

The fate of C 4 and C 3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

J.M. Mortillaro, C. Passarelli, G. Abril, C. Hubas, Patrick Albéric, Luis Felipe Artigas, M.F. Benedetti, N. Thiney, P. Moreira-Turcq, M.A.P. Perez, et al.

▶ To cite this version:

J.M. Mortillaro, C. Passarelli, G. Abril, C. Hubas, Patrick Albéric, et al.. The fate of C 4 and C 3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment. Limnologica, 2016, 59, pp.90-98. 10.1016/j.limno.2016.03.008. insu-01321951

HAL Id: insu-01321951 https://insu.hal.science/insu-01321951v1

Submitted on 30 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: The fate of C₄ and C₃ macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

Author: J.M. Mortillaro C. Passarelli G. Abril C. Hubas P. Alberic L.F. Artigas M.F. Benedetti N. Thiney P.

Moreira-Turcq M. Perez L.O. Vidal T. Meziane

PII: S0075-9511(16)30022-6

DOI: http://dx.doi.org/doi:10.1016/j.limno.2016.03.008

Reference: LIMNO 25510

To appear in:

Received date: 15-5-2015 Revised date: 1-3-2016 Accepted date: 6-3-2016

Please cite this article as: Mortillaro, J.M., Passarelli, C., Abril, G., Hubas, C., Alberic, P., Artigas, L.F., Benedetti, M.F., Thiney, N., Moreira-Turcq, P., Perez, M., Vidal, L.O., Meziane, T., The fate of C4 and C3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment.Limnologica http://dx.doi.org/10.1016/j.limno.2016.03.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The fate of C₄ and C₃ macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

J.M. Mortillaro^{1*}, C. Passarelli¹, G. Abril^{2,3}, C. Hubas¹, P. Alberic⁴, L.F. Artigas⁵, M.F. Benedetti⁶, N. Thiney¹, P. Moreira-Turcq⁷, M. Perez^{3,6}, L.O. Vidal⁸, T. Meziane¹

- 1 Unité Mixte de Recherche Biologie des organismes et écosystèmes aquatiques (BOREA UMR 7208), Sorbonne Université, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD, CP53, 61 rue Buffon 75005 Paris, France
- Laboratoire Environnement et Paléoenvironnements Océanique (EPOC) UMR-CNRS
 5805, Université de Bordeaux, Allée Geoffroy Saint-Hilaire 33615 Pessac, France
- **3** Universidade Federal Fluminense, Department of Geochemistry, Niteroi, Rio de Janeiro, Brazil
- 4 Institut des Sciences de la Terre d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
- 5 Laboratoire d'Océanologie et Géosciences (LOG), UMR-CNRS-ULCO-UL1 8187, Université du Littoral Côte d'Opale (ULCO), 32 avenue Foch, 62930 Wimereux, France
- **6** Equipe Géochimie des Eaux, Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
- 7 Institut de Recherche pour le Développement, 32 avenue Henri Varagnat, 93143 Bondy, France
- 8 Laboratório de Ecologia Aquática, Departamento de Biologia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, MG 36036-900 Juiz de Fora, Brazil

E-mail: jean-michel.mortillaro@cirad.fr

Abbreviated title: Degradation of central Amazon macrophytes

Keywords: Central Amazon, floodplains, fatty acids, stables isotopes, macrophytes, degradation

^{*} Corresponding author: Tel: +33 4 6761 4467

Summary	Su	ımm	arv
---------	----	-----	-----

1

- 2 The central Amazon floodplains are particularly productive ecosystems, where a large
- 3 diversity of organic carbon sources are available for aquatic organisms. Despite the fact that
- 4 C₄ macrophytes generally produce larger biomasses than C₃ macrophytes, food webs in the
- 5 central Amazon floodplains appear dominantly based on a C₃ carbon source.
- 6 In order to investigate the respective fate and degradation patterns of C₄ and C₃ aquatic plant-
- 7 derived material in central Amazon floodplains, we developed a 23-days batch experiment.
- 8 Fatty acid and carbon concentrations as well as stable isotope compositions were monitored
- 9 over time in 60 L tanks. These tanks contained Amazon water, with different biomasses of C₃
- and C₄ macrophyte, representative of *in situ* densities occurring in central Amazon
- 11 floodplains.
- 12 In the C₄ Paspalum repens treatments, organic (POC, DOC) and inorganic carbon (DIC) got
- rapidly enriched in ¹³C, whereas in the C₃ Salvinia auriculata treatments, POC and DOC
- showed little change in concentration and isotopic composition, and DIC got depleted in ¹³C.
- 15 The contribution of *P. repens* to POC and DOC was estimated to reach up to 94.2 and 70.7 %,
- respectively. In contrast, no differences were reported between the C_3 S. auriculata and
- 17 control treatments, an observation attributed to the lower C₃ biomass encountered in the field,
- to a slower degradation rate of C₃ compared to C₄ compounds, and to similar isotopic
- compositions for river POC and DOC, and C_3 compounds.
- 20 The ¹³C enrichments of POC, DOC, and DIC from *P. repens* treatments were attributed to an
- 21 enhanced bacterially-mediated hydrolysis and mineralization of C₄ material. Evolutions of
- bacterial abundance and branched fatty acid concentrations confirmed the role of
- 23 heterotrophic microbial communities in the high *P. repens* decomposition rate. Our
- 24 experiment highlights the predominant role of C₄ aquatic plants, as a large source of almost
- 25 entirely biodegradable organic matter available for heterotrophic activity and CO₂ outgassing
- to the atmosphere.

27	
28	Introduction
29	One of the largest sources of organic carbon in Amazon floodplains is derived from aquatic
30	macrophytes, which contribute up to half of the ecosystem primary production (Melack &
31	Forsberg, 2001). These macrophytes grow emerged, submerged or floating, with 388 species
32	described in a várzea (i.e. white-water nutrient rich floodplain) located near the city of
33	Manaus, in central Amazon (Junk & Piedade, 1993b). Among the most abundant species, the
34	floating grasses Echinochloa polystachya and Paspalum fasciculatum (Poaceae family) can
35	reach biomasses of 80 and 60 t ha ⁻¹ , respectively (Junk & Piedade, 1993a; Piedade et al.,
36	1991). Another macrophyte largely represented in the várzea is <i>P. repens</i> (up to 22 t ha ⁻¹ ,
37	Fig. 1, Junk & Piedade, 1993a). These aerial species, which convert atmospheric carbon
38	dioxide into biomass through a C ₄ pathway, constitute floating meadows that can extend over
39	large areas of floodplains (Junk & Howard-Williams, 1984; Hess et al., 2003; Silva et al.,
40	2013). Amazon floating meadows may also be composed of macrophytes using the C_3
41	photosynthetic pathway such as Eichhornia sp., Pistia stratiotes and Salvinia auriculata
42	(Fig. 1). However, the biomass of all these C_3 macrophytes add up to 3 to 15 t ha ⁻¹ only
43	(Furch & Junk, 1992).
44	The ecology of C ₃ and C ₄ macrophytes, and particularly their biomass and production rates,
45	have been thoroughly examined (e.g. Morison et al., 2000; Engle et al., 2008; Silva et al.,
46	2013). Despite their large abundance, C ₄ macrophytes constitute a minor source of energy for
47	Amazon aquatic food webs (Hamilton et al., 1992; Forsberg et al., 1993; Mortillaro et al.,
48	2015) and modest contributors to particulate organic carbon (POC, Hedges et al., 1986;
49	Mortillaro et al., 2011; Moreira-Turcq et al., 2013). Indeed, C ₄ macrophytes are largely ¹³ C
50	enriched (-12 ‰, Hedges et al., 1986; Mortillaro et al., 2011) compared to POC in rivers and
51	várzea of the Amazon (-30 ‰, Quay et al., 1992; Hedges et al., 1994). The almost constant
52	isotopic composition of dissolved organic carbon (DOC), at around -29 ‰ in the Amazon
53	River, suggests a dominant C ₃ source such as terrestrial plants and/or macrophytes. In
54	contrast, dissolved inorganic carbon (DIC) is much heavier (-17.7 to -11.5 ‰, Quay et al.,
55	1992), i.e. closer to C ₄ macrophytes signature, but also closer to the signature of atmospheric
56	CO ₂ . This isotopic composition results from isotopic equilibration induced by CO ₂ gas
57	exchange (Quay et al., 1992; Hedges et al., 1994; Mayorga et al., 2005; Abril et al., 2014),
58	and/or due to carbonate mineral weathering (e.g. chemical or mechanical decay of rocks,
59	Mayorga et al., 2005).

60	Previous macrophyte (C ₃ and C ₄) degradation experiments in litterbags, exposed to natural
61	weathering, found an initially rapid loss of weight and a decrease in nutrients
62	(Howard-Williams & Junk, 1976; Furch & Junk, 1992). However, the contribution of
63	macrophytes to the Amazon aquatic food webs was not verified by Fellerhoff et al. (2003) in
64	their degradation experiment. Therefore, in order to examine the apparent discrepancy
65	between the high biomass of C ₄ macrophytes in the floodplains and their modest contribution
66	to the organic matter (OM) pool in the Amazon river-floodplain ecosystem, a degradation
67	experiment was designed to investigate the fate of carbon from C_4 and C_3 macrophytes in
68	microcosms. Particulate and dissolved carbon concentrations, stable isotope compositions and
69	fatty acids (FA) concentrations, were analyzed in large volumes of Amazon waters incubated
70	with variable amounts of a C ₄ and a C ₃ macrophyte. Bacterial abundance and nutrient
71	concentrations complemented the description of macrophyte degradation throughout a 23-day
72	experiment. Our work hypothesis was that very fast decomposition and mineralization of C_4
73	macrophytes explain their low contribution to central Amazon aquatic food webs.
74	
75	Material and methods
76	Sampling
76 77	Sampling In order to follow the fate of OM during the degradation of two aquatic macrophytes and the
77	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the
77 78	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and
77 78 79	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the
77 78 79 80	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in
77 78 79 80 81	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte
77 78 79 80 81 82	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study
77 78 79 80 81 82 83	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011).
77 78 79 80 81 82 83 84	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011). Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove
77 78 79 80 81 82 83 84	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011). Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove sediment and invertebrates. About 900 L of water were also sampled from the lake and
77 78 79 80 81 82 83 84 85 86	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011). Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove sediment and invertebrates. About 900 L of water were also sampled from the lake and distributed into 15 microcosms of 60 L each. Three water samples and three portions of each
77 78 79 80 81 82 83 84 85 86 87	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011). Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove sediment and invertebrates. About 900 L of water were also sampled from the lake and distributed into 15 microcosms of 60 L each. Three water samples and three portions of each macrophyte were collected in order to get their initial composition (i.e. stable isotopes and
77 78 79 80 81 82 83 84 85 86 87	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011). Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove sediment and invertebrates. About 900 L of water were also sampled from the lake and distributed into 15 microcosms of 60 L each. Three water samples and three portions of each macrophyte were collected in order to get their initial composition (i.e. stable isotopes and FA).
77 78 79 80 81 82 83 84 85 86 87 88	In order to follow the fate of OM during the degradation of two aquatic macrophytes and the influence of degradation products on the quality of POM, samples of <i>P. repens</i> (C ₄) and <i>S. auriculata</i> (C ₃ , Fig. 1) were collected in the Camaleão Lake (várzea), located by the Solimões River. These two macrophytes were selected for their widespread distribution in central Amazon floodplains and their large FA concentration compared to other macrophyte species (i.e. <i>Eichhornia</i> sp. and <i>Pistia stratiotes</i>), as characterized in a previous study (Mortillaro et al., 2011). Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove sediment and invertebrates. About 900 L of water were also sampled from the lake and distributed into 15 microcosms of 60 L each. Three water samples and three portions of each macrophyte were collected in order to get their initial composition (i.e. stable isotopes and FA). <i>Experimental setup</i>

93	without macrophyte (Ctrr). These rive treatments were selected to distinguish species effect
94	from biomass effect on water characterization. For each treatment, triplicate microcosms were
95	used. In PR-HB microcosms, 250 g of fresh P. repens leaves (25.6 gC) were used. This
96	amount was estimated from a maximum dry biomass of 22 t ha-1 (recorded in the Janauari
97	Lake near Camaleão Lake, Junk & Piedade, 1993a), with less than one fifth of emerged
98	P. repens biomass (Silva et al., 2009), an estimated water proportion of 75.9 % and a
99	microcosms surface of 0.13 m ² . Similarly, the mean S. auriculata dry biomass was estimated
100	to be 1 t ha ⁻¹ (Junk & Piedade, 1997) giving a theoretical wet weight of 200 g (93.5 % of
101	water). However, low biomasses of S. auriculata were available during sampling, so that only
102	$100~{\rm g}$ (2.3 gC) per microcosm were used (SA-HB). Low biomass treatments contained $10~{\rm \%}$
103	of the high biomass amount for each species (25 g of macrophytes for PR-LB and 10 g for
104	SA-LB). Macrophyte leaves were introduced into microcosms filled with floodplain water,
105	and were kept in the dark under constant temperature conditions (28 $^{\circ}$ C). Permanent stirring
106	with a water pump ensured oxygenation of the microcosms (from 40 to 100 % air-saturation)
107	and avoided anaerobic conditions to occur. Although low dissolved oxygen is common under
108	floating macrophytes in várzea (~50 % saturation, Engle & Melack, 1993), permanent
109	oxygenation was maintained in order to match natural conditions within floating meadows in
110	open waters, where wind and water currents are sufficient to maintain aerated to hypoxic
111	waters (30 % min) in 2-6 meter depth water column (Vidal et al., 2015).
112	In each treatment, samples were collected after 3, 6, 12, 18 and 23 days of experiment. At
113	each sampling time, around 3.5 L of water were collected and pre-filtered on 200 μm to avoid
114	heterogeneity between samples due to contamination with macrophyte fragments.
115	Consequently, POC concentrations reported here concern the fraction smaller than 200 $\mu\text{m}.$
116	Microcosms volume (60 L) was chosen so that at the end of the experiment, 70 % of the
117	initial water volume was still available, to avoid any concentration bias in the course of the
118	experiment.
119	Sample analyses
120	The FA compositions of POM and macrophytes were analyzed with a gas chromatograph
121	(Varian CP-3800 with flame ionization detector) after extraction, following a modified
122	method of Bligh & Dyer (1959) as described in Mortillaro et al. (2011). POM samples were
123	obtained after immediate on-board filtration (GF/F, 0.7 $\mu m,$ pre-combusted 12 h at 450 $^{\circ}C)$
124	using a vacuum system under low pressure, after which filters were freeze dried and stored at
125	-20 °C until analysis. The carbon and nitrogen compositions, and isotopic ratio (13C/12C or
126	¹⁵ N/ ¹⁴ N), of dried POM and macrophyte samples were determined at the UC Davis Stable

127	Isotope Facility and reported in standard delta notation (δ^{13} C or δ^{15} N), defined as parts per
128	thousand (‰) deviation from a standard (Vienna PeeDee Belemnite for $\delta^{13} C$ and atmospheric
129	N_2 for $\delta^{15}N$, Peterson & Fry, 1987). The DOC concentrations and isotopic compositions
130	$(\delta^{13}\text{C-DOC})$ were determined using an EA-IRMS analyzer following the protocol of Alberic
131	(2011). The DIC isotopic compositions (δ^{13} C-DIC) were also determined using an EA-IRMS
132	analyzer following the protocol of Bouillon et al. (2007). However, DIC concentrations were
133	not measured, as microcosms were continuously aerated with pumps. The concentration of
134	nitrites (NO ₂ ⁻), nitrates (NO ₃ ⁻) and ammonium (NH ₄ ⁺) dissolved fractions, summarized as
135	DIN (dissolved inorganic nitrogen), as well as orthophosphate concentrations (PO_4^{3-}) were
136	determined by spectrophotometry following a modified method of Grasshoff (1999). Total
137	bacterial abundances were determined by direct epifluorescence microscopy counting, using
138	4,6-diamidino-2-phenyl-indole (DAPI) up to a final concentration of 1 µg mL ⁻¹ after 15 min
139	of incubation (Porter & Feig, 1980). Direct counts were performed at 1 250x magnification,
140	under an epifluorescence microscope (Leica Leitz DMR; 365 nm). In turbid samples (high
141	suspended matter content), subsamples were pre-treated (before staining) by addition of
142	150 µl of Tween, sonicated at 35 khz for 5 min, and centrifuged at 3 000 g during 10 min at
143	4 °C (Chevaldonne & Godfroy, 1997; Hubas et al., 2007a, 2007b).
144	Data analysis
145	The data obtained for each microcosm were compared, to evidence variations between
146	treatments. All FA of POM (up to 40) were used in these analyzes without transformation and
147	were represented by their relative proportions. A dissimilarity matrix between each pair of
148	samples was calculated using the Bray-Curtis index. Dissimilarities between samples were
149	then graphically represented using an nMDS (non-metric MultiDimensional Scaling, Zuur et
150	al., 2007). Differences between groups were tested using analyzes of similarities tests
151	(ANOSIM, Oksanen et al., 2010), without considering temporal variability. When differences
152	were significant, a similarity percentages analysis (SIMPER, Oksanen et al., 2010) was used
153	to determine the relative contribution of each FA to differences between two groups.
154	The differences in the isotopic compositions (δ^{13} C-DOC, δ^{13} C-POC, δ^{15} N-PON and
155	δ^{13} C-DIC) as well as differences in POC, DOC, DIN, PO ₄ ³⁻ concentrations and bacterial
156	abundance between treatments (n = 5) were tested using a non-parametric Kruskal-Wallis test
157	(KW). Non-parametric Mann-Whitney-Wilcoxon (MWW) Post-Hoc tests were then used to
158	identify the differences between individual treatments, after correction following a Benjamini
159	and Hochberg (BH) procedure for multiple comparisons (Benjamini & Hochberg, 1995).

- 160 The relative contribution of C₄ macrophytes to POM was calculated using a two end member
- mixing model (Forsberg et al., 1993):

162
$$%C_4 = \left[1 - \frac{\delta^{13}C_{source} - \delta^{13}C_{C_4}}{\delta^{13}C_{T_0} - \delta^{13}C_{C_4}}\right] \times 100$$
 (Eq. 1)

- where $\delta^{13}C_{\text{source}}$ was the $\delta^{13}C$ -POC compositions for each time and treatment, $\delta^{13}C_{C_4}$ was the
- mean *P. repens* composition, $\delta^{13}C_{T_0}$ was the mean POM composition at the beginning of the
- experiment and % C₄ the *P. repens* contribution to the isotopic compositions of OM in each
- sample.
- All statistical analyzes were implemented within the R programming environment (R
- Development Core Team 2010, package Vegan, Oksanen et al., 2010), with the probability α
- 169 set at 0.05.

- 171 **Results**
- Among macrophyte samples, 41 FA were identified (Table 1) with an intragroup similarity of
- 92.5 and 93.2 % within *P. repens* and *S. auriculata*, respectively, at the beginning of the
- experiment. *P. repens* was ¹³C and ¹⁵N enriched compared to *S. auriculata* (Table 1).
- The water collected in the várzea was characterized by 37 FA (Table 1), where saturated 14:0,
- 176 15:0, 16:0 and 18:0 accounted for 70 % of the total FA composition of POM. The POC and
- DOC concentrations were respectively of 1.3 ± 0.1 and 2.8 ± 0.3 mg L⁻¹ (Fig. 3), with a
- carbon isotopic composition of -30.1 \pm 0.4 % for POC and -28.7 \pm 0.4 % for DOC (Fig. 4).
- DIC was 13 C enriched relative to POC and DOC (δ^{13} C-DIC of -11.9 \pm 0.2 ‰, Fig. 4).
- 180 Water from the five treatments showed significant differences in their global FA compositions
- (ANOSIM, R = 0.35, p < 0.001, Fig. 2). Samples from Ctrl, SA-LB, SA-HB, and PR-LB had
- a similar FA composition but differed from samples of PR-HB (Table 2). Similarities in the
- 183 FA composition within each treatment were higher than 77 % (Table 3). A higher proportion
- of branched FA (mainly 15:0iso and 15:0anteiso) and a lower proportion of 18:0 were
- observed in PR-HB compared to other treatments (Table 3). The concentrations of POC,
- DOC, DIN, PO₄³⁻ as well as δ^{13} C-POC, δ^{13} C-DOC, δ^{13} C-DIC and bacterial abundance
- displayed significant differences between treatments (KW, p < 0.001, Table 4, Figs. 3-5),
- whereas δ^{15} N-PON was similar between all treatments (KW, p = 0.73).
- The highest concentrations of POC, DOC, DIN, PO₄³⁻ and highest bacterial abundance, were
- observed in PR-HB (Figs. 3 & 5, Table 4). However, a higher POC concentration was

recorded in SA-HB compared to PR-LB and SA-LB (Table 4, Fig. 3). No differences in DOC 191 concentration were observed between SA-HB, PR-LB and Ctrl, whereas SA-LB displayed the 192 lowest DOC concentration. In contrast, the δ^{13} C-POC was significantly higher in PR-HB 193 $(-14.3 \pm 1.0 \%)$ and in PR-LB $(-21.0 \pm 3.1 \%)$ compared to other treatments (Fig. 4, Table 4). 194 However, no difference was found between the isotopic compositions of SA and Ctrl 195 196 treatments (MWW, p > 0.05, Table 4). The contribution of P. repens to the ¹³C enrichment recorded in POC from PR-HB and PR-LB reached 94.2 and 63.2 %, respectively (Fig. 4, 197 Eq. 1). Similarly, the highest δ^{13} C-DOC was recorded in PR-HB (-17.8 \pm 1.2 %) with a 198 contribution of P. repens to the DOC of 70.7 % (Fig. 4, Eq. 1). A higher δ^{13} C-DOC was also 199 observed in PR-LB (-24.9 \pm 1.0 ‰, Fig. 4, Table 4) compared to SA-HB and SA-LB, with a 200 contribution of *P. repens* to the DOC reaching 27.8 %. A significant increase in δ^{13} C-DIC was 201 only recorded for PR-HB (-5.9 ± 2.9 %, Fig. 4, Table 4), concomitantly to a decrease in 202 δ^{13} C-DIC for SA-HB (-17.8 ± 3.7 ‰, Fig. 4, Table 4). In contrast, no differences were found 203 between the Ctrl with both SA and PR low biomass treatments (MWW, p > 0.05, Table 4). 204 δ^{13} C of organic and inorganic matters increased after 3 to 6 days in PR treatments, whereas no 205 temporal trends were recorded for Ctrl and SA treatments except for δ^{13} C-DIC of SA-HB 206 207 (Fig. 4). 208 **Discussion** 209 210 The present microcosm experiment highlights significantly different degradation patterns of 211 two C₃ and C₄ Amazon macrophytes. Over a 23 day experiment, our results revealed a major impact of *P. repens* degradation, at high biomass, on OM composition. This impact was 212 apparently related to the biomass of macrophytes used in the experiment as well as to the 213 inherent biodegradability of C₄ compared to C₃ macrophytes. Indeed, even though the fast 214 degradation of the C₄ macrophyte was most evident in PR-HB, as revealed by all measured 215 parameters, it was also observed in the PR-LB. For instance, PR-LB treatments (25 g of fresh 216 macrophytes in a 60 L tank) showed stronger ¹³C enrichment in POC and DOC than SA-HB 217 (100 g of macrophytes in a 60 L tank). There was however a slight increase in POC 218 concentrations as well as a decrease in δ^{13} C-DIC in the *S. auriculata* high biomass treatments 219 220 that reveals on-going degradation. 221 In this experiment, *P. repens* displayed large proportions of 18:2\omega6 and 18:3\omega3 polyunsaturated FA (up to 44 % of total FA), which is consistent with previous 222 223 characterization of this FA as markers of macrophytes in this environment (Mortillaro et al.,

2011). Similarly, carbon stable isotope compositions of both *P. repens* and *S. auriculata* were 224 consistent with those expected from plants with C4 and C3 photosynthetic pathways 225 $(-13.0 \pm 0.8 \text{ and } -30.5 \pm 0.5 \text{ } \%$, respectively, Smith & Epstein, 1971). 226 Contribution of P. repens (C_4) and S. auriculata (C_3) to POM 227 In PR treatments, POC was significantly enriched in 13 C, which indicates a contribution of P. 228 229 repens, after its hydrolysis into the POM pool. This contribution was estimated to reach 94.2 230 and 63.2 % of total POM composition for PR-HB and PR-LB, respectively, using a two-endmember mixing model. This was surprising as previous studies, characterizing POM in the 231 Amazon Basin, suggested a low contribution of C₄ macrophytes (Hedges et al., 1986; 232 Mortillaro et al., 2011; Moreira-Turcq et al., 2013). The contribution of *P. repens* to POM 233 234 was confirmed by the increased proportion of branched FA in PR treatments (15:0iso and 15:0anteiso). These FA are regularly described as biomarkers of bacteria (Volkman et al., 235 1980; Kaneda, 1991; Mfilinge et al., 2003) and suggest here that in addition to hydrolysis, 236 P. repens leaves were decomposed by heterotrophic microbial communities. Indeed, the 237 transfer of FA to POM, including branched FA, was previously recorded from decomposing 238 mangroves (Mfilinge et al., 2003). Similarly, the transfer of FA and the ¹³C enrichment of 239 240 POM and sediments were evidenced in salt-marsh from the decomposition of the C₄ Spartina spp. (Boschker et al., 1999). In salt-marsh ecosystems, the composition of POM affected by 241 242 Spartina spp. decomposition changed from predominantly unsaturated to branched and saturated FA typical of bacteria (Johnson & Calder, 1973; Schultz & Quinn, 1973). Similar 243 findings were reported in PR-HB and differences in FA compositions and ¹³C enrichments 244 reported for OM between PR and Ctrl treatments occurred in the first 3 to 6 days of the 245 experiment. These changes in OM composition, as well as high bacterial abundance recorded 246 247 in PR-HB, suggest a fast decomposition of this macrophyte, which may have exceeded hydrolysis (in agreement with previous studies; Fellerhoff et al., 2003). 248 249 Contrastingly to P. repens, no differences were reported between SA and Ctrl treatments for FA and δ^{13} C-POC. Yet, decomposition of S. auriculata could not be excluded using 250 δ^{13} C-POC analyses. Indeed, fresh leaves of *S. auriculata* (-30.5 \pm 0.5 %) had a similar 251 252 composition to POM (-30.1 \pm 0.4 %) at the beginning of the experiment. However, the higher 253 POC concentrations measured in SA-HB compared to PR-LB and SA-LB suggest an effective 254 hydrolysis of this macrophyte. The lack of differences between SA and Ctrl treatments for FA compositions and δ^{13} C-POC suggest however a slower hydrolysis of *S. auriculata* compared 255 to P. repens. Indeed, Howard-Williams & Junk (1976) recovered 50 % of S. auriculata initial 256 dry weight at the end of a 186 days decomposition experiment. Similarly, Fellerhoff et al.

- 258 (2003) recovered 80 % of *S. auriculata* initial dry weight after 21 days of incubation. During
- our experiment, large macrophyte debris were observed for a much longer time in the
- 260 S. auriculata treatments than in the P. repens treatments. This higher resistance to
- 261 fractionation of the C₃ macrophyte was consistent with the differences in FA, POC and
- δ^{13} C-POC of the fine POM fraction (<200 µm).
- 263 Impact of macrophyte degradation on dissolved compounds
- Decomposition of *P. repens* tissues led to a ¹³C enrichment of DOC and DIC. Such increase
- of δ^{13} C-DIC resulted from bacterial mineralization of macrophyte organic carbon and CO₂
- equilibration at the air/water interface (Quay et al., 1992; Hedges et al., 1994; Mayorga et al.,
- 267 2005). Because the experiment was performed in contact with air in order to maintain aerobic
- 268 conditions, the δ^{13} C-DIC signature was affected by isotopic equilibration with the
- atmosphere. This process tends to slowly increase the δ^{13} C-DIC to a value close to the
- isotopic equilibrium with the atmosphere at around 0 % (Polsenaere & Abril, 2012).
- 271 Consequently, the observed δ^{13} C-DIC values are the result of a balance between the DIC
- production from the C₃ or C₄ plants decomposition and equilibration with the atmosphere. In
- SA-HB, the rapid δ^{13} C-DIC decrease from -11.9 \pm 0.2 % at the beginning of the experiment
- to -20.3 ± 7.0 % after 3 days of incubation reveals that the C_3 macrophytes were undergoing
- 275 mineralization processes. Indeed, hydrolysis tends to leach out compounds relatively enriched
- 276 in ¹³C with respect to more recalcitrant compounds (e.g. lignin) depleted in ¹³C (Costantini et
- 277 al., 2014).
- 278 Previous works in the Amazon have attributed ¹³C enrichment of DIC to the preferential
- oxidation of organic carbon derived from C₄ macrophytes (Rai & Hill, 1984; Chanton et al.,
- 280 1989; Quay et al., 1992; Waichman, 1996). Several other studies based on solute distribution
- suggested that C₄ grasses are more biodegradable than the bulk OM (Hedges et al., 1986;
- Quay et al., 1992; Mayorga et al., 2005). Ellis et al. (2012) have measured the δ^{13} C of respired
- 283 CO₂ in closed incubations at different stages of the hydrological cycle in the Solimões River
- and concluded that C₃ plants, C₄ plants and phytoplankton, all contributed to respiration in the
- 285 Amazon River. The results of our incubations suggest however that high macrophyte
- biomasses are necessary in order to significantly alter the δ^{13} C-DIC signature locally.
- Besides carbon, the nitrogen (N) and phosphorus (P) concentrations in floodplain waters were
- also affected by the decomposition and mineralization of macrophytes. A large release of PO₄,
- 289 DIN and potassium (K) was previously evidenced during the decomposition of
- 290 P. fasciculatum (Furch & Junk, 1992). The decomposition of P. fasciculatum had the potential
- 291 to supply floodplains with 242 kg ha⁻¹ of N and 66 kg ha⁻¹ of P in Furch & Junk (1992)

292	nutrients budget. Following these authors' calculations (i.e. maximum amounts of bio-
293	elements released to water reported to maximum macrophyte biomasses), P. repens showed
294	the potential, in our degradation experiment, to supply floodplains with 176.4 kg ha-1 of N and
295	48.2 kg ha ⁻¹ of P. On the other hand, S. auriculata contribution to floodplains is estimated to
296	reach 0.13 kg ha ⁻¹ of N and 2.44 kg ha ⁻¹ of P only. Therefore, our study demonstrates that
297	P. repens represents a predominant source of N and P.
298	Fast nutrient recycling from decomposing macrophytes may fertilize Amazon floodplains,
299	where N and P are growth-limiting factors (Devol et al., 1984; Forsberg, 1984; Setaro &
300	Melack, 1984). Within the Amazon Basin, aquatic grasses such as P. repens have been
301	suggested to be able of atmospheric N ₂ fixation (Martinelli et al., 1992), so that atmospheric
302	N ₂ may contribute up to 90 % of plant N for stands of P. repens (Kern & Darwich, 2003).
303	Therefore, the fast decomposition of N_2 fixing macrophytes may play a predominant role as a
304	natural fertilizer for floodplains (Piedade et al., 1991; Kern & Darwich, 2003), stimulating
305	phytoplankton production during the falling water period, when macrophytes start to
306	decompose (Rai & Hill, 1984).
307	In Amazon floodplains, P. repens maximum biomasses were observed during the wet season
308	(Junk & Piedade, 1993b, Silva et al., 2009), where C ₄ macrophyte contribution to the primary
309	production in várzea was estimated to reach 65 % (Melack & Forsberg, 2001). During this
310	season, POC and DOC mainly originate from depleted carbon sources similar to C3 primary
311	producers (Hedges et al., 1994, Mortillaro et al., 2011). However during the dry season,
312	macrophytes are subject to intensive degradation as water level decreases (Engle et al., 2008).
313	An increasing contribution of macrophytes to OM composition, due to the accumulation of
314	plant detritus, was suggested in the Amazon várzea (Mortillaro et al., 2011). However,
315	although macrophytes have been demonstrated experimentally to affect the $\delta^{13}\text{C-POC}$ and
316	δ^{13} C-DOC, fast microbial mineralization of organic carbon suggests that only large
317	macrophyte biomasses, produced during the flood season, have the potential to affect
318	δ^{13} C-POC and δ^{13} C-DOC within floodplains. Indeed, C_4 material may contribute to sediments
319	OM composition (Sobrinho et al., 2016) according to spatial variability in C ₄ macrophytes
320	(Hess et al., 2003), despite a low burial of organic carbon in floodplain sediments (Moreira-
321	Turcq et al., 2004). Therefore, most C ₄ macrophytes are mineralized (Piedade et al., 1991;
322	Junk & Piedade, 1993a) and thus contribute significantly to CO ₂ outgassing, as previously
323	suggested (Quay et al., 1992). Moreover, bacterial growth has been shown, within Amazon
324	floodplains, to display a low efficiency (Vidal et al., 2015). This low efficiency implies,
325	besides high respiration rates, a low transfer of C ₄ carbon to higher trophic levels. The

production of C ₃ macrophytes within the central Amazon Basin is much more limited than C ₄
macrophytes (Furch & Junk, 1992). However, the lower lability of these macrophyte debris
compared to C ₄ macrophyte debris makes them available for being channeled through aquatic
food webs. These findings can explain why Amazon food webs are mainly centered on a C_3
carbon source (Araujo-Lima et al., 1986; Hamilton et al., 1992; Forsberg et al., 1993),
although C ₄ macrophytes display a greater food quality and biomass for specialized herbivore
fish species (Mortillaro et al., 2015).
Conclusion
Within the present experiment, the higher lability of C ₄ compared to C ₃ macrophytes was
demonstrated. The contribution of <i>P. repens</i> to POC and DOC isotopes compositions reached
a maximum after 3 to 6 days, indicating a fast decomposition rate of this macrophyte.
Moreover, P. repens biomasses had a noticeable impact on OM composition. The
decomposition of C ₄ macrophytes was followed by the mineralization into DIC, as suggested
by $\delta^{13}\text{C-DIC}$, as well as by the release of DIN and P. Therefore, the fast mineralization of C_4
macrophytes, as well as the natural mixing of POM with ¹³ C-depleted primary producers (e.g.
phytoplankton, C_3 macrophytes, periphyton, and trees), should account for the overall low
contribution of C ₄ carbon sources to the central Amazon aquatic food webs.
Acknowledgments
This research is a contribution to the CARBAMA project, supported by the ANR (French
National Agency for Research, grant number 08-BLAN-0221), and the CNPq (National
Council for Scientific and Technological Development – Brazil, Universal Program grant
number 477655/2010-6); it was conducted within an international cooperation agreement
between the CNPq (Brazil) and the IRD (Institute for Research and Development – France),
and under the auspices of the Environmental Research Observatory Hydrology and
Geochemistry of the Amazon Basin (HYBAM), supported by the INSU and the IRD. We are
grateful to Jessica Chicheportiche (LOG laboratory) for bacterial abundance estimations. We
also want to thanks two anonymous reviewers whose comments helped improve this
manuscript.

356	
357	References
358	
359	Abril, G., Martinez, J.M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal, L.,
360	Meziane, T., Kim, J.H., Bernardes, M.C., Savoye, N., Deborde, J., Souza, E.L.,
361	Alberic, P., Landim de Souza, M.F., Roland, F., 2014. Amazon River carbon dioxide
362	outgassing fuelled by wetlands. Nature, 505, 395-398.
363	Alberic, P., 2011. Liquid chromatography/mass spectrometry stable isotope analysis of
364	dissolved organic carbon in stream and soil waters. Rapid Communications in Mass
365	Spectrometry, 25, 3012-3018.
366	Araujo-Lima, C.A.R.M., Forsberg, B.R., Victoria, R., Martinelli L., 1986. Energy sources for
367	detritivorous fishes in the Amazon. Science, 234, 1256-1258.
368	Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: A practical and
369	powerfull approach to multiple testing. Journal of the Royal Statistical Society Series
370	B-Methodological, 57, 289-300.
371	Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification.
372	Canadian Journal of Biochemistry and Physiology, 37, 911-917.
373	Boschker, H.T.S., de Brouwer, J.F.C., Cappenberg, T.E., 1999. The contribution of
374	macrophyte-derived organic matter to microbial biomass in salt-marsh sediments:
375	Stable carbon isotope analysis of microbial biomarkers. Limnology and
376	Oceanography, 44, 309-319.
377	Bouillon, S., Middelburg, J.J., Dehairs, F., Borges, A.V., Abril, G., Flindt, M.R., Ulomi, S.,
378	Kristensen, E., 2007. Importance of intertidal sediment processes and porewater
379	exchange on the water column biogeochemistry in a pristine mangrove creek (Ras
380	Dege, Tanzania). Biogeosciences, 4, 311-322.
381	Chanton, J., Crill, P., Bartlett, K., Martens, C., 1989. Amazon capims (floating grassmats): a
382	source of ¹³ C enriched methane to the troposphere. Geophysical Research Letters, 16,
383	799-802.
384	Chevaldonne, P., Godfroy, A., 1997. Enumeration of microorganisms from deep-sea
385	hydrothermal chimney samples. Fems Microbiology Letters, 146, 211-216.
386	Costantini, M.L., Calizza, E., Rossi, L., 2014. Stable isotope variation during fungal
387	colonisation of leaf detritus in aquatic environments. Fungal Ecology, 11, 154-163.

388	Devol, A.H., Dossantos, A., Forsberg, B.R., Zaret, T.M., 1984. Nutrient addition experiments
389	in Lago Jacaretinga, Central Amazon, Brazil: 2. The effect of humic and fluvic acids.
390	Hydrobiologia, 109, 97-103.
391	Ellis, E.E., Richey, J.E., Aufdenkampe, A.K., Krusche, A.V., Quay, P.D., Salimon, C., da
392	Cunha, H.B., 2012. Factors controlling water-column respiration in rivers of the
393	central and southwestern Amazon Basin. Limnology and Oceanography, 57, 527-540
394	Engle, D.L., Melack, J.M., 1993. Consequences of riverine flooding for seston and the
395	periphyton of floating meadows in an Amazon floodplain lake. Limnology and
396	Oceanography, 38, 1500-1520.
397	Engle, D.L., Melack, J.M., Doyle, R.D., Fisher, T.R., 2008. High rates of net primary
398	production and turnover of floating grasses on the Amazon floodplain: implications
399	for aquatic respiration and regional CO2 flux. Global Change Biology, 14, 369-381.
400	Fellerhoff, C., Voss, M., Wantzen, K.M., 2003. Stable carbon and nitrogen isotope signatures
401	of decomposing tropical macrophytes. Aquatic Ecology, 37, 361-375.
402	Forsberg, B.R., 1984. Nutrient processing in Amazon floodplain lakes. Verhandlungen der
403	Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 22,
404	1294-1298.
405	Forsberg, B.R., Araujo-Lima, C.A.R.M., Martinelli, L.A., Victoria, R.L., Bonassi, J.A., 1993
406	Autotrophic carbon sources for fish of the central Amazon. Ecology, 74, 643-652.
407	Furch, K., Junk, W., 1992. Nutrient dynamics of submersed decomposing Amazonian
408	herbaceous plant species Paspalum fasciculatum and Echinochloa polystachya. Revue
409	d'hydrobiologie tropicale, 25, 75-85.
410	Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of seawater analysis, Wiley-VCH
411	Verlag GmbH, Weinheim, Germany.
412	Hamilton, S.K., Lewis, W.M., Sippel, S.J., 1992. Energy sources for aquatic animals in the
413	Orinoco River floodplain: evidence from stable isotopes. <i>Oecologia</i> , 89, 324-330.
414	Hedges, J.I., Clark, W.A., Quay, P.D., Richey, J.E., Devol, A.H., Santos, U.D., 1986.
415	Compositions and fluxes of particulate organic material in the Amazon river.
416	Limnology and Oceanography, 31, 717-738.
417	Hedges, J.I., Cowie, G.L., Richey, J.E., Quay, P.D., Benner, R., Strom, M., Forsberg, B.R.,
418	1994. Origins and processing of organic matter in the Amazon river as indicated by
419	carbohydrates and amino acids. Limnology and Oceanography, 39, 743-761.

420	Hess, L.L., Melack, J.M., Novo, E.M.L.M., Barbosa, C.C.F., Gastil, M., 2003. Dual-season
421	mapping of wetland inundation and vegetation for the central Amazon basin. Remote
422	Sensing of Environment, 87, 404-428.
423	Howard-Williams, C., Junk, W.J., 1976. The decomposition of aquatic macrophytes in the
424	floating meadows of a Central amazonian varzea lake. In: Biogeographica
425	pp. 115-123. The Hague.
426	Hubas, C., Artigas, L.F., Davoult, D., 2007a. Role of the bacterial community in the annual
427	benthic metabolism of two contrasted temperate intertidal sites (Roscoff Aber Bay,
428	France). Marine Ecology Progress Series, 344, 39-48.
429	Hubas, C., Lamy, D., Artigas, L.F., Davoult, D., 2007b. Seasonal variability of intertidal
430	bacterial metabolism and growth efficiency in an exposed sandy beach during low
431	tide. Marine Biology, 151, 41-52.
432	Johnson, R.W., Calder, J.A., 1973. Early diagenesis of fatty acids and hydrocarbons in a salt-
433	marsh environment. Geochimica Et Cosmochimica Acta, 37, 1943-1955.
434	Junk, W.J., Howard-Williams, C., 1984. Ecology of aquatic macrophytes in Amazonia. In:
435	The Amazon, Limnology and Landscape Ecology of a Mighty Tropical River and its
436	Basin. (Ed H. Sioli), pp. 269-293. Junk, Dordrecht.
437	Junk, W.J., Piedade, M.T.F., 1993a. Biomass and primary production of herbaceous plant
438	communities in the Amazon floodplain. Hydrobiologia, 263, 155-162.
439	Junk, W.J., Piedade, M.T.F., 1993b. Herbaceous plants of the Amazon floodplain near
440	Manaus: Species diversity and adaptations to the flood pulse. Amazoniana-Limnologia
441	Et Oecologia Regionalis Systemae Fluminis Amazonas, 12, 467-484.
442	Junk, W.J., Piedade, M.F.T., 1997. Plant life in the floodplain with special reference to
443	herbaceous plants. In: The central Amazon floodplain: Ecology of a pulsing system.
444	(Ed W.J. Junk), pp. 147-185. Springer, Berlin Heidelberg New York.
445	Kaneda, T., 1991. Iso-fatty and anteiso-fatty acids in bacteria: Biosynthesis, function, and
446	taxonomic significance. Microbiological Reviews, 55, 288-302.
447	Kern, J., Darwich, A., 2003. The role of periphytic N ₂ fixation for stands of macrophytes in
448	the whitewater floodplain (varzea). Amazoniana-Limnologia Et Oecologia Regionalis
449	Systemae Fluminis Amazonas, 17, 361-375.
450	Martinelli, L.A., Victoria, R.L., Trivelin, P.C.O., Devol, A.H., Richey, J.E., 1992. ¹⁵ N natural
451	abundance in plants of the Amazon River floodplain and potential atmospheric N_2
452	fixation. <i>Oecologia</i> , 90, 591-596.

453	Mayorga, E., Aufdenkampe, A.K., Masiello, C.A., Krusche, A.V., Hedges, J.I., Quay, P.D.,
454	Richey, J.E., Brown, T.A., 2005. Young organic matter as a source of carbon dioxide
455	outgassing from Amazonian rivers. Nature, 436, 538-541.
456	Melack, J.M., Forsberg, B.R., 2001. Biogeochemistry of Amazon floodplain lakes and
457	associated wetlands. In: The biogeochemistry of the Amazon Basin. (Eds M.E.
458	McClain & R.L. Victoria & J.E. Richey), pp. 235-274. Oxford University Press, New
459	York.
460	Mfilinge, P.L., Meziane, T., Bachok, Z., Tsuchiya, M., 2003. Fatty acids in decomposing
461	mangrove leaves: microbial activity, decay and nutritional quality. Marine Ecology-
462	Progress Series, 265, 97-105.
463	Moreira-Turcq, P., Bonnet, M.P., Amorim, M., Bernardes, M., Lagane, C., Maurice, L.,
464	Perez, M., Seyler, P., 2013. Seasonal variability in concentration, composition, age,
465	and fluxes of particulate organic carbon exchanged between the floodplain and
466	Amazon River. Global Biogeochemical Cycles, 27, 119-130.
467	Moreira-Turcq, P., Jouanneau, J.M., Turcq, B., Seyler, P., Weber, O., Guyot, J.L., 2004.
468	Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon
469	region: insights into sedimentation rates. Palaeogeography Palaeoclimatology
470	Palaeoecology, 214, 27-40.
471	Morison, J.I.L., Piedade, M.T.F., Muller, E., Long, S.P., Junk, W.J., Jones, M.B., 2000. Very
472	high productivity of the C ₄ aquatic grass <i>Echinochloa polystachya</i> in the Amazon
473	floodplain confirmed by net ecosystem CO ₂ flux measurements. <i>Oecologia</i> , 125,
474	400-411.
475	Mortillaro, J.M., Abril, G., Moreira-Turc, P., Sobrinho, R., Perez, M., Meziane, T., 2011.
476	Fatty acid and stable isotope (δ^{13} C, δ^{15} N) signatures of particulate organic matter in
477	the Lower Amazon River: Seasonal contrasts and connectivity between floodplain
478	lakes and the mainstem. Organic Geochemistry, 42, 1159-1168.
479	Mortillaro, J.M., Pouilly, M., Wach, M., Freitas, C.E.C., Abril, G., Meziane, T., 2015.
480	Trophic opportunism of central Amazon floodplain fish. Freshwater Biology.
481	Freshwater Biology, 60, 1659–1670.
482	Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos,
483	P., Stevens, M.H.H., Wagner, H., 2010. Vegan: Community Ecology Package.
484	R package version 1.17-12.
485	Peterson, B.J., Fry, B., 1987. Stable isotopes in ecosystem studies. <i>Annual Review of Ecology</i>
486	and Systematics, 18, 293-320.

- Piedade, M.T.F., Junk, W.J., Long, S.P., 1991. The productivity of the C₄ grass *Echinochloa*
- 488 polystachya on the Amazon floodplain. Ecology, 72, 1456-1463.
- Polsenaere, P., Abril, G., 2012. Modelling CO₂ degassing from small acidic rivers using water
- 490 pCO₂, DIC and delta C¹³DIC data. *Geochimica Et Cosmochimica Acta*, 91, 220-239.
- 491 Porter, K.G., Feig, Y.S., 1980. The use of DAPI for identifying and counting aquatic
- 492 microflora. *Limnology and Oceanography*, 25, 943-948.
- 493 Quay, P.D., Wilbur, D.O., Richey, J.E., Hedges, J.I., Devol, A.H., Victoria, R., 1992. Carbon
- 494 cycling in the Amazon River: Implications from the ¹³C compositions of particles and
- solutes. *Limnology and Oceanography*, 37, 857-871.
- Rai, H., Hill, G., 1984. Microbiology of Amazonian waters. In: *The Amazon, Limnology and*
- 497 Landscape Ecology of a Mighty Tropical River and its Basin. (Ed H. Sioli),
- 498 pp. 413-441. Junk, W., Dordrecht.
- 499 Schultz, D.M., Quinn, J.G., 1973. Fatty acid composition of organic detritus from *Spartina*
- *alterniflora. Estuarine and Coastal Marine Science*, 1, 177-190.
- Setaro, F.V., Melack, J.M., 1984. Responses of phytoplankton to experimental nutrient
- enrichment in an Amazon floodplain lake. *Limnology and Oceanography*, 29,
- 503 972-984.
- 504 Silva, T.S.F., Costa, M.P.F., Melack, J.M., 2009. Annual net primary production of
- macrophytes in the Eastern Amazon floodplain. *Wetlands*, 29, 747-758.
- 506 Silva, T.S.F., Melack, J.M., Novo, E., 2013. Responses of aquatic macrophyte cover and
- productivity to flooding variability on the Amazon floodplain. *Global Change*
- 508 *Biology*, 19, 3379-3389.
- 509 Smith, B.N., Epstein, S., 1971. Two categories of ¹³C/¹²C ratios for higher plants. *Plant*
- 510 *Physiology*, 47, 380-384.
- 511 Sobrinho, R.L., Bernardes, M.C., Abril, G., Kim, J.H., Zell, C.I., Mortillaro, J.M., Meziane,
- T., Moreira-Turcq, P., Sinninghe Damsté, J.S., 2016. Spatial and seasonal contrasts of
- sedimentary organic matter in floodplain lakes of the central Amazon basin.
- Biogeosciences, 13, 467-482.
- Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J., Bavor, H.J., 1980. Microbial lipids of an
- intertidal sediment: 1. Fatty accids and hydrocarbons. *Geochimica Et Cosmochimica*
- 517 *Acta*, 44, 1133-1143.
- Vidal, L.O., Abril, G., Artigas, L.F., Melo, M.L., Bernardes, M.C., Lobão, L.M., Reis, M.C.,
- Moreira-Turcq, P., Benedetti, M., Tornisielo, V.L., Roland, F., 2015. Hydrological

520	pulse regulating the bacterial heterotrophic metabolism between Amazonian
521	mainstems and floodplain lakes. Frontiers in microbiology, 6, 1054.
522	Waichman, A.V., 1996. Autotrophic carbon sources for heterotrophic bacterioplankton in a
523	floodplain lake of central Amazon. Hydrobiologia, 341, 27-36.
524	Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing Ecological Data, Springer, Heidelberg
525	Germany.
526	
527	
528	

Fig. 1. Floating meadows of *P. repens* (left) and *S. auriculata* (right).

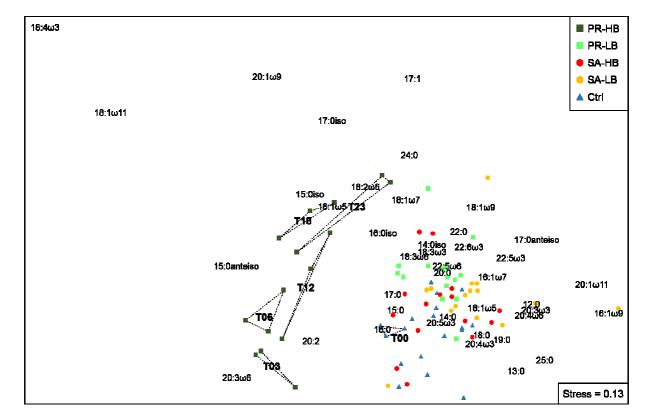


Fig. 2. Nonmetric MDS of FA proportions (%) in POM. Squares (■) are for *P. repens* treatments with high (dark green) and low (light green) biomasses, circles (●) are for *S. auriculata* treatments with high (red) and low (orange) biomasses and blue triangles (▲) are for the Ctrl treatment.

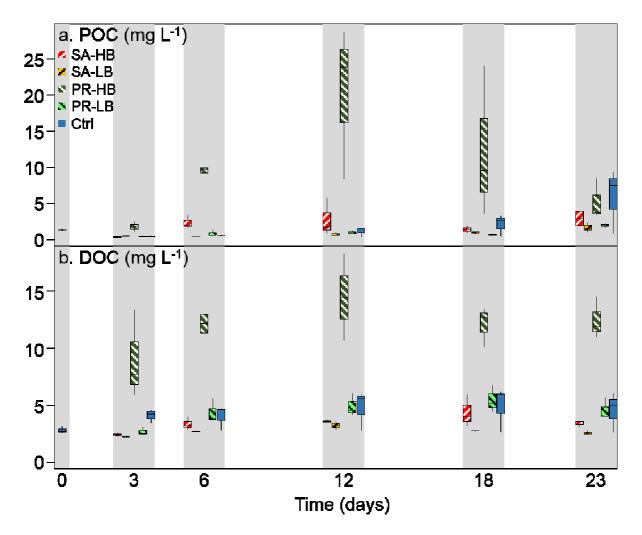


Fig. 3. Boxplot of POC (a.) and DOC (b.) concentrations in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue). Note that DIC time-courses were not determined because of the CO_2 loss to the atmosphere occurring throughout the experiment.

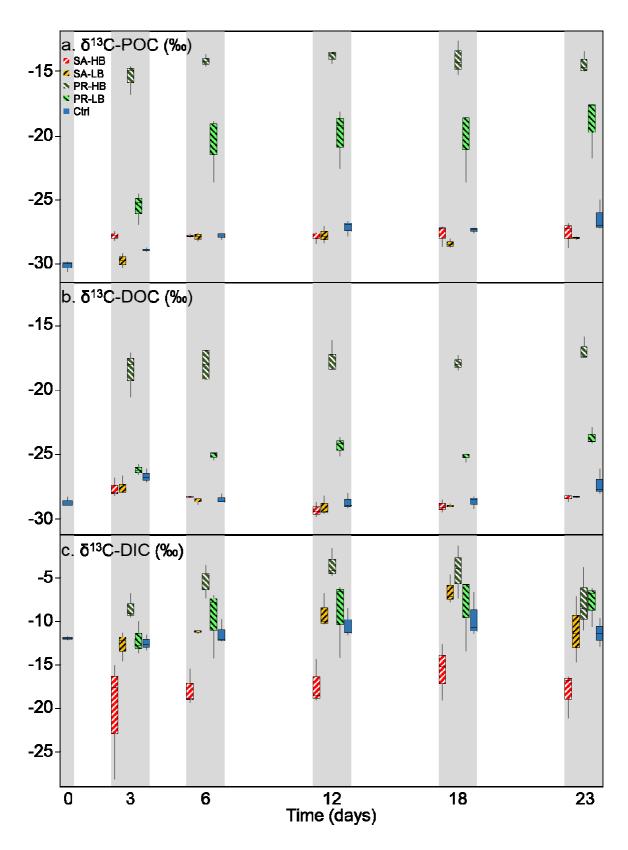


Fig. 4. Boxplot of δ^{13} C-POC (a.), δ^{13} C-DOC (b.) δ^{13} C-DIC (c.) in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue).

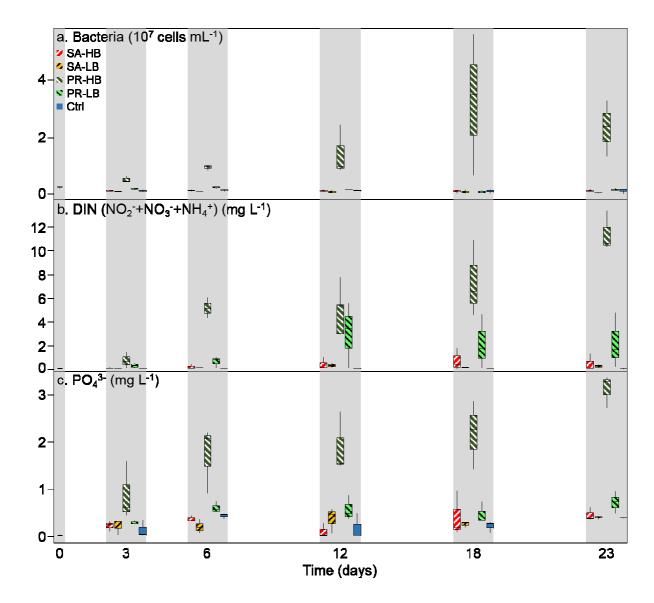


Fig. 5. Boxplot of bacteria abundances (a.), DIN (b.) and PO₄ (c.) concentrations in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue).

Table 1. FA concentrations and stable isotope compositions ($\delta^{13}C$ and $\delta^{15}N$) of POM (FA: $\mu g \ L^{-1}$) and macrophytes (FA: $mg \ g^{-1}$) collected in Camaleão várzea. In bold are the proportion of saturated (SFA), branched (BFA), monounsaturated (MUFA), polyunsaturated (PUFA) and long chain FA (LCFA).

	POM (µg L ⁻¹)	P. repens (mg g ⁻¹)	S. auriculata (mg g ⁻¹)
FA	$n=3 \pm S.D.$	$n=3 \pm S.D.$	$n=3 \pm S.D.$
12:0	2.25 ± 1.81	0.10 ± 0.02	$0.03 \pm 7 \cdot 10^{-3}$
13:0	0.39 ± 0.10	$1\ 10^{-3}\ \pm\ 5\ 10^{-4}$	$5 \cdot 10^{-3} \pm 1 \cdot 10^{-3}$

	1	2		
14:0	6.13 ± 1.61	$0.10 \pm 4 \cdot 10^{-3}$.05
15:0	2.25 ± 0.34	$0.03 \pm 2 \cdot 10^{-3}$.01
16:0	24.14 ± 3.95	3.69 ± 0.38		.28
17:0	0.75 ± 0.10	0.11 ± 0.01		.01
18:0	5.54 ± 1.83	0.74 ± 0.12		.05
19:0	0.31 ± 0.02	$4\ 10^{-3} \pm 2\ 10-3$	$7 \cdot 10^{-3} \pm 1$	10^{-3}
20:0	0.30 ± 0.09	0.19 ± 0.03	0.02 ± 5	10^{-3}
22:0	0.38 ± 0.14	0.37 ± 0.07	0.04 ± 4	· 10 ⁻³
%SFA	78.84 ± 1.76	43.77 ± 4.67		.23
14:0iso	0.55 ± 0.13	0.08 ± 0.02	$2 \cdot 10^{-3} \pm 1$	10 ⁻³
15:0anteiso	0.78 ± 0.15	0.05 ± 0.02	0.01 ± 1	10^{-3}
15:0iso	2.67 ± 0.68	0.06 ± 0.02	0.07 ± 5	10^{-3}
16:0iso	0.49 ± 0.12	$4\ 10^{-3}\ \pm\ 2\ 10^{-3}$	0.02 ± 3	10^{-3}
17:0anteiso	0.58 ± 0.18	$3\ 10^{-3}\ \pm\ 8\ 10^{-4}$	0.01 ± 2	10^{-3}
17:0iso	0.56 ± 0.13	0.21 ± 0.04		.01
%BFA	10.43 ± 0.76	3.23 ± 0.10		.18
16:1ω5	0.22 ± 0.03	$0.01 \pm 4 \cdot 10^{-3}$		10-4
16:1ω7	0.36 ± 0.32	$0.02 \pm 5 \cdot 10^{-3}$.02
16:1ω9	0.13 ± 0.07	0.28 ± 0.11	$4 \cdot 10^{-3} \pm 3$	10^{-3}
17:1	0.16 ± 0.06	0.01 ± 0.01	0.01 ± 2	10^{-3}
18:1ω5	0.03 ± 0.00	$n.d. \pm n.d.$.d.
18:1ω7	0.10 ± 0.04	0.06 ± 0.01	$5 \cdot 10^{-3} \pm 6$	10-4
18:1ω9	0.01 ± 0.01	$n.d. \pm n.d.$.d.
18:1ω9	$n.d. \pm n.d.$	0.21 ± 0.04		10-3
20:1ω11	$n.d. \pm n.d.$	$2 \cdot 10^{-3} \pm 5 \cdot 10^{-4}$.d.
		$8 \cdot 10^{-3} \pm 3 \cdot 10^{-3}$		
20:1ω9	n.d. ± n.d.	$8\ 10^{-3}\ \pm\ 3\ 10^{-3}$	n.d. ± n	.d.
20:1ω9 %MUFA	n.d. ± n.d. 1.83 ± 0.35	$8 \cdot 10^{-3} \pm 3 \cdot 10^{-3}$ 4.79 ± 0.66	$\begin{array}{ccc} n.d. & \pm & n \\ \hline 1.30 & \pm & 0 \end{array}$.d. .07
20:1ω9 %MUFA 16:4ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d.	$8 \cdot 10^{-3} \pm 3 \cdot 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02	$n.d. \pm n$ 1.30 ± 0 0.01 ± 4	.d. . 07 .10 ⁻³
20:1ω9 %MUFA 16:4ω3 18:2ω6	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38	$ \begin{array}{cccc} & \text{n.d.} & \pm & \text{n} \\ & \textbf{1.30} & \pm & \textbf{0} \\ & 0.01 & \pm & 4 \\ & 2 \cdot 10^{-3} & \pm & 9 \end{array} $.d. .07 .10 ⁻³ .10 ⁻⁴
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07	$ \begin{array}{cccc} & \text{n.d.} & \pm & \text{n} \\ & \textbf{1.30} & \pm & \textbf{0} \\ & 0.01 & \pm & 4 \\ & 2 & 10^{-3} & \pm & 9 \\ & 0.01 & \pm & 4 \\ \end{array} $	1.d. 10 ⁻³ 10 ⁻⁴ 10 ⁻³
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$	$\begin{array}{cccc} \text{n.d.} & \pm & \text{n} \\ \hline $	1.d. 1.07 1.10 ⁻³ 1.10 ⁻⁴ 1.10 ⁻³ 1.07
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d.	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$	$\begin{array}{ccccc} \text{n.d.} & \pm & \text{n} \\ \hline \textbf{1.30} & \pm & \textbf{0} \\ 0.01 & \pm & 4 \\ 2 & 10^{-3} & \pm & 9 \\ 0.01 & \pm & 4 \\ 0.08 & \pm & 0 \\ 1 & 10^{-3} & \pm & 2 \end{array}$	1.d. 1.07 1.10 ⁻³ 1.10 ⁻⁴ 1.10 ⁻³ 1.07 1.10 ⁻³
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$	$\begin{array}{ccccc} \text{n.d.} & \pm & \text{n} \\ \hline 1.30 & \pm & 0 \\ 0.01 & \pm & 4 \\ 2 & 10^{-3} & \pm & 9 \\ 0.01 & \pm & 4 \\ 0.08 & \pm & 0 \\ 1 & 10^{-3} & \pm & 2 \\ 4 & 10^{-3} & \pm & 2 \end{array}$	1.d. 1.07 10 ⁻³ 10 ⁻⁴ 10 ⁻³ 1.07 10 ⁻³ 10 ⁻³
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00	$\begin{array}{cccccc} \text{n.d.} & \pm & \text{n} \\ \hline $	1.d. 1.07 10 ⁻³ 10 ⁻⁴ 10 ⁻³ 1.07 10 ⁻³ 10 ⁻³ 10 ⁻³
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0	1.d. 1.07 1.10 ⁻³ 1.10 ⁻³ 1.07 1.10 ⁻³ 1.10 ⁻³ 1.03
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8	d.
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 3 10 ⁻³ \pm 8	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .03 .10 ⁻⁴
20:1ω9 *MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻⁴ .10 ⁻⁴
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01 0.10 ± 0.04	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω3 22:5ω6	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01 0.10 ± 0.04 2.22 ± 0.43	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01 0.10 ± 0.04 2.22 ± 0.43 0.39 ± 0.13	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$ $0.01 \pm 6 10^{-4}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .01 .d.
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3 %PUFA	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01 0.10 ± 0.04 2.22 ± 0.43 0.39 ± 0.13 8.61 ± 1.67	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$ $0.01 \pm 6 10^{-4}$ 41.57 ± 4.45	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .01 .d.
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3 %PUFA 24:0	n.d. \pm n.d. 1.83 \pm 0.35 n.d. \pm n.d. 0.10 \pm 0.08 0.12 \pm 0.01 0.11 \pm 0.06 n.d. 0.13 0.54 \pm 0.26 0.31 \pm 0.10 0.34 \pm 0.05 0.08 \pm 0.02 0.08 \pm 0.01 0.10 \pm 0.04 2.22 \pm 0.43 0.39 \pm 0.13 8.61 \pm 1.67 0.05 \pm 7 10 ⁻³	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$ $0.01 \pm 6 10^{-4}$ 41.57 ± 4.45	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2 0.01 \pm 0	.d. .07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .01 .d.
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3 %PUFA 24:0 25:0	n.d. \pm n.d. 1.83 \pm 0.35 n.d. \pm n.d. 0.10 \pm 0.08 0.12 \pm 0.01 0.11 \pm 0.06 n.d. 0.13 0.54 \pm 0.26 0.31 \pm 0.10 0.34 \pm 0.05 0.08 \pm 0.02 0.08 \pm 0.01 0.10 \pm 0.04 2.22 \pm 0.43 0.39 \pm 0.13 8.61 \pm 1.67 0.05 \pm 7 10 ⁻³ 0.12 \pm 0.01	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-4}$ 41.57 ± 4.45 0.55 ± 0.11 $0.04 \pm 5 10^{-3}$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2 0.02 \pm 6	.dd107 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻³ .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .01 .d40 .04
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3 %PUFA 24:0 25:0 26:0	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01 0.10 ± 0.04 2.22 ± 0.43 0.39 ± 0.13 8.61 ± 1.67 0.05 ± 7 10 ⁻³ 0.12 ± 0.01 n.d. ± n.d.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2 0.20 \pm 0 0.02 \pm 6 0.10 \pm 0	.dd107 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .01 .d10 ⁻⁴ .01 .d10 ⁻³ .03
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3 %PUFA 24:0 25:0 26:0	n.d. ± n.d. 1.83 ± 0.35 n.d. ± n.d. 0.10 ± 0.08 0.12 ± 0.01 0.11 ± 0.06 n.d. ± n.d. 0.13 ± 0.03 0.54 ± 0.26 0.31 ± 0.10 0.34 ± 0.05 0.08 ± 0.02 0.08 ± 0.01 0.10 ± 0.04 2.22 ± 0.43 0.39 ± 0.13 8.61 ± 1.67 0.05 ± 7 10 ⁻³ 0.12 ± 0.01 n.d. ± n.d. 0.28 ± 0.02	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$ $0.01 \pm 6 10^{-4}$ 41.57 ± 4.45 0.55 ± 0.11 $0.04 \pm 5 10^{-3}$ 0.23 ± 0.06 6.65 ± 0.57	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2 0.20 \pm 0 0.02 \pm 6 0.10 \pm 0 8.69 \pm 0	.d07 .10 ⁻³ .10 ⁻³ .07 .10 ⁻³ .07 .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .01 .d40 .04 .03 .91
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω6 20:4ω3 20:4ω6 20:5ω3 22:5ω6 22:6ω3 %PUFA 24:0 25:0 26:0 %LCFA δ¹³C (‰)	n.d. \pm n.d. 1.83 \pm 0.35 n.d. \pm n.d. 0.10 \pm 0.08 0.12 \pm 0.01 0.11 \pm 0.06 n.d. \pm n.d. 0.13 \pm 0.03 0.54 \pm 0.26 0.31 \pm 0.10 0.34 \pm 0.05 0.08 \pm 0.02 0.08 \pm 0.01 0.10 \pm 0.04 2.22 \pm 0.43 8.61 \pm 1.67 0.05 \pm 7 10 ⁻³ 0.12 \pm 0.01 n.d. \pm n.d. 0.28 \pm 0.02 -30.15 \pm 0.43	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$ $0.01 \pm 6 10^{-4}$ 41.57 ± 4.45 0.55 ± 0.11 $0.04 \pm 5 10^{-3}$ 0.23 ± 0.06 6.65 ± 0.57 -13.02 ± 0.81	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2 0.20 \pm 0 0.10 \pm 0 8.69 \pm 0 -30.53 \pm 0	.d07 .10 ⁻³ .10 ⁻⁴ .10 ⁻³ .07 .10 ⁻³ .07 .10 ⁻³ .10 ⁻³ .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .01 .d40 .04 .03 .91
20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3 20:3ω6 20:4ω6 20:5ω3 22:5ω3 22:5ω6 22:6ω3 %PUFA 24:0 25:0 26:0	n.d. \pm n.d. 1.83 \pm 0.35 n.d. \pm n.d. 0.10 \pm 0.08 0.12 \pm 0.01 0.11 \pm 0.06 n.d. \pm n.d. 0.13 \pm 0.03 0.54 \pm 0.26 0.31 \pm 0.10 0.34 \pm 0.05 0.08 \pm 0.01 0.10 \pm 0.04 2.22 \pm 0.43 0.12 \pm 0.01 n.d. \pm 1.67 0.05 \pm 7 10-3 0.12 \pm 0.01 n.d. \pm n.d. 0.28 \pm 0.02 -30.15 \pm 0.43 2.43 \pm 0.71	$8 10^{-3} \pm 3 10^{-3}$ 4.79 ± 0.66 0.12 ± 0.02 1.34 ± 0.38 3.60 ± 1.07 $4 10^{-3} \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.01 \pm 4 10^{-3}$ 0.03 ± 0.00 $0.01 \pm 1 10^{-3}$ $n.d. \pm n.d.$ $0.02 \pm 2 10^{-3}$ $4 10^{-3} \pm 2 10^{-4}$ $4 10^{-3} \pm 1 10^{-3}$ $0.04 \pm 6 10^{-3}$ $0.01 \pm 6 10^{-4}$ 41.57 ± 4.45 0.55 ± 0.11 $0.04 \pm 5 10^{-3}$ 0.23 ± 0.06 6.65 ± 0.57	n.d. \pm n 1.30 \pm 0 0.01 \pm 4 2 10 ⁻³ \pm 9 0.01 \pm 4 0.08 \pm 0 1 10 ⁻³ \pm 2 4 10 ⁻³ \pm 2 0.01 \pm 6 0.04 \pm 0 3 10 ⁻³ \pm 8 9 10 ⁻⁴ \pm 3 3 10 ⁻³ \pm 1 0.05 \pm 0 n.d. \pm n 5.68 \pm 2 0.20 \pm 0 0.10 \pm 0 8.69 \pm 0 -30.53 \pm 0	.d07 .10 ⁻³ .10 ⁻³ .07 .10 ⁻³ .07 .10 ⁻³ .03 .10 ⁻⁴ .10 ⁻⁴ .10 ⁻⁴ .01 .d40 .04 .03 .91

557

Table 2. Summary of ANOSIM pairwise tests for FA composition of POM between treatments. Values in italics (R < 0.3) are for high intragroup variability.

Groups	R	p value		
PR-HB : Ctrl	0.80	< 10 ⁻³		
PR-HB: PR-LB	0.73	< 10 ⁻³		
PR-HB: SA-HB	0.75	< 10 ⁻³		
PR-HB: SA-LB	0.82	$< 10^{-3}$		
PR-LB: Ctrl	0.27	$< 10^{-3}$		
PR-LB : SA-HB	0.07	0.06^{NS}		
PR-LB: SA-LB	0.11	< 10 ⁻³		
SA-HB: Ctrl	0.04	0.15^{NS}		
SA-HB : SA-LB	0.04	0.11^{NS}		
SA-LB: Ctrl	0.15	0.01		
NS - non-significant				

NS = non-significant

Table 3. Intragroup similarity of FA compositions in different treatments, and percentages of FA explaining most of this similarity (SIMPER procedure).

Treatment (intragroup similarity)	14:0	15:0iso	15:0anteiso	15:0	16:0	18:0	22:5ω6	Σ (%)
PR-HB (77.3 %)	6.5	11.2	6.3	3.9	44.1	4.9	5.1	76.8
PR-LB (85.1 %)	8.7	6.8	1.6	3.7	33.7	12.7	4.5	73.7
SA-HB (82.6 %)	8.8	3.9	1.5	3.4	37.1	13.8	5.0	75.4
SA-LB (81.7 %)	9.4	3.4	1.4	3.5	33.0	13.2	4.0	71.7
Ctrl (83.7 %)	8.5	3.8	1.4	3.3	39.4	14.3	4.9	77.7

563

Table 4. Summary of KW and MWW pairwise tests for δ^{13} C-POC, δ^{13} C-DOC, δ^{13} C-DIC; POC, DOC, DIN, PO₄³⁻ concentrations and bacterial abundances of water samples between treatments.

10 ⁻⁹
10
< 10 ⁻⁴
0.15^{NS}
0.06^{NS}
0.01
0.33^{NS}
0.12^{NS}
0.04

567 NS = non-significant.