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Abstract. The data from all Rosetta plasma consortium in-

struments and from the ROSINA COPS instrument are used

to study the interaction of the solar wind with the outgassing

cometary nucleus of 67P/Churyumov-Gerasimenko. During

6 and 7 June 2015, the interaction was first dominated by

an increase in the solar wind dynamic pressure, caused by a

higher solar wind ion density. This pressure compressed the

draped magnetic field around the comet, and the increase in

solar wind electrons enhanced the ionization of the outflow

gas through collisional ionization. The new ions are picked

up by the solar wind magnetic field, and create a ring/ring-

beam distribution, which, in a high-β plasma, is unstable for

mirror mode wave generation. Two different kinds of mirror

modes are observed: one of small size generated by locally

ionized water and one of large size generated by ionization

and pick-up farther away from the comet.

Keywords. Space plasma physics (charged particle motion

and acceleration; nonlinear phenomena; waves and instabili-

ties)

1 Introduction

The theory of the interaction of an outgassing comet with

the solar wind magnetoplasma started with the explanation

of the formation and physics of the cometary ion tails by

Biermann (1953) and Alfvén (1957). With the beginning of

the space age and spacecraft-flybys of comets in the last cen-

tury, e.g. VEGA 1, 2, Giotto, ICE, Sakigake and Suisei by

comet 1P/Halley, Giotto at 26P/Grigg-Skjellerup and ICE at

21P/Giacobini-Zinner, much has been learned about the vari-

ous physical processes taking place in the plasma around the

outgassing cometary nucleus.

In the current century, on 20 January 2014 the Rosetta

spacecraft (Glassmeier et al., 2007) was woken up after

18 months of hibernation, and the spacecraft cruised towards

its rendezvous with comet 67P/Churyumov-Gerasimenko

(67P/CG). On 6 August 2014 Rosetta arrived at its target,

and started its escort phase, following the comet along its or-

bit from pre- to past-perihelion. 67P/CG’s perihelion was on

13 August 2015.
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In this paper the data from the Rosetta Plasma Consor-

tium instruments (RPC, Carr et al., 2007) are used to study

the interaction of the outgassing nucleus of comet 67P/CG

and the solar wind magnetoplasma at a time when the comet

is closing in on its perihelion. Unlike the previous missions

mentioned above, Rosetta does not perform a quick flyby of

the comet, but remains at the comet, moving at a very slow

pace of ∼ 1 m s−1. This means that Rosetta RPC can fol-

low the development of the interaction of the solar wind with

the increasingly more actively outgassing nucleus as comet

67P/CG heads towards perihelion, and the decreasing activ-

ity after perihelion.

After initial arrival a new phenomenon was found, now

called the “singing comet” (Richter et al., 2015); ∼ 40 mHz

waves generated by a cross-field current instability created

by freshly ionized, not yet magnetized water ions within the

Larmor sphere (sphere with radius of 1 Larmor radius, Sauer

et al., 1998) of the comet. At that time, these newly created

ions also indicated the “birth of a magnetosphere” (Nilsson

et al., 2015a) for which the spatial distribution of the low-

energy plasma was discussed by Edberg et al. (2015b). How-

ever, “conventional signatures” such as Alfvén waves or cy-

clotron waves were not observed.

Later in the mission, with comet 67P/CG approaching

its perihelion, the activity of the nucleus increased sig-

nificantly. Various strong outbursts were observed by the

Rosetta NAVCAM, see Fig. 1, which mainly shows reflected

sunlight on dust grains, and these might significantly

influence the plasma interactions. Rotundi et al. (2015)

discussed the link between gas and dust emissions. In-

deed, in the second half of July 2015, the outgassing of

the nucleus was so strong that a diamagnetic cavity was

created which extended well past the ∼ 180 km distance of

Rosetta from comet 67P/CG (Glassmeier et al., 2015; Götz

et al., 2015, see also http://blogs.esa.int/rosetta/2015/08/11/

comets-firework-display-ahead-of-perihelion/). Koenders

et al. (2013, 2014) have predicted distances of ∼ 25 km for

the diamagnetic cavity distance under quiet conditions. Such

strong outburst conditions have not been modelled yet. In

a diamagnetic cavity the outflowing neutral gas and plasma

is strong enough to keep the solar wind and its embedded

magnetic field at bay, pushing it away from the nucleus (see

e.g. Cravens and Gombosi, 2004). This creates a magnetic

field-free region around the comet. However, the Rosetta

RPC magnetometer did still measure a very small magnetic

field, which is an indication for the not-fully corrected

offsets of the magnetometer, which can be either inherent or

arise from stray fields from the spacecraft. In this paper the

measured fields have been used to correct the offset.

In this paper a first overview and discussion is given of the

events taking place on 6 and 7 June 2015. There is a ∼ 6 h

quasi-periodic variation in the neutral and plasma density

(Hässig et al., 2015; Edberg et al., 2015b). First the effect

of the mass loading on the induced magnetosphere is dis-

cussed, including magnetic field pile-up and draping, relating

Figure 1. NAVCAM image of comet 67P/CG on 5 June 2015,

showing the structuredness of the escaping dust from the nucleus.

Credits: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0.

it to variations in the solar wind. Second, the behaviour of the

freshly created ions and the resulting mirror-mode wave ac-

tivity is investigated.

2 Mass loading of the induced magnetosphere

On 6 June 2015 there was a higher-than-usual gas-outflow

from the comet, which loaded the induced magnetosphere

with neutral gas and plasma. The combined data of the six in-

struments discussed below, for the 2-day interval of 6–7 June

2015 are shown in Fig. 2. From top to bottom the following is

shown: the Ion and Electron Spectrometer (IES, Burch et al.,

2006) time-energy spectrogram, the Ion Composition Anal-

yser (ICA, Nilsson et al., 2006) time-energy spectrogram, the

low-pass filtered magnetic field components in Cometocen-

tric Solar EQuatorial (CSEQ1) coordinates from the Magne-

tometer (MAG, Glassmeier et al., 2007); the magnetic field

strength, the Mutual Impedance Probe (MIP, Trotignon et al.,

2006) deduced electron densities; the LAngmuir Probe (LAP,

Eriksson et al., 2006) P1 current, the IES ion and electron

density; the Rosetta Orbiter Spectrometer for Ion and Neutral

Analysis (ROSINA, Balsiger et al., 2007) Cometary Pressure

Sensor (COPS) neutral density; the location of the spacecraft

with respect to the comet; the IES ion velocity in CSEQ and

the angles of the ion velocity with the radial direction to the

comet and with the magnetic field direction.

1CSEQ: A cometocentric coordinate system with the x axis

pointing towards the Sun, the z axis is aligned with the rotational

axis of the Sun, and the y axis completes the triad.

Ann. Geophys., 34, 1–15, 2016 www.ann-geophys.net/34/1/2016/
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Figure 2. (a) The time-energy spectrogram of ion monitor of the

IES instrument. (b) The time-energy spectrogram of the ICA in-

strument. The low cut-off during the interval on 7 June between

07:00 and 15:00 UT is caused by a mode change of the instrument.

(c) The three components of the magnetic field in CSEQ coordi-

nates. (d) The magnetic field strength. (e) The MIP-deduced elec-

tron density. (f) The LAP P1 current. (g) The deduced electron

and ion density from the IES instrument. (h) The neutral density

from ROSINA COPS. (i) The location of Rosetta in CSEQ coor-

dinates. (j) The ion velocity components from the IES instrument.

(k) The angle η between the velocity vector and the radial direction

to the comet and the angle ζ between the ion velocity vector and the

magnetic field vector. The vertical lines are at 02:45, 08:30, 15:30,

21:00, 00:30, 04:15, 09:30, 16:45, and 22:00 UT.

In both the IES and the ICA, an increase in ion counts

and energies in the ion channels starting at approximately

18:00 UT is seen. There is an increase in energy from

∼ 10 eV to up to ∼ 500 eV for both instruments, where IES

seems to show a sawtooth-like behaviour with a quasi-period

of around 4 to 6 h as shown in Fig. 2.

The neutral gas density measured by COPS of ROSINA

is shown in Fig. 2h. A semi-periodic density fluctuation at

a quasi-period of ∼ 6 h, and a few maxima at ∼ 08:30 and

∼ 15:45 UT and a very strong peak at ∼ 21:00 UT are seen.

The second and third bursts (vertical dashed lines) coincide

well with the start of energy increases in the IES and ICA

data in Fig. 2.

It is clear from comparing panels a, b, d and g in Fig. 2

that a severe change occurs in the environment around comet

67P/CG; the magnetic field strength starts to increase around

11:00 UT, when at the same time IES and ICA data show an

increase in counts and energies of the ions.

As the total magnetic field strength increases, the fluc-

tuations in the magnetic field are also enhanced: the field

increases from average B̄ ≈ 27 nT with a standard devia-

tion σ ≈ 11 nT during 00:00 to 12:00 UT to B̄ ≈ 41 nT with

σ ≈ 16 nT during 12:00 to 24:00 UT. In the early hours of 7

June the magnetic field strength has returned to a lower value

B̄ ≈ 30 nT with σ ≈ 12 nT, and the IES densities in Panel e

return to the values as at the beginning of 6 June and the ion

densities and the LAP P1 current follow the COPS neutral

densities in Panel f. It should be noted that near 24:00 UT

on 6 June the magnetic field strength decreases to a very low

value of Bm ≈ 4 nT.

There is an interesting correlation between the data from

ROSINA COPS neutral density and the densities measured

by the RPC instruments. In Fig. 2 the vertical dashed lines are

coincident with the maxima in the COPS data, with the black

dashed lines marking the “regular” 6 h maxima. The sharp

density peaks at the maroon coloured dashed lines are arti-

facts created by reaction wheel offloading on the spacecraft.

There appears to be a delay in the response in the IES time-

energy spectrogram to the increased neutral density. After a

neutral density maximum, the count rate and the ion energy

increase and drop just before a new neutral density maximum

is reached again. This may be due to the ionization time, and

will have consequences for when RPC-measurable ions can

be observed after neutral injection. However, this is beyond

the scope of this paper.

The solar wind transports magnetic fields from the Sun to-

wards the comet. In the surroundings of the comet a conduct-

ing layer exists, created by ionization of the outflowing gas

from the nucleus. As discussed by Alfvén (1957) the mag-

netic field cannot pass unimpeded through this region near

the nucleus and gets hung-up, whereas the part of the field

lines further away are still moving with solar wind velocity.

This leads to two phenomena: near the nucleus the magnetic

field will pile-up, i.e. increase in strength, as the field is de-

livered faster than it can be transported away. This creates

www.ann-geophys.net/34/1/2016/ Ann. Geophys., 34, 1–15, 2016
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Figure 3. Left-top: power spectra of the three magnetic field components (in CSEQ coordinates) on 6 June between 15:00 and 17:00 UT.

Left-bottom: fourth-order polynomial detrended spectra with±95% confidence levels indicated by horizontal solid and dash-dotted red lines.

Top- and bottom-right: Same as left for 6 June 21:00–23:00 UT.

the so-called induced magnetosphere of the comet. Further-

more, the field lines wrap around the nucleus, get draped,

because of the difference in velocity along the field line.

These phenomena have been well studied during the flybys of

other comets in the last century (see e.g. Smith et al., 1986;

Riedler et al., 1986; McComas et al., 1987; Raeder et al.,

1987; Israelevich et al., 1994; Israelevich and Ershkovich,

1994; Delva et al., 2014).

2.1 Massloading at ∼ 15:45 UT

At ∼ 15:45 UT on 6 June, COPS shows a maximum in the

neutral gas density in the quasi-periodic ∼ 6 h changes. IES

shows an increase in energy and counts of the ions over the

following 4 hours, however, note this signature looks dif-

ferent from what is happening after midnight on 7 June.

The IES ion (electron) density, Fig. 2e, is rather peaked and

strongly variable and reaches a maximum density at ∼ 14:36

(∼ 13:36) UT, which is most likely the result of the increased

neutral density at ∼ 08:30 UT. After the ∼ 15:45 UT neutral

density maximum the ion (electron) density starts to increase,

with a slight maximum at ∼ 17:40 UT.

With the increased plasma density a simultaneous increase

in magnetic field strength Bm is observed, see Fig. 2b. This

could be a result of more magnetic pile-up because of the

increased mass loading generating a layer with higher con-

ductivity and thus a longer diffusion time. It is, however, un-

clear if an increase in ion density can actually lead to such a

strong increase in magnetic field strength through increased

hang-up. Volwerk et al. (2014) posited that a decrease in ion

density at comet 1P/Halley could be the reason for the dis-

appearance of the nested draped magnetic field between the

flybys of Vega 1 and Vega 2. However, it is also quite possible

that the increase in magnetic field strength and the increase

in ion density are generated by an external source in the solar

wind. This will be discussed in the next section.

Interestingly though, the situation is different from what

was observed at comet 1P/Halley (see e.g. Gringauz et al.,

1986; Neubauer et al., 1986), where the magnetic fluctua-

tions disappeared in the pile-up region. At comet 67P/CG

the magnetic fluctuations increase in the pile-up region.

With B̄ ≈ 50 nT the gyro frequency of water ions is

fc,H2O ≈ 40 mHz. Spectral analysis of the interval 17:00-

19:00 UT on 6 June is performed and displayed in Fig. 3

top-left panel. The three components of the magnetic field

are spectrally analysed (cf. McPherron et al., 1972) and dis-

played. In order to find the confidence level of the peaks,

the spectra are fitted by a fourth-order polynomial, which is

subtracted from the spectrum and from the residual (bottom-

left panel) the±95% confidence level is determined (see e.g.

Bendat and Piersol, 1966), shown as a red solid and dash-

dotted line. The spectrum shows that the strongest (highest

PSD) component is By , there is a strong peak at ∼ 4.7 mHz

in Bx and By and a peak at∼ 5.5 mHz in Bz, and mutual sec-

ond and third peaks at ∼ 7.7 and ∼ 13 mHz. No significant

signal is found at the water ion gyro frequency.

2.2 Massloading at ∼ 21:00 UT

At ∼ 21:00 UT COPS showed another maximum in neutral

gas density. The IES ion density increases with a maximum

Ni ≈ 430 cm−3 at ∼ 22:40 UT, after which it quickly returns

to pre-event values around Ni ≈ 50 cm−3. Spectral analysis

of the interval 21:00 to 23:00 UT of 6 June shows (see Fig. 3

right panels) that the strongest component is Bx ; there is a

first mutual peak at ∼ 2.8 mHz, a second, stronger, peak in

Bx is found at ∼ 4.7 mHz, whereas for By a second peak is

found at ∼ 6.0 mHz and for Bz a second peak is found at

∼ 5.4 mHz. There seems to be little common behaviour of

the three magnetic field components.

2.3 Ion motion

The deduced ion velocities from the IES instrument are

shown in Fig. 2h. On 6 June the ion (H2O+) velocity is

around v̄ ≈ (−12,−1,2) km s−1, with the magnitude of the

components increasing when the mass loading starts around

16:00 UT (but the increase in magnetic field strength already

Ann. Geophys., 34, 1–15, 2016 www.ann-geophys.net/34/1/2016/
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starts about 2 hours earlier). Mainly vx and vz (in CSEQ co-

ordinates) increase in magnitude with strongest change in

vx . After the increase in density and the increase in mag-

netic field strength disappear, just before midnight, vz re-

turns to pre-mass-loading values, but vx and vy strongly in-

crease in magnitude with v̄ ≈ (−23,10,1) km s−1, lasting for

many hours. This means that the ions are mainly moving anti-

sunward as discussed by Nilsson et al. (2015b).

In order to determine the propagation direction of the ions

the angle η with the radial direction to the centre of the comet

(red line) is calculated, as well as the angle ζ of the velocity

with the local magnetic field (blue line) in Fig. 2i. Basically,

over the whole of 6 June the ions are moving perpendicular

to the radial direction to the comet and nearly perpendicular

to the magnetic field, apart from 09:00–15:00 UT, which is

related to the rotation of the magnetic field discussed further

below.

Near midnight, after the enhanced mass-loading, the sit-

uation changes: the ions are accelerated in the X-Y plane

and move still mainly perpendicular to the radial vector with

η ≈ 110◦. However, the angle with respect to the magnetic

field increases to ζ ≈ 140◦. The latter is what one would ex-

pect for newly formed ions being accelerated by the motional

electric field (see also Broiles et al., 2015) whilst having an

initial velocity at ionization, starting their gyration around

the magnetic field, creating a ring-beam distribution, which

can be unstable for mirror-mode waves (Hasegawa, 1969;

Tsurutani et al., 1982; Gary, 1991; Gary et al., 1993). These

are the same kind of ions that, at arrival at comet 67P/CG,

caused the so-called singing (Richter et al., 2015), but in a

low-density and low-magnetic field environment.

3 Propagated solar wind

As there is no upstream solar wind monitor at comet 67P/CG,

and changes in solar wind properties are important with

respect to the interactions around the comet, two solar

wind propagation models are used: Tao et al. (2005) model

the solar wind as an ideal MHD fluid; whereas based on

Opitz et al. (2009, 2010) a ballistic propagation was carried

out. The Opitz-Dósa model tries to find the Parker-spiral con-

necting Rosetta to the Sun, based on ACE velocity measure-

ments, assuming that the state of the Sun and solar wind ve-

locity at a certain Carrington longitude is constant over half

a solar rotation. Through checking a range of possible Car-

rington longitudes as the origin of the plasma measured by

ACE, the longitude–velocity pair which results in the least

error is chosen. Both methods ignore the latitudinal exten-

sion of Rosetta (7◦) and propagate solar wind only in the

ecliptic plane.

In Fig. 4 the propagated solar wind parameters of both

models are shown in panels d–g. There is a difference in

some of the parameters: the Tao-model propagates the tan-

gential magnetic field component, mainly in the y direc-

tion of the CSEQ coordinate system; whereas the Opitz-
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Figure 4. (a) The magnetic field in CESQ coordinates. (b) The

magnitude of the magnetic field. (c) The electron and ion velocities

deduced from IES. (d) The propagated solar wind magnetic field

in cylindrical coordinates. (e) The propagated solar wind velocity

in cylindrical coordinates. (f) The propagated solar wind density.

(g) The propagated solar wind dynamic pressure.

Dósa-model propagates the radial magnetic field component,

mainly in the x direction of CSEQ.

The Tao-model shows that the tangential component of

the magnetic field B t, t slowly increases in strength and after

midnight from 6 to 7 June quickly reverses in sign. With the

increase in B t, t the density Nsw and dynamic pressure Pdyn

also increase. The Opitz-Dósa-model shows that the radial

magnetic field, Br, o, slowly changes from negative to posi-

tive, indicating a heliospheric plasma sheet crossing, which

would explain the increase in solar wind density. However,

this could also be a signature of a corotating interaction re-

gion impinging on the comet’s plasma surrounding (Edberg

et al., 2015a).

As the solar wind velocity does not change during this

interval, the increase in dynamic pressure is only created

by an increase in ion density, which is clear through the

same profiles in panels f and g. The solar wind density in

the Tao-model increases by a factor of 4 from Nsw ≈ 2 to

Nsw ≈ 8 cm−3 over ∼ 18 h. The Opitz-Dósa-model shows a

lesser increase of a factor ∼ 2.

www.ann-geophys.net/34/1/2016/ Ann. Geophys., 34, 1–15, 2016
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As the modelling of the solar wind propagation cannot be

perfect, in Fig. 4 the Tao parameters have also been plot-

ted, shifted by −6 h as dotted lines. The shift improves the

correspondence with the Opitz-Dósa-model and with what

is observed at Rosetta. This shows that with the increase

of the density and the dynamic pressure, the magnetic field

strength measured by Rosetta increases, as should be ex-

pected. The Opitz-Dósa-model has a maximum in between

the non-shifted and shifted maxima of the Tao-model. In-

deed, in general the magnetic field strength in panel b follows

the dotted curves in panels f and g rather well. Interestingly,

after shifting the Tao-model by −6 h the change in B t, t oc-

curs near the change in Br, o.

The factor 8 increase in solar wind density could have a

significant influence in ionization of the outflowing gas if

electron/ion-neutral collisions are important. The creation of

a diamagnetic cavity (Glassmeier et al., 2015; Götz et al.,

2015) shows that at the location of Rosetta collisions are in-

deed important. The increased counts, energy and density in

the IES and ICA data occur during the shifted increase in

solar wind density.

4 Pile-up and draping

With the increase in plasma density and magnetic field

strength, generated by the increased solar wind dynamic

pressure and density, the magnetic field is expected to get

more piled-up, as observed, and possibly more draped. For

the whole interval the clock (ξ ) and cone (ψ) angle of the

magnetic field is calculated:

ξ = tan−1

(
Bz

By

)
, (1)

ψ = tan−1

 Bx√
B2
y +B

2
z

 , (2)

the result of which is shown in Fig. 5a. Before the increase

in density at ∼ 16:00 UT there are variations in both angles,

the clock angle ξ rotates from ∼ 180 to ∼ 90◦ then back

to ∼−100◦ and back again to ∼ 140◦. As the mass load-

ing starts and Bm increases the clock angle ξ remains con-

stant. The cone angle ψ varies also from ∼ 0◦ (i.e. in posi-

tive X axis direction, towards the Sun) with slight variations

in phase with the clock angle ξ , moving slightly away from

the x direction up to ψ ≈−45◦ and then returns to remain

constant at ψ ≈ 20◦ during the interval of increased density

and magnetic field strength.

When the field strength starts to decrease at ∼ 21:00 UT,

and reaches a very low value, Bm ≈ 4 nT around midnight,

the cone angle ψ slowly increases to ∼ 85◦, i.e. far away

from the x direction, whereas the clock angle ξ varies

strongly because of the large oscillations in the magnetic

field components, the largest of which are also visible in the

cone angle.
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Figure 5. Panel (a) from top to bottom: the magnetic field com-

ponents, the total magnetic field strength and the clock ξ and cone

ψ angle of the magnetic field. Panel (b): the magnetic field plot-

ted along the spacecraft orbit, with 5 min resolution, in the CSEQ

X-Y plane. The blue region depicts the interval of compressed mag-

netic field. The dotted lines show where Bx < 0. Panel (c): same as

panel (b) but in the CSEQ Y -Z plane. The axes in panel (b) and

panel (c) have different scales for better visibility.

As there is neither undisturbed solar wind data, nor real

undisturbed field around the comet, the draping analysis as

proposed by Israelevich et al. (1994) and applied to comet

1P/Halley (see also Delva et al., 2014; Volwerk et al., 2014)

cannot be applied. However, the magnetic field direction

and behaviour can be looked at in hedgehog-plots, as in

Fig. 5b and c for the magnetic field vectors in the X-Y and

Y -Z plane along the orbit of the spacecraft. It is clear from

the data in Fig. 5a, that on 7 June Bx is the main magnetic

component, on 6 June before and during the increased den-

sity period By and Bz dominate. In the hedgehog-plots the

period of the magnetic pile-up is shown in blue, showing that

the direction of the field remains constant. Also, it is clear

from both the cone and clock angles and the hedgehog-plots

that the main rotations of the magnetic field take place before

the increase in density, whereas the blue-coloured region and

the later data show a rather stable, slightly increasing, large-

scale magnetic field, only disturbed by the strong oscillations

after 7 June 06:00 UT.

The compression of the induced magnetosphere increases

the magnetic field strength Bm without a significant change

in direction shown by ξ and ψ . There are small rotations of

Ann. Geophys., 34, 1–15, 2016 www.ann-geophys.net/34/1/2016/
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the field, after the pile-up but the magnetic field pattern does

not seem to show any significant change in draping direction.

Before the massloading, between 06:18 and 13:08 UT, the

X component of the magnetic field has reversed, from posi-

tive to negative.

Magnetic field rotations in the pile-up region of comets are

of interest, as they are usually the “memory” of the magnetic

field of the solar wind conditions earlier. At Comet 1P/Halley

a large set of nested draping regions were found (Raeder

et al., 1987). These oppositely directed magnetic fields have

to be separated by current sheets and bring the possibility of

magnetic reconnection in the cometary coma (see e.g. Veri-

gin et al., 1987; Kirsch et al., 1989, 1990).

The rotation of the magnetic field, as shown in Fig. 5 does

not show up clearly in the propagated solar wind data. There

is a short change of sign in B t, t of the propagated solar wind

data between ∼ 00:00 and ∼ 02:30 UT on 6 June. The mini-

mum field is only Bt, t,min ≈−0.5 nT. Neither does the prop-

agated radial Br, o component show a field reversal signature.

The boundaries of this∼ 7 h region are studied in more de-

tail, and a zoom in on the intervals 05:50–06:50 and 12:40–

13:40 UT is shown in Fig. 6. The magnetic field data and the

ion velocity have been transformed to the minimum variance

coordinates system (MVA, Sonnerup and Scheible, 1998, in-

dicated by subscripts min, int and max) derived from the

magnetic field, and the red dashed line is the low-pass fil-

tered data with a shortest period of 10 min. Clearly, there is

a lot of wave activity in the data. There is little change in

the ion velocity direction over the two rotations of the field,

only in rotation 1 the vmax seems to change direction after

the Bmax has changed sign, i.e. moved to the other side of a

current sheet. Although in principle this could be a signature

of component reconnection, the plasma data are too sparse to

draw such a conclusion.

Using the low-pass filtered data (periods longer than

10 min), the field changes by 1Bmax ≈ 21 nT over a time-

span of 11 min. With a spacecraft velocity of vsc ∼ 1 m s−1,

assuming the rotations convect over Rosetta with this veloc-

ity, making 1L≈ 660 m, and using Ampère’s law,

∇ ×B= µ0J, (3)

to calculate the current density (neglecting the displacement

current):

1B

1L
≈ µ0J ⇒ J ≈ 25µAm−2. (4)

For the second rotation the field change is 1Bmax ≈ 35

over a time span of 7 min, which leads to a current density

of J ≈ 66 µA m−2. Because of the assumed slow convection

velocity 1L remains small, an upper limit for 1L can be

found under the assumption of frozen in fields and a con-

vection velocity of ∼ 10 km s−1, which would significantly

decrease the current density by a factor ∼ 104.
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Figure 6. Zoom in on the two B-field rotations 1 (left) and 2 (right).

Each column showing the magnetic field data in MVA coordinates:

Bmax, Bint and Bmin, the black lines show the data and the red lines

show the low-pass filtered data. The bottom panel shows the IES ion

velocities in MVA coordinates. The vertical dashed line shows the

Bmax = 0 crossing.

5 Crossing from 6 to 7 June: mirror-mode waves

Pick-up of freshly ionized ions into a streaming magneto-

plasma leads to the creation of a ring/ring-beam distribu-

tion in velocity space, which is unstable (see e.g. Hasegawa,

1969; Tsurutani et al., 1982; Gary, 1991; Gary et al.,

1993). Depending on the plasma-β this can lead to either

ion cyclotron waves (low-β) or mirror-mode (MM) waves

(high-β). In the case of comet 67P/CG, the plasma-β is high

and thus MM waves are expected. They were also observed

e.g. at comet 1P/Halley (see e.g. Glassmeier and Neubauer,

1993; Schmid et al., 2014; Volwerk et al., 2014). The insta-

bility criterion for MM waves is given by:

1+βperp

(
1−

Tperp

T|

)
< 1, (5)

where Tperp and T| are the ion-temperatures perpendicular

and parallel to the background magnetic field and βperp is

the perpendicular plasma-β determined only using Tperp. The

MM wave behaves in such a way that the perpendicular pres-
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electron density, the red line and dots are the MIP electron density in the left panels and the LAP P1 current in the right panels. Because of
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sure pperp of the plasma is in anti-phase with the magnetic

pressure pB , while the total pressure remains constant.

On 7 June the ion density returned to pre-event values, the

magnetic activity, however, remains. To study the difference

in the 4 hours before and after midnight, the magnetic field

and plasma data are plotted in Fig. 7.

It is clear from the panels in Fig. 7 that during the last 4 h

of 6 June (left panels) the MIP electron density variations

(red dots) seem to be in phase with the low frequency vari-

ations of the total magnetic field. After 6 June ∼ 23:00 UT

there is no MIP density available anymore and after 7 June

∼ 00:10 UT LAP P1 currents are available as a proxy for the

plasma density. Over the first 4 h of 7 June, Fig. 7 right pan-

els, there often seems to be an anti-correlation between the

total magnetic field Bm and the LAP P1 current.

Starting at 6 June around ∼ 23:00 UT quasi-periodic dips

occur in the magnetic field strength, some of which seem to

be anti-correlated with the LAP P1 current. This could imply

that the freshly mass-loaded magnetospheric magnetic field

is mirror-mode unstable (see e.g. Hasegawa, 1969; Glass-

meier et al., 1993; Tsurutani et al., 1999; Schmid et al., 2014;

Volwerk et al., 2014). As the resolution of the plasma data is

too low to check the pressure balance over the MM struc-

tures, the magnetic-field-only method by Lucek et al. (1999)

is used to investigate the data for MM waves. These waves

are expected to have strong magnetic field variations,1B/B,

and they are non-propagating structures, only convected by

the streaming magnetoplasma in which they are embedded.

This means that in an MVA the minimum variance direction

should be perpendicular to the background magnetic field

and the maximum variance direction along the background

magnetic field. A study by Price et al. (1986) showed that the

angle between maximum variance direction and background

field was smaller than 30◦.

MVA is applied to the RPC-MAG data over a sliding win-

dow, and the angles θ of the minimum variance and φ of the

maximum variance directions with respect to the low-pass

filtered (longer than 10 min) background magnetic field are

determined, as well as the relative amplitude 1B/B defined

as twice the variation:1B/B = 2(B−Bbg)/Bbg. In order for

MM identification, the structures have to fulfill the following

criteria: θ ≥ 80◦, φ ≤ 20◦ and 1B/B ≥ 1. In Fig. 8 an 8-

hour interval is shown, on which the MM determination has

been performed. Panel a shows the IES electron (blue) and

ion (cyan) density, in panels b–e the 1 s resolution MAG data

are shown in black with the low-pass filtered data overplotted

in red. Panel f shows1B/B and panel g the angles θ (green)

and φ (red). There are regions where the above criteria are

fulfilled, but it is difficult to see in this figure. Therefore, short

intervals will be analysed separately below.

A zoom-in on two 10-min intervals of Fig. 8, and adding

the density data of either MIP or LAP is shown in Fig. 9.

In the first interval 22:30-22:40 UT there are short periods

where the criteria are almost fulfilled, the maximum variance

angle φ is rather large. Unfortunately, the electron density

estimated by MIP is unavailable when the plasma frequency

Ann. Geophys., 34, 1–15, 2016 www.ann-geophys.net/34/1/2016/
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Figure 8. (a) The IES electron and ion density. (b–e) The mag-
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cedure. (g) Angles θ (green) and φ (red) between the background

magnetic field the minimum variance and the maximum variance

direction respectively.

is out of the frequency range of the instrument, or when the

electron density is small enough and the electron temperature

high enough for the Debye length to be much larger than the

instrument emitter-receiver length scale. This makes it diffi-

cult to find a correlation between Bm and Ne for the whole

time series. Before 22:35 UT, when θ > 80◦ it is difficult to

interpret the electron density and thus the inset panel zooms

in once more on the interval 22:31–22:32:30 UT. There it is

clear that the MIP electron density is in anti-phase with the

non-filtered magnetic field strength (cyan).

During the second interval of 01:10–01:20 UT, the LAP P1

current acts as a proxy for the plasma density. In this case it is

clear in Fig. 9 right panels that θ and φ are close to the MM

criteria. The two strong dips in Bm in the first 5 min show

that as the field strength decreases the current increases.

This means that the mass-loading of the induced magneto-

sphere of comet 67P/CG created an unstable ion population

through pick-up (a ring/ring-beam distribution), which re-

laxes through the generation of mirror-mode waves. Indeed,

such a distribution was posited above when looking at the
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Figure 9. Zoom in on two intervals with different mirror mode

waves. From top to bottom the magnetic field components; the mag-

netic field strength with overplotted in red the MIP electron density

(left) or the LAP P′ current. The bottom panels shows the angles θ

and φ from the MM determination procedure. The inset in the left

column shows a blow up of a short interval which shows that the

MIP electron density is in anti-phase with the non-filtered Bm data.

ion velocity direction with respect to the background mag-

netic field. The question whether such a distribution is able

to develop in the cometosheath under the above conditions is

addressed in the discussion section below.

On 7 June, the MM structures have, on average, a

timescale of 100≤ Tmm ≤ 150 s, which will be compared to

a characteristic length scale of pick-up ions, being the Lar-

mor radius. Assuming that the newly formed ions are picked

up with the local (decelerated) solar wind velocity vSW, the

gyro frequency ωc, i and radius ρc, i are given by

ωc, i =
qiB

mi
, (6)

ρc, i =
vperp

ωc, i
, (7)

also assuming that vperp = vSW and that the structures are

transported with vSW over the spacecraft and have a size of

www.ann-geophys.net/34/1/2016/ Ann. Geophys., 34, 1–15, 2016
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Figure 10. Left: zoom in on interval 19:10–19:12 UT, the MIP elec-

tron density is following Bm,fil (blue) in the first minute. Just after

19:11 UT the MIP is almost in anti-phase with the non-filtered Bm

(cyan) for about 30 s. Right: zoom in on interval 01:21–01:40 UT

showing that the LAP P1 current (red) is in anti-phase with Bm.

αρc, i the timescale is given by

Tmm =
αρc, i

vSW

=
α

ωc, i
. (8)

This means that for these assumptions the solar wind ve-

locity drops out of the equations and the crossing time is

given by known and measured quantities. For water ions at

a magnetic field strength of Bm ≈ 20 nT this leads to Tmm ≈

9α s. With the measured Tmm mentioned above this leads to

11≤ α ≤ 16, which is similar to what was found by Tsuru-

tani et al. (1999) at comet 21P/Giacobini-Zinner, αGZ ≈ 12,

but much larger than what was found by Schmid et al. (2014)

at comet 1P/Halley, αH ≈ 1–2. Taking the ion velocity as

measured by IES, the Larmor radius for water ions becomes

ρH2O, i ≈ 280 km.

For the interval 22:30–22:40 UT it is clear that the size of

the alleged MM structure is much smaller than in the later

interval discussed above. An estimate from the inset panel

in Fig. 9 shows that the MM structures have a timespan of

∼ 10 s. The field strength is slightly higher at Bm ≈ 25 nT,

which means from Eq. (8) that Tmm ≈ 7α. This means that

α ≈ 1.4, which is more in line with the results of Schmid

et al. (2014) for freshly picked-up water ions near comet

1P/Halley.

Similar MM intervals can be found earlier, 19:10–

19:12 UT, as shown in Fig. 10 left panel. The timespan is

again Tmm ∼ 10 s, with a field strength Bm ≈ 55 nT this leads

to α ≈ 2.7. Again, at the beginning of the interval, the MIP

electron density seems to follow the filtered magnetic field

strength (blue). In the middle, just after 19:11 UT, the elec-

tron density is almost in anti-phase with the non-filtered mag-

netic field strength (cyan). And MMs can also be found later,

01:21–01:40 UT, as shown in Fig. 10 right panel. Here the

structures are again larger, on the order of Tmm ≈ 100 s and

α ≈ 11 with the LAP P1 current in anti-phase with the mag-

netic field strength.
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Figure 11. Left panel: three 20 min intervals of the magnetic

field strength Bm data, shifted to enhance visibility – blue 01:20–

01:40 UT, green 02:20–20:40 UT, red 03:20–03:40 UT. The grey

stars show the LAP P1 current. Right panel: the Fourier power spec-

tra for the three intervals. The coloured arrows at the top mark the

peaks discussed in the text.

6 Change of MM shape

A closer look at Fig. 7 right panel shows that the structures,

identified as mirror-mode waves, are changing in shape. In-

deed, in the top panel the structures seem to be mainly dips in

the magnetic field strength, Bm, but at later times the struc-

tures seem to become asymmetric. A zoom-in on three in-

tervals of 20 min is shown in Fig. 11; the data are shifted

along the y axis in order to make the difference between

them more visible. The LAP P1 current is shown as grey

asterisks overplotted on each interval. The three intervals

are different in behaviour: the first interval 01:20–01:40 UT

(blue) shows mainly strong dips in Bm; the second inter-

val 02:20–02:40 UT (green) shows strong asymmetric dips

in Bm and a large variety in structure sizes; the third inter-

val 03:20–03:40 UT (red) shows in the beginning deforma-

tion of the waves, strong periodic peaks with moving peaks

super-imposed.

Spectral analysis is performed on these three intervals. It

is clear from Fig. 11 right panel, that the three intervals have

different spectral content: the first interval (blue) has a peak

at f ≈ 6 mHz and a minor peak at f ≈ 13 mHz, the second

interval (green) shows a plateau-like structure around f ≈

10 mHz; the third interval (red) shows a clear double peaked

structure at f ≈ 9 and f ≈ 19 mHz with a minor peak at f ≈

51 mHz, which explains the beat-mode that can be seen in

the red trace in Fig. 11 left panel. It is not very clear from the

LAP P1 current to deduce that these structures are mirror-

modes, although the Lucek method indicates that they are.

7 Discussion and conclusions

For the first time in space research history a spacecraft is fol-

lowing a comet along its orbit from pre- to post-perihelion,

entering regions around the comet that up to now had not

been accessed. Also the outgassing of comet 67P/CG at ar-

rival in August 2014 was at a much lower level than for any

other mission. During the period discussed in this paper the
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outgassing rate is around 1027 molecules s−1, which is sev-

eral orders of magnitude smaller than at comets 27P/Grigg-

Skjellerup (Neubauer et al., 1993) or 1P/Halley (Reinhard,

1986). This means that the interaction of the solar wind

with the outgassing comet is different, which was clearly

illustrated through the discovery of the “singing comet” by

Richter et al. (2015), an unexpected plasma instability cre-

ated by the not-yet-magnetized freshly produced ions near

the comet. This is the context in which the results of this

paper should be interpreted: measurements much closer to a

cometary nucleus than ever before, with low outgassing rate

and a very slowly moving spacecraft relative to the nucleus.

The data from RPC MAG have been calibrated, however

Richter et al. (2015) state that: “The short boom length im-

plies that the spacecraft is heavily contaminating the mag-

netic field measurements. At this stage of the investigation

it was not possible to completely remove these quasi-static

spacecraft bias fields from the measured magnetic field val-

ues.”. In this current paper, the observations of the diamag-

netic cavity (Glassmeier et al., 2015; Götz et al., 2015) have

been used to obtain values for non-corrected bias fields orig-

inating from the spacecraft. Assuming that the diamagnetic

cavity should be field-free (see e.g. Ip and Axford, 1987), the

measured fields in the cavity have been subtracted from the

data. This leads to a greatly improved determination of the

mirror mode waves using the magnetic-field-only technique

(Lucek et al., 1999), as the examples shown in Fig. 9 would

not have been selected without bias-field offset correction.

The mass loading of the induced magnetosphere of comet

67P/CG, as indicated by the Rosetta ROSINA-COPS and

RPC plasma instruments showed an interesting behaviour

on the 2 days discussed in this paper (6–7 June 2015). At

the beginning of 6 June COPS shows an increase in neu-

tral density (first dashed line in Fig. 2 near 02:45 UT), but

the RPC plasma instruments do not show any significant re-

sponse. With the second strong increase in neutral density

near 08:30 UT, there is some increase in energy in the ions

and the IES electron and ion density slowly increase. How-

ever, after the third maximum in COPS near 15:45 UT, both

IES and ICA start to show a significant increase in both

counts and energy of the ions. Indeed, with every next neutral

gas maximum there is a slow increase in counts and energy.

The observed variations in the solar wind parameters, such

as directional changes and increase in dynamic pressure, in

both solar wind propagation models used in this paper, led to

several interesting phenomena:

– Before the increased density and the pile-up region there

was a rotation of the magnetic field. This is probably

related to changes in the field direction of the solar wind

magnetic field, generating nested draped fields around

the comet.

– Depending on the assumption how fast Rosetta crosses

this structure the current densities in the current sheet

are tens or µA m−2 or several nA m−2.

– There is increased ionization and energization of gas

from the cometary nucleus in both IES and ICA.

– The magnetic field strength increased by a factor of> 3

up to ∼ 60 nT, increasing the magnetic pressure. With

the ion density on the order of 100 cm−3 and the ion

temperature a few 105 K, this means that the plasma

beta β ∼ 10.

– The newly created ions are accelerated by the motional

electric field, however, the effect only becomes apparent

after the pile-up region is exited by the spacecraft.

– In the pile-up region there is evidence for mirror-mode

structures, generated by the newly created ions, with a

size between one and three water-ion gyro radii.

– Outside the pile-up region there are clear signatures of

mirror-mode waves, with a much larger size of 10 to 16

water-ion gyro radii.

– Outside the pile-up region there is a development of

the mirror-mode structures, where at later times there

are three dominant frequencies present, which leads to

strong deformation of the mirror-mode waves signature

in the MAG data.

The above results leave a few points to discuss which will

be addressed below.

– Nested draping:

The change in direction of the magnetic field as ob-

served in the Rosetta data does not show up clearly

in the propagated solar wind magnetic field. The Tao-

tangential field seems to go negative for a short period

in the non-shifted data in Fig. 4 at the beginning of

6 June. The Opitz-Dósa-radial magnetic field basically

shows a heliospheric current sheet crossing. Because of

the draping and hanging-up of the magnetic field around

the comet, it is difficult to find a one-to-one correlation

between the solar wind field signatures and the draped

field signatures. The layer of differently directed field

at Rosetta may be the result of an older interval out-

side that presented in the figure. The difference in field

strength can be explained through the compression by

the solar wind pressure.

– Changes in the magnetic pile-up region:

Rosetta is located well inside the MPR of comet

67P/CG, which is clear from the high magnetic field

strength measured by MAG, Bm ≥ 20 nT and the ex-

pected solar wind magnetic field strength Bsw ≈ 2 nT.

The build-up of a magnetic pile-up region is related to

pressure balance from the draped magnetic field push-

ing outward and the solar wind dynamic pressure push-

ing inward towards the comet. With the increase in

solar wind pressure, this balance is disturbed and the
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field gets compressed more. This is what is observed

in the MAG data, where the 4-fold increase in dy-

namic pressure leads to a magnetic field strength in-

crease by a factor ∼ 2.5 from ∼ 20 to ∼ 55 nT. This

agrees well with the expected increase, which would be√
Pdyn,max/Pdyn,min.

– Ionization increase:

Looking at a longer data set of the IES ion energy spec-

tra, it is clear that this increase in counts and energy of

the ions is limited to a period of ≤ 18 h, which corre-

sponds to the increased solar wind dynamic pressure,

which is caused by an increase of the solar wind den-

sity. This means that an enhanced number of solar wind

electrons is also entering the pile-up region, which in-

creases collisions and ionization as observed by RPC.

After this period the IES densities follow the periodic-

ity in the COPS neutral density, indicating that the in-

creased ionization was indeed generated by the higher

solar wind density.

– Ring/ring-beam distribution:

A ring/ring-beam distribution is assumed necessary for

the generation of the mirror mode waves. However, do

the pick-up ions have enough time to develop such a

distribution? The IES ion velocity in the increased pile-

up region shows that the ions are basically moving per-

pendicular to the magnetic field. With a magnetic field

strength between 20 and 55 nT and a velocity of ∼

12 km s−1 the gyro frequency is 0.1≤ ωc, i ≤ 0.25 s−1

and the gyro radius is 50≤ ρc, i ≤ 120 km. In order

for a ring distribution to occur, the collision frequency

must be much smaller than the gyro frequency. The

collisional time is given by τcoll = (nσiv)
−1, where

σi ∝ 10−16 m2 is a typical ion-neutral collisional cross-

section (A’Hearn and Festou, 1990). Using typical

values n≥ 106 cm−3 and v = 10 km s−1 this leads to

τcoll ≈ 103
− 104 s. With a gyro period of 25≤ τc, i ≤

60 s this means there is ample time for the ions to create

a ring-beam distribution and the location of Rosetta with

respect to the comet, ∼ 225 km shows that the coma is

large enough for full gyrations of the ions with the gyro

radii mentioned above.

– Different sizes of MMs:

Within the pile-up region, in the second half of 6 June,

at high density, the mirror mode waves are between one

and three water gyro radii in size. This is “as expected”

from newly created H2O+, as measured, e.g. at comet

1P/Halley (Schmid et al., 2014). Many hours later, on 7

June, there are much larger MM structures in the MAG

data, with a size between 10 and 16 gyro radii. The

larger structures could possibly be generated by diffu-

sion of smaller size MMs as described by Hasegawa and

Tsurutani (2011):

λ(L)= αρc, i[1+ (ωc, iL/32u)], (9)

where the source size has been changed to αρc, i .

Putting in the measured values (λ(L)= 14,α = 2,u=

10 km s−1) and solving for the diffusion distance L∼

105 km shows that the large structures cannot have

evolved from diffusion of the small structures in the

pile-up region. Thus these large structures find their ori-

gin in MMs created further upstream in the comet’s

coma. Where exactly cannot be determined as the

source size α of the MMs further upstream is unknown.

– Structure deformation:

The main ion species discussed in this paper is H2O+,

however, CO+ and CO+2 were almost equal to that of

water. Hässig et al. (2015) showed that the detector sig-

nal of the ROSINA instrument for all three species was

on average ∼ 2× 105 particles (20 s)−1, with only vari-

ations depending on which side of the comet is facing

Rosetta. Assuming that the two main frequencies in the

spectrum of the third interval in Fig. 11, with deformed

(beating?) MM waves, are related to gyro frequencies

of pick-up ions, then the ratio of the frequencies should

possibly be related to the ratio of the masses of the ions.

The low frequency waves are at ∼ 9 and ∼ 19 mHz,

which have a frequency-ratio of ∼ 0.47, the mass-ratio

of water with carbon(di)oxide is 0.6 / 0.41. The ratios

are close, which might suggest that there are indeed

different kinds of MMs at the same time. This would

ask for an interaction of multiple kinds of MMs in one

multi-component plasma, which has not been discussed

in the literature.

The Rosetta mission around comet 67P/Churyumov-

Gerasimenko offers excellent opportunities to investigate

processes that have been observed during flybys of other

comets. Due to the slow motion of the spacecraft with re-

spect to the comet an in-depth view is obtained of the inter-

action of the solar wind with the outgassing comet. This pa-

per gives a “short” first discussion of a 2-day interval of the

data. With the spacecraft in basically the same location near

comet 67P/CG this gave the possibility to study the reaction

of the induced magnetosphere with respect to the increased

solar wind dynamic pressure. Furthermore, in this way tem-

poral variations in the cometosheath, e.g. the changes in the

characteristics of the mirror mode waves were studied. Nu-

merical modelling of the events showed in this paper is un-

derway, as well as theoretical investigations into the various

mirror-mode waves in a multi-ion pick-up plasma.
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