiance Stability’.
units same as the units attribute of the data variable per year.
description ‘Estimated Stability’.

B.4. instrument_precision(wavelength, time)

The precision as provided. Either time or wavelength dimensions can be missing. In these cases, the missing dimensions have to be
broadcasted.

_FillValue ‘-1.e+99’.
missing_value ‘-1.e+99’.
standard_name ‘downwelling_spectral_irradiance_in_vacuum standard_error’.
long_name ‘Spectral Irradiance Precision’.
units Either the same as units attribute of the data variable, or, if a dimension has been collapsed, it is given without units, in

which case it is relative to the data.
description ‘Provided Precision’.

B.5. instrument_stability(wavelength, time)

The stability as provided. Either time or wavelength dimensions can be missing. In these cases, the missing dimensions have to be
broadcasted.
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_FillValue ‘-1.e+99’.
missing_value ‘-1.e+99’.
standard_name ‘downwelling_spectral_irradiance_in_vacuum standard_error’.
long_name ‘Spectral Irradiance Stability’.
units Either same as the units attribute of the data variable divided by year, or, if a dimension has been collapsed, it is ‘1/year’,

in which case it is relative to the data per year.
description ‘Provided Stability’.

B.6. instrument_accuracy(wavelength, time)

The accuracy as provided. Either time or wavelength dimensions can be missing. In these cases, the missing dimensions have to be
broadcasted.

_FillValue ‘-1.e+99’.
missing_value ‘-1.e+99’.
standard_name ‘downwelling_spectral_irradiance_in_vacuum standard_error’.
long_name ‘Spectral Irradiance Accuracy’.
units Either same as the units attribute of the data variable, or, if a dimension has been collapsed, it is given without units, in

which case it is relative to the data.
description ‘Provided Accuracy’.

B.7. Flags

A list of all flags used in the variable solid_flags described in Section B.3.5. The flags are represented as binary values and stored as
sums, i.e. if the quality flag for a specific time and wavelength is 6, this data point is composed of multiple time values and has been
re-fitted by the autoregression model. To obtain the flag of value f, compute flagt;kðf Þ  21�f qt;k

� �

mod 2 ¼ 1

1: Missing data or obvious outlier This flag is set if the data has been interpolated due to missing data or data that is well
outside the physical range.

2: Multiple time values Some data provide multiple values for the same time. If so, the average of those is used.
4: Regrid in Time This value indicates a re-gridding of the data in time
8: Outlier The autoregression fit model set this flag if this data has been flagged as an outlier and replaced by linear

interpolation.
16: Proxy Interpolate This data-point has been replaced by a proxy-based model.

Appendix C. Methods

C.1. General Processing Routines

Here we define a short description of helper routines that are used for the main routines below.
#x Number of elements in array x
SHAPE(x) The size of the matrix in the form [n, m, ...]
ONSET(x) A matrix of ones with the same size as another matrix x, similar functions are ZEROS, TRUE, NAN, FALSE.

C.2. Basic Processing Routines

C.2.1. Noise Estimators

Here we present several estimators for the precision that can be used to give an internal noise estimate. This estimator’s purpose is to
estimate the noise introduced due to time shifting. In this work we used the wavelet noise estimator (Sect. C.2.4), which is a com-
posite of the Donoho noise estimator (Sect. C.2.2) and the all component wavelet noise estimator (Sect. C.2.3). We did not use the
proxy autoregression wavelet estimator (Sect. C.2.5) because despite the additional computational cost and, more importantly, its
reliance on an external data source, it did not return significant different results.

C.2.2. Donoho Noise Estimator

The original wavelet noise estimator by Donoho. It calculates the median of the wavelet coefficients and normalizes it with regard to
white noise. It works well for white noise, however, as discussed in Section 3 it underestimates low varying colored noise, e.g.,
brown and pink noise while overestimating fast varying noise, e.g., blue and violet noise.
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1: def DONOHONOISEESTIMATOR(d, wn  (‘daubechies’, 8))
Require: From WaveLab v8.05: MAKEONFILTER() and FWTPO()

2: q  MAKEONFILTER(wn)
3: pl  log2ð#dÞb c
4: ds  d1::pl;#d::ð#d–plÞ
5: w  FWTPO(ds, 1, q)
6: return MEDIANðjwpl=2::pl

jÞ=0:6748

C.2.3. All Component Wavelet Noise Estimator

An adapted Donoho wavelet noise estimator. It calculates the median of all wavelet components coefficients and normalizes it with
regard to white noise. As in the case of the Donoho wavelet noise estimator, it works well for white noise, however it underestimates
all colored noises, e.g., brown, pink, blue, and violet noise.

1: def FULLWAVELETNOISEESTIMATOR(d, wn  (‘daubechies’, 8))
Require: WaveLab v8.05

2: q  MakeONFILTER(wn)
3: pl  log2ð#dÞb c
4: ds  d1::pl;#d::ð#d–plÞ
5: w  FWTPO(ds, 1, q)
6: return MEDIAN(|w|)/0.6748

C.2.4. Wavelet Noise Estimator

By combining the Donoho’s wavelet noise estimator with the high-frequency noise estimator, it is possible to get a good estimate for
all high-frequency components. This is the estimator used in this work.

1: def WAVELETNOISEESTIMATOR(d, wn  (‘daubechies’, 8))
Require: DonohoNoiseEstimator, FullWaveletNoiseEstimator

2: nd  DONOHONOISEESTIMATOR(d, wn)
3: nw  FULLWAVELETNOISEESTIMATOR(d, wn)
4: return (nd + 1:2nw)/2.2

C.2.5. Proxy autoregressive Wavelet Noise Estimator

The simple wavelet noise estimator may overestimate the noise due to physical short-term variability and due to physical outliers.
This can be compensated by removing physical signals using a multiple input single output autoregressor before estimating the noise
via the wavelet noise estimator.

We use radio flux data as the additional multiple input component. While it would be possible to also use the neighboring wave-
length as additional input, this approach has two drawbacks, first it makes the noise estimate dependent on the number of measured
wavelengths by the instrument (and the spectral resolution) and it will remove noise that influences several wavelengths at once.

1: def WAVELETAUTOREGRESSIVENOISEESTIMATOR(d, wn  (‘daubechies’, 8), p  radio))
Require: WaveletNoiseEstimator, Autoregressive MISO

2: p0  p – MEAN(p)
3: d0 d – MEAN(d)
4: d0fit  AUTOREGRESSIVE MISO(d, p0, q = 3, mode = ‘forward’)
5: return WAVELETNOISE(d0 – d0fit)

C.3. SVD-Interpolation

1: def SVD-INTERPOLATION(ts, �  10–8)
2: d  ts.Data
3: m  ISNANORNEIGHBOOR(d)
4: dm  INTERP(d�m)
5: for i  1..10:
6: converged  False
7: while not  converged:
8: (u, s, v)  SVDi(d)
9: dm  (usv)m
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10: converged  (||dm – d||1 < � ||d||1)
11: return ts
1: def ISNANORNEIGHBOOR(d)
2: m0  ISNAN(d)
3: m  m0 bitor

m02::;�
F F � � � F

� 	

bitor
F F � � � F
m0::#1m0�1;�

� 	

4: return m

C.4. Autoregression Outlier Detector

Here we describe a method to flag and remove outliers by an autoregressive model. For each wavelength we construct a 4th order AR
model, calculate the error and flag, and replace all values temporarily by linear interpolation whose error lies outside a given r. The
r can be adaptive by providing a proxy to detect real outliers, that is outliers caused by solar phenomena. The same procedure is
applied to the proxy first. All outliers that are detected in 70% of the proxies increase r by 2 for the detected outliers in the proxy
data.

1: def AUTOREGRESSIVEOUTLIERDETECTOR(ts, n  3, proxy  radio proxies)
Require: n > 0
Require: SHAPE(n) � ([1], SHAPE(y)]

2: if SHAPE(n) = [1]:
3: n  n ONES(y) . Explode n to the same size as y
4: if proxy 5 empty :
5: pm  AUTOREGRESSIVEOUTLIERDETECTOR(ts  proxy, proxy  []) . First argument is the timeseries ‘proxy’
6: npm > 3  npm[3+2. . Relax condition for outliers detection
7: qm  ts.Quality = INTERPOLATED) . INTERPOLATED = 1
8: for k in ts.Wavelength:
9: (ts.Datak, qk)  RMOUTLIERS(ts.Datak, n, qm

k )
10: (ts.Quality  ts.Quality bitor q
11: return ts
12: def RMOUTLIERS(y, n  3, mask  ;)

Require: n > 0
Require: SHAPE(mask) � {;, SHAPE(y)}
Require: SHAPE(n) � {[1], SHAPE(y)}

13: f*  inf
14: q  FALSE(y)
15: repeat
16: f  f*
17: (�, f)  |y – arfit(y)|
18: m  (� > nry) or mask
19: y(m)  INTERPlinear(y(�m))
20: q(m)  AR-FITTED . AR-FITTED = 4
21: until f

f � � 1

















< 100efloat or maximum iteration limit is reached

22: return (y, q)
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