

The fate of C 4 and C 3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

J.M. Mortillaro, C. Passarelli, G. Abril, C. Hubas, Patrick Albéric, L.F. Artigas, M.F. Benedetti, N. Thiney, P. Moreira-Turcq, M.A.P. Perez, et al.

▶ To cite this version:

J.M. Mortillaro, C. Passarelli, G. Abril, C. Hubas, Patrick Albéric, et al.. The fate of C 4 and C 3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment. Limnologica, 2016, 59, pp.90-98. 10.1016/j.limno.2016.03.008 . insu-01321951

HAL Id: insu-01321951 https://insu.hal.science/insu-01321951

Submitted on 30 May 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Accepted Manuscript

Title: The fate of C_4 and C_3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

Author: J.M. Mortillaro C. Passarelli G. Abril C. Hubas P. Alberic L.F. Artigas M.F. Benedetti N. Thiney P. Moreira-Turcq M. Perez L.O. Vidal T. Meziane

 PII:
 S0075-9511(16)30022-6

 DOI:
 http://dx.doi.org/doi:10.1016/j.limno.2016.03.008

 Reference:
 LIMNO 25510

To appear in:

 Received date:
 15-5-2015

 Revised date:
 1-3-2016

 Accepted date:
 6-3-2016

Please cite this article as: Mortillaro, J.M., Passarelli, C., Abril, G., Hubas, C., Alberic, P., Artigas, L.F., Benedetti, M.F., Thiney, N., Moreira-Turcq, P., Perez, M., Vidal, L.O., Meziane, T., The fate of C4 and C3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment.Limnologica http://dx.doi.org/10.1016/j.limno.2016.03.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The fate of C_4 and C_3 macrophyte carbon in central Amazon floodplain waters: insights from a batch experiment

J.M. Mortillaro^{1*}, C. Passarelli¹, G. Abril^{2,3}, C. Hubas¹, P. Alberic⁴, L.F. Artigas⁵, M.F. Benedetti⁶, N. Thiney¹, P. Moreira-Turcq⁷, M. Perez^{3,6}, L.O. Vidal⁸, T. Meziane¹

 Unité Mixte de Recherche Biologie des organismes et écosystèmes aquatiques (BOREA UMR 7208), Sorbonne Université, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse-Normandie, CNRS, IRD, CP53, 61 rue Buffon 75005 Paris, France

Laboratoire Environnement et Paléoenvironnements Océanique (EPOC) UMR-CNRS
 5805, Université de Bordeaux, Allée Geoffroy Saint-Hilaire 33615 Pessac, France

3 Universidade Federal Fluminense, Department of Geochemistry, Niteroi, Rio de Janeiro, Brazil

4 Institut des Sciences de la Terre d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France

5 Laboratoire d'Océanologie et Géosciences (LOG), UMR-CNRS-ULCO-UL1 8187, Université du Littoral Côte d'Opale (ULCO), 32 avenue Foch, 62930 Wimereux, France

6 Equipe Géochimie des Eaux, Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, 75205 Paris Cedex 13, France

7 Institut de Recherche pour le Développement, 32 avenue Henri Varagnat, 93143Bondy, France

8 Laboratório de Ecologia Aquática, Departamento de Biologia, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, MG 36036-900 Juiz de Fora, Brazil

* Corresponding author: Tel: +33 4 6761 4467

E-mail: jean-michel.mortillaro@cirad.fr

Abbreviated title: Degradation of central Amazon macrophytes

Keywords: Central Amazon, floodplains, fatty acids, stables isotopes, macrophytes,

degradation

1 Summary

- 2 The central Amazon floodplains are particularly productive ecosystems, where a large
- 3 diversity of organic carbon sources are available for aquatic organisms. Despite the fact that
- 4 C_4 macrophytes generally produce larger biomasses than C_3 macrophytes, food webs in the
- 5 central Amazon floodplains appear dominantly based on a C₃ carbon source.
- 6 In order to investigate the respective fate and degradation patterns of C₄ and C₃ aquatic plant-
- 7 derived material in central Amazon floodplains, we developed a 23-days batch experiment.
- 8 Fatty acid and carbon concentrations as well as stable isotope compositions were monitored
- 9 over time in 60 L tanks. These tanks contained Amazon water, with different biomasses of C_3
- 10 and C₄ macrophyte, representative of *in situ* densities occurring in central Amazon
- 11 floodplains.
- 12 In the C₄ Paspalum repens treatments, organic (POC, DOC) and inorganic carbon (DIC) got
- 13 rapidly enriched in 13 C, whereas in the C₃ Salvinia auriculata treatments, POC and DOC
- 14 showed little change in concentration and isotopic composition, and DIC got depleted in 13 C.
- 15 The contribution of *P. repens* to POC and DOC was estimated to reach up to 94.2 and 70.7 %,
- 16 respectively. In contrast, no differences were reported between the C₃ S. auriculata and
- 17 control treatments, an observation attributed to the lower C_3 biomass encountered in the field,
- 18 to a slower degradation rate of C_3 compared to C_4 compounds, and to similar isotopic
- 19 compositions for river POC and DOC, and C₃ compounds.
- 20 The ¹³C enrichments of POC, DOC, and DIC from *P. repens* treatments were attributed to an
- 21 enhanced bacterially-mediated hydrolysis and mineralization of C₄ material. Evolutions of
- 22 bacterial abundance and branched fatty acid concentrations confirmed the role of
- 23 heterotrophic microbial communities in the high *P. repens* decomposition rate. Our
- 24 experiment highlights the predominant role of C₄ aquatic plants, as a large source of almost
- 25 entirely biodegradable organic matter available for heterotrophic activity and CO₂ outgassing
- to the atmosphere.
- 27

27

28 Introduction

One of the largest sources of organic carbon in Amazon floodplains is derived from aquatic 29 macrophytes, which contribute up to half of the ecosystem primary production (Melack & 30 31 Forsberg, 2001). These macrophytes grow emerged, submerged or floating, with 388 species described in a várzea (i.e. white-water nutrient rich floodplain) located near the city of 32 33 Manaus, in central Amazon (Junk & Piedade, 1993b). Among the most abundant species, the floating grasses Echinochloa polystachya and Paspalum fasciculatum (Poaceae family) can 34 reach biomasses of 80 and 60 t ha⁻¹, respectively (Junk & Piedade, 1993a; Piedade et al., 35 1991). Another macrophyte largely represented in the várzea is *P. repens* (up to 22 t ha⁻¹, 36 Fig. 1, Junk & Piedade, 1993a). These aerial species, which convert atmospheric carbon 37 dioxide into biomass through a C₄ pathway, constitute floating meadows that can extend over 38 large areas of floodplains (Junk & Howard-Williams, 1984; Hess et al., 2003; Silva et al., 39 2013). Amazon floating meadows may also be composed of macrophytes using the C_3 40 41 photosynthetic pathway such as Eichhornia sp., Pistia stratiotes and Salvinia auriculata (Fig. 1). However, the biomass of all these C_3 macrophytes add up to 3 to 15 t ha⁻¹ only 42 43 (Furch & Junk, 1992). The ecology of C_3 and C_4 macrophytes, and particularly their biomass and production rates, 44 45 have been thoroughly examined (e.g. Morison et al., 2000; Engle et al., 2008; Silva et al., 2013). Despite their large abundance, C₄ macrophytes constitute a minor source of energy for 46 47 Amazon aquatic food webs (Hamilton et al., 1992; Forsberg et al., 1993; Mortillaro et al., 2015) and modest contributors to particulate organic carbon (POC, Hedges et al., 1986; 48 Mortillaro et al., 2011; Moreira-Turcq et al., 2013). Indeed, C₄ macrophytes are largely ¹³C 49 enriched (-12 ‰, Hedges et al., 1986; Mortillaro et al., 2011) compared to POC in rivers and 50 51 várzea of the Amazon (-30 ‰, Quay et al., 1992; Hedges et al., 1994). The almost constant 52 isotopic composition of dissolved organic carbon (DOC), at around -29 ‰ in the Amazon River, suggests a dominant C₃ source such as terrestrial plants and/or macrophytes. In 53 contrast, dissolved inorganic carbon (DIC) is much heavier (-17.7 to -11.5 ‰, Quay et al., 54 1992), i.e. closer to C₄ macrophytes signature, but also closer to the signature of atmospheric 55

56 CO_2 . This isotopic composition results from isotopic equilibration induced by CO_2 gas

57 exchange (Quay et al., 1992; Hedges et al., 1994; Mayorga et al., 2005; Abril et al., 2014),

and/or due to carbonate mineral weathering (e.g. chemical or mechanical decay of rocks,

59 Mayorga et al., 2005).

Previous macrophyte (C_3 and C_4) degradation experiments in litterbags, exposed to natural 60 weathering, found an initially rapid loss of weight and a decrease in nutrients 61 (Howard-Williams & Junk, 1976; Furch & Junk, 1992). However, the contribution of 62 macrophytes to the Amazon aquatic food webs was not verified by Fellerhoff et al. (2003) in 63 64 their degradation experiment. Therefore, in order to examine the apparent discrepancy between the high biomass of C₄ macrophytes in the floodplains and their modest contribution 65 to the organic matter (OM) pool in the Amazon river-floodplain ecosystem, a degradation 66 experiment was designed to investigate the fate of carbon from C₄ and C₃ macrophytes in 67 microcosms. Particulate and dissolved carbon concentrations, stable isotope compositions and 68 fatty acids (FA) concentrations, were analyzed in large volumes of Amazon waters incubated 69 70 with variable amounts of a C₄ and a C₃ macrophyte. Bacterial abundance and nutrient concentrations complemented the description of macrophyte degradation throughout a 23-day 71 72 experiment. Our work hypothesis was that very fast decomposition and mineralization of C₄ 73 macrophytes explain their low contribution to central Amazon aquatic food webs.

74

75 Material and methods

76 Sampling

77 In order to follow the fate of OM during the degradation of two aquatic macrophytes and the

influence of degradation products on the quality of POM, samples of *P. repens* (C_4) and

79 *S. auriculata* (C₃, Fig. 1) were collected in the Camaleão Lake (várzea), located by the

80 Solimões River. These two macrophytes were selected for their widespread distribution in

81 central Amazon floodplains and their large FA concentration compared to other macrophyte

82 species (i.e. *Eichhornia* sp. and *Pistia stratiotes*), as characterized in a previous study

83 (Mortillaro et al., 2011).

84 Macrophyte samples were sorted in order to eliminate dead leaves and washed to remove

sediment and invertebrates. About 900 L of water were also sampled from the lake and

distributed into 15 microcosms of 60 L each. Three water samples and three portions of each

87 macrophyte were collected in order to get their initial composition (i.e. stable isotopes and

88 FA).

89 Experimental setup

90 The experiment was implemented on the *Yane José IV* boat in August-September 2010. Five

91 experimental treatments were used: high and low biomasses of *P. repens* (PR-HB and PR-LB,

92 respectively) and S. auriculata (SA-HB and SA-LB, respectively), as well as a control

without macrophyte (Ctrl). These five treatments were selected to distinguish species effect 93 from biomass effect on water characterization. For each treatment, triplicate microcosms were 94 used. In PR-HB microcosms, 250 g of fresh P. repens leaves (25.6 gC) were used. This 95 amount was estimated from a maximum dry biomass of 22 t ha⁻¹ (recorded in the Janauari 96 Lake near Camaleão Lake, Junk & Piedade, 1993a), with less than one fifth of emerged 97 P. repens biomass (Silva et al., 2009), an estimated water proportion of 75.9 % and a 98 microcosms surface of 0.13 m². Similarly, the mean S. auriculata dry biomass was estimated 99 to be 1 t ha⁻¹ (Junk & Piedade, 1997) giving a theoretical wet weight of 200 g (93.5 % of 100 water). However, low biomasses of *S. auriculata* were available during sampling, so that only 101 100 g (2.3 gC) per microcosm were used (SA-HB). Low biomass treatments contained 10 % 102 of the high biomass amount for each species (25 g of macrophytes for PR-LB and 10 g for 103 104 SA-LB). Macrophyte leaves were introduced into microcosms filled with floodplain water, 105 and were kept in the dark under constant temperature conditions (28 °C). Permanent stirring with a water pump ensured oxygenation of the microcosms (from 40 to 100 % air-saturation) 106 107 and avoided anaerobic conditions to occur. Although low dissolved oxygen is common under floating macrophytes in várzea (~50 % saturation, Engle & Melack, 1993), permanent 108 109 oxygenation was maintained in order to match natural conditions within floating meadows in open waters, where wind and water currents are sufficient to maintain aerated to hypoxic 110 111 waters (30 % min) in 2-6 meter depth water column (Vidal et al., 2015). In each treatment, samples were collected after 3, 6, 12, 18 and 23 days of experiment. At 112 113 each sampling time, around 3.5 L of water were collected and pre-filtered on 200 µm to avoid heterogeneity between samples due to contamination with macrophyte fragments. 114 Consequently, POC concentrations reported here concern the fraction smaller than 200 µm. 115 Microcosms volume (60 L) was chosen so that at the end of the experiment, 70 % of the 116 117 initial water volume was still available, to avoid any concentration bias in the course of the 118 experiment. 119 Sample analyses 120 The FA compositions of POM and macrophytes were analyzed with a gas chromatograph 121 (Varian CP-3800 with flame ionization detector) after extraction, following a modified method of Bligh & Dyer (1959) as described in Mortillaro et al. (2011). POM samples were 122

123 obtained after immediate on-board filtration (GF/F, 0.7 μ m, pre-combusted 12 h at 450 °C)

- 124 using a vacuum system under low pressure, after which filters were freeze dried and stored at
- 125 -20 °C until analysis. The carbon and nitrogen compositions, and isotopic ratio $({}^{13}C/{}^{12}C$ or
- 126 15 N/14N), of dried POM and macrophyte samples were determined at the UC Davis Stable

- 127 Isotope Facility and reported in standard delta notation (δ^{13} C or δ^{15} N), defined as parts per
- thousand (‰) deviation from a standard (Vienna PeeDee Belemnite for δ^{13} C and atmospheric
- 129 N₂ for δ^{15} N, Peterson & Fry, 1987). The DOC concentrations and isotopic compositions
- 130 (δ^{13} C-DOC) were determined using an EA-IRMS analyzer following the protocol of Alberic
- 131 (2011). The DIC isotopic compositions (δ^{13} C-DIC) were also determined using an EA-IRMS
- 132 analyzer following the protocol of Bouillon et al. (2007). However, DIC concentrations were
- 133 not measured, as microcosms were continuously aerated with pumps. The concentration of
- 134 nitrites (NO_2^-) , nitrates (NO_3^-) and ammonium (NH_4^+) dissolved fractions, summarized as
- 135 DIN (dissolved inorganic nitrogen), as well as orthophosphate concentrations (PO_4^{3-}) were
- 136determined by spectrophotometry following a modified method of Grasshoff (1999). Total
- 137 bacterial abundances were determined by direct epifluorescence microscopy counting, using
- 138 4,6-diamidino-2-phenyl-indole (DAPI) up to a final concentration of $1 \mu g m L^{-1}$ after 15 min
- 139 of incubation (Porter & Feig, 1980). Direct counts were performed at 1 250x magnification,
- 140 under an epifluorescence microscope (Leica Leitz DMR; 365 nm). In turbid samples (high
- 141 suspended matter content), subsamples were pre-treated (before staining) by addition of
- 142 150 μ l of Tween, sonicated at 35 khz for 5 min, and centrifuged at 3 000 g during 10 min at
- 143 4 °C (Chevaldonne & Godfroy, 1997; Hubas et al., 2007a, 2007b).
- 144 Data analysis

145 The data obtained for each microcosm were compared, to evidence variations between

- 146 treatments. All FA of POM (up to 40) were used in these analyzes without transformation and
- 147 were represented by their relative proportions. A dissimilarity matrix between each pair of
- 148 samples was calculated using the Bray-Curtis index. Dissimilarities between samples were
- 149 then graphically represented using an nMDS (non-metric MultiDimensional Scaling, Zuur et
- al., 2007). Differences between groups were tested using analyzes of similarities tests
- 151 (ANOSIM, Oksanen et al., 2010), without considering temporal variability. When differences
- 152 were significant, a similarity percentages analysis (SIMPER, Oksanen et al., 2010) was used
- 153 to determine the relative contribution of each FA to differences between two groups.
- 154 The differences in the isotopic compositions (δ^{13} C-DOC, δ^{13} C-POC, δ^{15} N-PON and
- 155 δ^{13} C-DIC) as well as differences in POC, DOC, DIN, PO₄³⁻ concentrations and bacterial
- abundance between treatments (n = 5) were tested using a non-parametric Kruskal-Wallis test
- 157 (KW). Non-parametric Mann-Whitney-Wilcoxon (MWW) Post-Hoc tests were then used to
- 158 identify the differences between individual treatments, after correction following a Benjamini
- and Hochberg (BH) procedure for multiple comparisons (Benjamini & Hochberg, 1995).

160 The relative contribution of C₄ macrophytes to POM was calculated using a two end member
161 mixing model (Forsberg et al., 1993):

162
$$\%C_4 = \left[1 - \frac{\delta^{13}C_{source} - \delta^{13}C_{C_4}}{\delta^{13}C_{T_0} - \delta^{13}C_{C_4}}\right] \times 100$$
 (Eq. 1)

163 where $\delta^{13}C_{\text{source}}$ was the $\delta^{13}C$ -POC compositions for each time and treatment, $\delta^{13}C_{C_4}$ was the 164 mean *P. repens* composition, $\delta^{13}C_{T_0}$ was the mean POM composition at the beginning of the 165 experiment and % C₄ the *P. repens* contribution to the isotopic compositions of OM in each 166 sample.

167 All statistical analyzes were implemented within the R programming environment (R

168 Development Core Team 2010, package Vegan, Oksanen et al., 2010), with the probability α

169 set at 0.05.

170

171 **Results**

- 172 Among macrophyte samples, 41 FA were identified (Table 1) with an intragroup similarity of
- 173 92.5 and 93.2 % within *P. repens* and *S. auriculata*, respectively, at the beginning of the
- 174 experiment. *P. repens* was ¹³C and ¹⁵N enriched compared to *S. auriculata* (Table 1).
- 175 The water collected in the várzea was characterized by 37 FA (Table 1), where saturated 14:0,
- 176 15:0, 16:0 and 18:0 accounted for 70 % of the total FA composition of POM. The POC and
- 177 DOC concentrations were respectively of 1.3 ± 0.1 and 2.8 ± 0.3 mg L⁻¹ (Fig. 3), with a
- 178 carbon isotopic composition of -30.1 \pm 0.4 ‰ for POC and -28.7 \pm 0.4 ‰ for DOC (Fig. 4).
- 179 DIC was ¹³C enriched relative to POC and DOC (δ^{13} C-DIC of -11.9 ± 0.2 ‰, Fig. 4).
- 180 Water from the five treatments showed significant differences in their global FA compositions
- 181 (ANOSIM, R = 0.35, p < 0.001, Fig. 2). Samples from Ctrl, SA-LB, SA-HB, and PR-LB had
- 182 a similar FA composition but differed from samples of PR-HB (Table 2). Similarities in the
- 183 FA composition within each treatment were higher than 77 % (Table 3). A higher proportion
- 184 of branched FA (mainly 15:0iso and 15:0anteiso) and a lower proportion of 18:0 were
- 185 observed in PR-HB compared to other treatments (Table 3). The concentrations of POC,
- 186 DOC, DIN, PO₄³⁻ as well as δ^{13} C-POC, δ^{13} C-DOC, δ^{13} C-DIC and bacterial abundance
- 187 displayed significant differences between treatments (KW, p < 0.001, Table 4, Figs. 3-5),
- 188 whereas δ^{15} N-PON was similar between all treatments (KW, p = 0.73).
- 189 The highest concentrations of POC, DOC, DIN, PO_4^{3-} and highest bacterial abundance, were
- 190 observed in PR-HB (Figs. 3 & 5, Table 4). However, a higher POC concentration was

recorded in SA-HB compared to PR-LB and SA-LB (Table 4, Fig. 3). No differences in DOC 191 concentration were observed between SA-HB, PR-LB and Ctrl, whereas SA-LB displayed the 192 lowest DOC concentration. In contrast, the δ^{13} C-POC was significantly higher in PR-HB 193 $(-14.3 \pm 1.0 \text{ })$ and in PR-LB $(-21.0 \pm 3.1 \text{ })$ compared to other treatments (Fig. 4, Table 4). 194 However, no difference was found between the isotopic compositions of SA and Ctrl 195 196 treatments (MWW, p > 0.05, Table 4). The contribution of *P. repens* to the ¹³C enrichment recorded in POC from PR-HB and PR-LB reached 94.2 and 63.2 %, respectively (Fig. 4, 197 Eq. 1). Similarly, the highest δ^{13} C-DOC was recorded in PR-HB (-17.8 ± 1.2 ‰) with a 198 contribution of *P. repens* to the DOC of 70.7 % (Fig. 4, Eq. 1). A higher δ^{13} C-DOC was also 199 observed in PR-LB (-24.9 \pm 1.0 ‰, Fig. 4, Table 4) compared to SA-HB and SA-LB, with a 200 contribution of *P. repens* to the DOC reaching 27.8 %. A significant increase in δ^{13} C-DIC was 201 only recorded for PR-HB (-5.9 \pm 2.9 ‰, Fig. 4, Table 4), concomitantly to a decrease in 202 δ^{13} C-DIC for SA-HB (-17.8 ± 3.7 ‰, Fig. 4, Table 4). In contrast, no differences were found 203 between the Ctrl with both SA and PR low biomass treatments (MWW, p > 0.05, Table 4). 204 δ^{13} C of organic and inorganic matters increased after 3 to 6 days in PR treatments, whereas no 205 temporal trends were recorded for Ctrl and SA treatments except for δ^{13} C-DIC of SA-HB 206 207 (Fig. 4).

208

209 **Discussion**

- 210 The present microcosm experiment highlights significantly different degradation patterns of 211 two C₃ and C₄ Amazon macrophytes. Over a 23 day experiment, our results revealed a major impact of P. repens degradation, at high biomass, on OM composition. This impact was 212 apparently related to the biomass of macrophytes used in the experiment as well as to the 213 inherent biodegradability of C₄ compared to C₃ macrophytes. Indeed, even though the fast 214 degradation of the C₄ macrophyte was most evident in PR-HB, as revealed by all measured 215 parameters, it was also observed in the PR-LB. For instance, PR-LB treatments (25 g of fresh 216 macrophytes in a 60 L tank) showed stronger ¹³C enrichment in POC and DOC than SA-HB 217 (100 g of macrophytes in a 60 L tank). There was however a slight increase in POC 218 concentrations as well as a decrease in δ^{13} C-DIC in the *S. auriculata* high biomass treatments 219
- that reveals on-going degradation.
- 221 In this experiment, *P. repens* displayed large proportions of 18:2ω6 and 18:3ω3
- 222 polyunsaturated FA (up to 44 % of total FA), which is consistent with previous
- 223 characterization of this FA as markers of macrophytes in this environment (Mortillaro et al.,

- 224 2011). Similarly, carbon stable isotope compositions of both *P. repens* and *S. auriculata* were
- 225 consistent with those expected from plants with C4 and C3 photosynthetic pathways
- 226 (-13.0 \pm 0.8 and -30.5 \pm 0.5 ‰, respectively, Smith & Epstein, 1971).
- 227 Contribution of P. repens (C_4) and S. auriculata (C_3) to POM
- In PR treatments, POC was significantly enriched in 13 C, which indicates a contribution of *P*.
- *repens*, after its hydrolysis into the POM pool. This contribution was estimated to reach 94.2
- and 63.2 % of total POM composition for PR-HB and PR-LB, respectively, using a two-end-
- 231 member mixing model. This was surprising as previous studies, characterizing POM in the
- 232 Amazon Basin, suggested a low contribution of C_4 macrophytes (Hedges et al., 1986;
- 233 Mortillaro et al., 2011; Moreira-Turcq et al., 2013). The contribution of *P. repens* to POM
- was confirmed by the increased proportion of branched FA in PR treatments (15:0iso and
- 235 15:0anteiso). These FA are regularly described as biomarkers of bacteria (Volkman et al.,
- 1980; Kaneda, 1991; Mfilinge et al., 2003) and suggest here that in addition to hydrolysis,
- 237 *P. repens* leaves were decomposed by heterotrophic microbial communities. Indeed, the
- transfer of FA to POM, including branched FA, was previously recorded from decomposing
- mangroves (Mfilinge et al., 2003). Similarly, the transfer of FA and the ¹³C enrichment of
- 240 POM and sediments were evidenced in salt-marsh from the decomposition of the C₄ Spartina
- spp. (Boschker et al., 1999). In salt-marsh ecosystems, the composition of POM affected by
- 242 *Spartina* spp. decomposition changed from predominantly unsaturated to branched and
- saturated FA typical of bacteria (Johnson & Calder, 1973; Schultz & Quinn, 1973). Similar
- ²⁴⁴ findings were reported in PR-HB and differences in FA compositions and ¹³C enrichments
- reported for OM between PR and Ctrl treatments occurred in the first 3 to 6 days of the
- 246 experiment. These changes in OM composition, as well as high bacterial abundance recorded
- 247 in PR-HB, suggest a fast decomposition of this macrophyte, which may have exceeded
- 248 hydrolysis (in agreement with previous studies; Fellerhoff et al., 2003).
- 249 Contrastingly to *P. repens*, no differences were reported between SA and Ctrl treatments for
- 250 FA and δ^{13} C-POC. Yet, decomposition of *S. auriculata* could not be excluded using
- 251 δ^{13} C-POC analyses. Indeed, fresh leaves of *S. auriculata* (-30.5 ± 0.5 ‰) had a similar
- composition to POM (-30.1 \pm 0.4 ‰) at the beginning of the experiment. However, the higher
- 253 POC concentrations measured in SA-HB compared to PR-LB and SA-LB suggest an effective
- 254 hydrolysis of this macrophyte. The lack of differences between SA and Ctrl treatments for FA
- 255 compositions and δ^{13} C-POC suggest however a slower hydrolysis of *S. auriculata* compared
- to P. repens. Indeed, Howard-Williams & Junk (1976) recovered 50 % of S. auriculata initial
- dry weight at the end of a 186 days decomposition experiment. Similarly, Fellerhoff et al.

- 258 (2003) recovered 80 % of *S. auriculata* initial dry weight after 21 days of incubation. During
- 259 our experiment, large macrophyte debris were observed for a much longer time in the
- 260 S. auriculata treatments than in the P. repens treatments. This higher resistance to
- 261 fractionation of the C₃ macrophyte was consistent with the differences in FA, POC and
- 262 δ^{13} C-POC of the fine POM fraction (<200 µm).
- 263 Impact of macrophyte degradation on dissolved compounds
- 264 Decomposition of *P. repens* tissues led to a ¹³C enrichment of DOC and DIC. Such increase
- 265 of δ^{13} C-DIC resulted from bacterial mineralization of macrophyte organic carbon and CO₂
- 266 equilibration at the air/water interface (Quay et al., 1992; Hedges et al., 1994; Mayorga et al.,
- 267 2005). Because the experiment was performed in contact with air in order to maintain aerobic
- 268 conditions, the δ^{13} C-DIC signature was affected by isotopic equilibration with the
- atmosphere. This process tends to slowly increase the δ^{13} C-DIC to a value close to the
- isotopic equilibrium with the atmosphere at around 0 ‰ (Polsenaere & Abril, 2012).
- 271 Consequently, the observed δ^{13} C-DIC values are the result of a balance between the DIC
- 272 production from the C_3 or C_4 plants decomposition and equilibration with the atmosphere. In
- 273 SA-HB, the rapid δ^{13} C-DIC decrease from -11.9 ± 0.2 ‰ at the beginning of the experiment
- to -20.3 ± 7.0 ‰ after 3 days of incubation reveals that the C₃ macrophytes were undergoing
- 275 mineralization processes. Indeed, hydrolysis tends to leach out compounds relatively enriched
- 276 in ¹³C with respect to more recalcitrant compounds (e.g. lignin) depleted in ¹³C (Costantini et
- 277 al., 2014).
- 278 Previous works in the Amazon have attributed ¹³C enrichment of DIC to the preferential
- 279 oxidation of organic carbon derived from C₄ macrophytes (Rai & Hill, 1984; Chanton et al.,
- 280 1989; Quay et al., 1992; Waichman, 1996). Several other studies based on solute distribution
- suggested that C_4 grasses are more biodegradable than the bulk OM (Hedges et al., 1986;
- 282 Quay et al., 1992; Mayorga et al., 2005). Ellis et al. (2012) have measured the δ^{13} C of respired
- 283 CO₂ in closed incubations at different stages of the hydrological cycle in the Solimões River
- and concluded that C₃ plants, C₄ plants and phytoplankton, all contributed to respiration in the
- 285 Amazon River. The results of our incubations suggest however that high macrophyte
- biomasses are necessary in order to significantly alter the δ^{13} C-DIC signature locally.
- 287 Besides carbon, the nitrogen (N) and phosphorus (P) concentrations in floodplain waters were
- also affected by the decomposition and mineralization of macrophytes. A large release of PO₄,
- 289 DIN and potassium (K) was previously evidenced during the decomposition of
- 290 P. fasciculatum (Furch & Junk, 1992). The decomposition of P. fasciculatum had the potential
- to supply floodplains with 242 kg ha⁻¹ of N and 66 kg ha⁻¹ of P in Furch & Junk (1992)

- 292 nutrients budget. Following these authors' calculations (i.e. maximum amounts of bio-
- 293 elements released to water reported to maximum macrophyte biomasses), *P. repens* showed
- the potential, in our degradation experiment, to supply floodplains with 176.4 kg ha⁻¹ of N and
- 48.2 kg ha⁻¹ of P. On the other hand, *S. auriculata* contribution to floodplains is estimated to
- reach 0.13 kg ha⁻¹ of N and 2.44 kg ha⁻¹ of P only. Therefore, our study demonstrates that
- 297 *P. repens* represents a predominant source of N and P.
- 298 Fast nutrient recycling from decomposing macrophytes may fertilize Amazon floodplains,
- where N and P are growth-limiting factors (Devol et al., 1984; Forsberg, 1984; Setaro &
- 300 Melack, 1984). Within the Amazon Basin, aquatic grasses such as *P. repens* have been
- 301 suggested to be able of atmospheric N₂ fixation (Martinelli et al., 1992), so that atmospheric
- 302 N₂ may contribute up to 90 % of plant N for stands of *P. repens* (Kern & Darwich, 2003).
- 303 Therefore, the fast decomposition of N_2 fixing macrophytes may play a predominant role as a
- natural fertilizer for floodplains (Piedade et al., 1991; Kern & Darwich, 2003), stimulating
- 305 phytoplankton production during the falling water period, when macrophytes start to
- decompose (Rai & Hill, 1984).
- 307 In Amazon floodplains, *P. repens* maximum biomasses were observed during the wet season
- 308 (Junk & Piedade, 1993b, Silva et al., 2009), where C_4 macrophyte contribution to the primary
- 309 production in várzea was estimated to reach 65 % (Melack & Forsberg, 2001). During this
- 310 season, POC and DOC mainly originate from depleted carbon sources similar to C₃ primary
- 311 producers (Hedges et al., 1994, Mortillaro et al., 2011). However during the dry season,
- 312 macrophytes are subject to intensive degradation as water level decreases (Engle et al., 2008).
- 313 An increasing contribution of macrophytes to OM composition, due to the accumulation of
- 314 plant detritus, was suggested in the Amazon várzea (Mortillaro et al., 2011). However,
- although macrophytes have been demonstrated experimentally to affect the δ^{13} C-POC and
- 316 δ^{13} C-DOC, fast microbial mineralization of organic carbon suggests that only large
- 317 macrophyte biomasses, produced during the flood season, have the potential to affect
- 318 δ^{13} C-POC and δ^{13} C-DOC within floodplains. Indeed, C₄ material may contribute to sediments
- 319 OM composition (Sobrinho et al., 2016) according to spatial variability in C₄ macrophytes
- 320 (Hess et al., 2003), despite a low burial of organic carbon in floodplain sediments (Moreira-
- 321 Turcq et al., 2004). Therefore, most C₄ macrophytes are mineralized (Piedade et al., 1991;
- 322 Junk & Piedade, 1993a) and thus contribute significantly to CO₂ outgassing, as previously
- 323 suggested (Quay et al., 1992). Moreover, bacterial growth has been shown, within Amazon
- 324 floodplains, to display a low efficiency (Vidal et al., 2015). This low efficiency implies,
- besides high respiration rates, a low transfer of C_4 carbon to higher trophic levels. The

326 production of C₃ macrophytes within the central Amazon Basin is much more limited than C₄

- 327 macrophytes (Furch & Junk, 1992). However, the lower lability of these macrophyte debris
- 328 compared to C_4 macrophyte debris makes them available for being channeled through aquatic
- 329 food webs. These findings can explain why Amazon food webs are mainly centered on a C_3
- 330 carbon source (Araujo-Lima et al., 1986; Hamilton et al., 1992; Forsberg et al., 1993),
- although C₄ macrophytes display a greater food quality and biomass for specialized herbivore
- fish species (Mortillaro et al., 2015).
- 333

334 Conclusion

- 335 Within the present experiment, the higher lability of C_4 compared to C_3 macrophytes was
- demonstrated. The contribution of *P. repens* to POC and DOC isotopes compositions reached
- a maximum after 3 to 6 days, indicating a fast decomposition rate of this macrophyte.
- 338 Moreover, *P. repens* biomasses had a noticeable impact on OM composition. The
- decomposition of C_4 macrophytes was followed by the mineralization into DIC, as suggested
- 340 by δ^{13} C-DIC, as well as by the release of DIN and P. Therefore, the fast mineralization of C₄
- 341 macrophytes, as well as the natural mixing of POM with ¹³C-depleted primary producers (e.g.
- 342 phytoplankton, C₃ macrophytes, periphyton, and trees), should account for the overall low
- 343 contribution of C_4 carbon sources to the central Amazon aquatic food webs.
- 344

345 Acknowledgments

- 346 This research is a contribution to the CARBAMA project, supported by the ANR (French
- 347 National Agency for Research, grant number 08-BLAN-0221), and the CNPq (National
- 348 Council for Scientific and Technological Development Brazil, Universal Program grant
- number 477655/2010-6); it was conducted within an international cooperation agreement
- 350 between the CNPq (Brazil) and the IRD (Institute for Research and Development France),
- and under the auspices of the Environmental Research Observatory Hydrology and
- 352 Geochemistry of the Amazon Basin (HYBAM), supported by the INSU and the IRD. We are
- 353 grateful to Jessica Chicheportiche (LOG laboratory) for bacterial abundance estimations. We
- also want to thanks two anonymous reviewers whose comments helped improve this
- 355 manuscript.

356	
357	References
358	
359	Abril, G., Martinez, J.M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal, L.,
360	Meziane, T., Kim, J.H., Bernardes, M.C., Savoye, N., Deborde, J., Souza, E.L.,
361	Alberic, P., Landim de Souza, M.F., Roland, F., 2014. Amazon River carbon dioxide
362	outgassing fuelled by wetlands. Nature, 505, 395-398.
363	Alberic, P., 2011. Liquid chromatography/mass spectrometry stable isotope analysis of
364	dissolved organic carbon in stream and soil waters. Rapid Communications in Mass
365	Spectrometry, 25, 3012-3018.
366	Araujo-Lima, C.A.R.M., Forsberg, B.R., Victoria, R., Martinelli L., 1986. Energy sources for
367	detritivorous fishes in the Amazon. Science, 234, 1256-1258.
368	Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: A practical and
369	powerfull approach to multiple testing. Journal of the Royal Statistical Society Series
370	B-Methodological, 57, 289-300.
371	Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification.
372	Canadian Journal of Biochemistry and Physiology, 37, 911-917.
373	Boschker, H.T.S., de Brouwer, J.F.C., Cappenberg, T.E., 1999. The contribution of
374	macrophyte-derived organic matter to microbial biomass in salt-marsh sediments:
375	Stable carbon isotope analysis of microbial biomarkers. Limnology and
376	Oceanography, 44, 309-319.
377	Bouillon, S., Middelburg, J.J., Dehairs, F., Borges, A.V., Abril, G., Flindt, M.R., Ulomi, S.,
378	Kristensen, E., 2007. Importance of intertidal sediment processes and porewater
379	exchange on the water column biogeochemistry in a pristine mangrove creek (Ras
380	Dege, Tanzania). Biogeosciences, 4, 311-322.
381	Chanton, J., Crill, P., Bartlett, K., Martens, C., 1989. Amazon capims (floating grassmats): a
382	source of ¹³ C enriched methane to the troposphere. <i>Geophysical Research Letters</i> , 16,
383	799-802.
384	Chevaldonne, P., Godfroy, A., 1997. Enumeration of microorganisms from deep-sea
385	hydrothermal chimney samples. Fems Microbiology Letters, 146, 211-216.
386	Costantini, M.L., Calizza, E., Rossi, L., 2014. Stable isotope variation during fungal
387	colonisation of leaf detritus in aquatic environments. Fungal Ecology, 11, 154-163.

388	Devol, A.H., Dossantos, A., Forsberg, B.R., Zaret, T.M., 1984. Nutrient addition experiments
389	in Lago Jacaretinga, Central Amazon, Brazil: 2. The effect of humic and fluvic acids.
390	Hydrobiologia, 109, 97-103.
391	Ellis, E.E., Richey, J.E., Aufdenkampe, A.K., Krusche, A.V., Quay, P.D., Salimon, C., da
392	Cunha, H.B., 2012. Factors controlling water-column respiration in rivers of the
393	central and southwestern Amazon Basin. Limnology and Oceanography, 57, 527-540.
394	Engle, D.L., Melack, J.M., 1993. Consequences of riverine flooding for seston and the
395	periphyton of floating meadows in an Amazon floodplain lake. Limnology and
396	Oceanography, 38, 1500-1520.
397	Engle, D.L., Melack, J.M., Doyle, R.D., Fisher, T.R., 2008. High rates of net primary
398	production and turnover of floating grasses on the Amazon floodplain: implications
399	for aquatic respiration and regional CO2 flux. Global Change Biology, 14, 369-381.
400	Fellerhoff, C., Voss, M., Wantzen, K.M., 2003. Stable carbon and nitrogen isotope signatures
401	of decomposing tropical macrophytes. Aquatic Ecology, 37, 361-375.
402	Forsberg, B.R., 1984. Nutrient processing in Amazon floodplain lakes. Verhandlungen der
403	Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 22,
404	1294-1298.
405	Forsberg, B.R., Araujo-Lima, C.A.R.M., Martinelli, L.A., Victoria, R.L., Bonassi, J.A., 1993.
406	Autotrophic carbon sources for fish of the central Amazon. Ecology, 74, 643-652.
407	Furch, K., Junk, W., 1992. Nutrient dynamics of submersed decomposing Amazonian
408	herbaceous plant species Paspalum fasciculatum and Echinochloa polystachya. Revue
409	d'hydrobiologie tropicale, 25, 75-85.
410	Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of seawater analysis, Wiley-VCH
411	Verlag GmbH, Weinheim, Germany.
412	Hamilton, S.K., Lewis, W.M., Sippel, S.J., 1992. Energy sources for aquatic animals in the
413	Orinoco River floodplain: evidence from stable isotopes. Oecologia, 89, 324-330.
414	Hedges, J.I., Clark, W.A., Quay, P.D., Richey, J.E., Devol, A.H., Santos, U.D., 1986.
415	Compositions and fluxes of particulate organic material in the Amazon river.
416	Limnology and Oceanography, 31, 717-738.
417	Hedges, J.I., Cowie, G.L., Richey, J.E., Quay, P.D., Benner, R., Strom, M., Forsberg, B.R.,
418	1994. Origins and processing of organic matter in the Amazon river as indicated by
419	carbohydrates and amino acids. Limnology and Oceanography, 39, 743-761.

420	Hess, L.L., Melack, J.M., Novo, E.M.L.M., Barbosa, C.C.F., Gastil, M., 2003. Dual-season
421	mapping of wetland inundation and vegetation for the central Amazon basin. Remote
422	Sensing of Environment, 87, 404-428.
423	Howard-Williams, C., Junk, W.J., 1976. The decomposition of aquatic macrophytes in the
424	floating meadows of a Central amazonian varzea lake. In: Biogeographica
425	pp. 115-123. The Hague.
426	Hubas, C., Artigas, L.F., Davoult, D., 2007a. Role of the bacterial community in the annual
427	benthic metabolism of two contrasted temperate intertidal sites (Roscoff Aber Bay,
428	France). Marine Ecology Progress Series, 344, 39-48.
429	Hubas, C., Lamy, D., Artigas, L.F., Davoult, D., 2007b. Seasonal variability of intertidal
430	bacterial metabolism and growth efficiency in an exposed sandy beach during low
431	tide. Marine Biology, 151, 41-52.
432	Johnson, R.W., Calder, J.A., 1973. Early diagenesis of fatty acids and hydrocarbons in a salt-
433	marsh environment. Geochimica Et Cosmochimica Acta, 37, 1943-1955.
434	Junk, W.J., Howard-Williams, C., 1984. Ecology of aquatic macrophytes in Amazonia. In:
435	The Amazon, Limnology and Landscape Ecology of a Mighty Tropical River and its
436	Basin. (Ed H. Sioli), pp. 269-293. Junk, Dordrecht.
437	Junk, W.J., Piedade, M.T.F., 1993a. Biomass and primary production of herbaceous plant
438	communities in the Amazon floodplain. Hydrobiologia, 263, 155-162.
439	Junk, W.J., Piedade, M.T.F., 1993b. Herbaceous plants of the Amazon floodplain near
440	Manaus: Species diversity and adaptations to the flood pulse. Amazoniana-Limnologia
441	Et Oecologia Regionalis Systemae Fluminis Amazonas, 12, 467-484.
442	Junk, W.J., Piedade, M.F.T., 1997. Plant life in the floodplain with special reference to
443	herbaceous plants. In: The central Amazon floodplain: Ecology of a pulsing system.
444	(Ed W.J. Junk), pp. 147-185. Springer, Berlin Heidelberg New York.
445	Kaneda, T., 1991. Iso-fatty and anteiso-fatty acids in bacteria: Biosynthesis, function, and
446	taxonomic significance. Microbiological Reviews, 55, 288-302.
447	Kern, J., Darwich, A., 2003. The role of periphytic N_2 fixation for stands of macrophytes in
448	the whitewater floodplain (varzea). Amazoniana-Limnologia Et Oecologia Regionalis
449	Systemae Fluminis Amazonas, 17, 361-375.
450	Martinelli, L.A., Victoria, R.L., Trivelin, P.C.O., Devol, A.H., Richey, J.E., 1992. ¹⁵ N natural
451	abundance in plants of the Amazon River flood plain and potential atmospheric $\ensuremath{N_2}$
452	fixation. Oecologia, 90, 591-596.

453	Mayorga, E., Aufdenkampe, A.K., Masiello, C.A., Krusche, A.V., Hedges, J.I., Quay, P.D.,
454	Richey, J.E., Brown, T.A., 2005. Young organic matter as a source of carbon dioxide
455	outgassing from Amazonian rivers. Nature, 436, 538-541.
456	Melack, J.M., Forsberg, B.R., 2001. Biogeochemistry of Amazon floodplain lakes and
457	associated wetlands. In: The biogeochemistry of the Amazon Basin. (Eds M.E.
458	McClain & R.L. Victoria & J.E. Richey), pp. 235-274. Oxford University Press, New
459	York.
460	Mfilinge, P.L., Meziane, T., Bachok, Z., Tsuchiya, M., 2003. Fatty acids in decomposing
461	mangrove leaves: microbial activity, decay and nutritional quality. Marine Ecology-
462	Progress Series, 265, 97-105.
463	Moreira-Turcq, P., Bonnet, M.P., Amorim, M., Bernardes, M., Lagane, C., Maurice, L.,
464	Perez, M., Seyler, P., 2013. Seasonal variability in concentration, composition, age,
465	and fluxes of particulate organic carbon exchanged between the floodplain and
466	Amazon River. Global Biogeochemical Cycles, 27, 119-130.
467	Moreira-Turcq, P., Jouanneau, J.M., Turcq, B., Seyler, P., Weber, O., Guyot, J.L., 2004.
468	Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon
469	region: insights into sedimentation rates. Palaeogeography Palaeoclimatology
470	Palaeoecology, 214, 27-40.
471	Morison, J.I.L., Piedade, M.T.F., Muller, E., Long, S.P., Junk, W.J., Jones, M.B., 2000. Very
472	high productivity of the C_4 aquatic grass <i>Echinochloa polystachya</i> in the Amazon
473	floodplain confirmed by net ecosystem CO ₂ flux measurements. Oecologia, 125,
474	400-411.
475	Mortillaro, J.M., Abril, G., Moreira-Turc, P., Sobrinho, R., Perez, M., Meziane, T., 2011.
476	Fatty acid and stable isotope (δ^{13} C, δ^{15} N) signatures of particulate organic matter in
477	the Lower Amazon River: Seasonal contrasts and connectivity between floodplain
478	lakes and the mainstem. Organic Geochemistry, 42, 1159-1168.
479	Mortillaro, J.M., Pouilly, M., Wach, M., Freitas, C.E.C., Abril, G., Meziane, T., 2015.
480	Trophic opportunism of central Amazon floodplain fish. Freshwater Biology.
481	Freshwater Biology, 60, 1659–1670.
482	Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., Solymos,
483	P., Stevens, M.H.H., Wagner, H., 2010. Vegan: Community Ecology Package.
484	R package version 1.17-12.
485	Peterson, B.J., Fry, B., 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology
486	and Systematics, 18, 293-320.

- 487 Piedade, M.T.F., Junk, W.J., Long, S.P., 1991. The productivity of the C₄ grass *Echinochloa*488 *polystachya* on the Amazon floodplain. *Ecology*, 72, 1456-1463.
- 489 Polsenaere, P., Abril, G., 2012. Modelling CO_2 degassing from small acidic rivers using water 490 p CO_2 , DIC and delta C^{13} DIC data. *Geochimica Et Cosmochimica Acta*, 91, 220-239.
- 491 Porter, K.G., Feig, Y.S., 1980. The use of DAPI for identifying and counting aquatic
 492 microflora. *Limnology and Oceanography*, 25, 943-948.
- Quay, P.D., Wilbur, D.O., Richey, J.E., Hedges, J.I., Devol, A.H., Victoria, R., 1992. Carbon
 cycling in the Amazon River: Implications from the ¹³C compositions of particles and
 solutes. *Limnology and Oceanography*, 37, 857-871.
- 496 Rai, H., Hill, G., 1984. Microbiology of Amazonian waters. In: *The Amazon, Limnology and*497 *Landscape Ecology of a Mighty Tropical River and its Basin.* (Ed H. Sioli),
- 498 pp. 413-441. Junk, W., Dordrecht.
- Schultz, D.M., Quinn, J.G., 1973. Fatty acid composition of organic detritus from *Spartina alterniflora. Estuarine and Coastal Marine Science*, 1, 177-190.
- Setaro, F.V., Melack, J.M., 1984. Responses of phytoplankton to experimental nutrient
 enrichment in an Amazon floodplain lake. *Limnology and Oceanography*, 29,
 972-984.
- Silva, T.S.F., Costa, M.P.F., Melack, J.M., 2009. Annual net primary production of
 macrophytes in the Eastern Amazon floodplain. *Wetlands*, 29, 747-758.
- Silva, T.S.F., Melack, J.M., Novo, E., 2013. Responses of aquatic macrophyte cover and
 productivity to flooding variability on the Amazon floodplain. *Global Change Biology*, 19, 3379-3389.
- Smith, B.N., Epstein, S., 1971. Two categories of ¹³C/¹²C ratios for higher plants. *Plant Physiology*, 47, 380-384.
- Sobrinho, R.L., Bernardes, M.C., Abril, G., Kim, J.H., Zell, C.I., Mortillaro, J.M., Meziane,
 T., Moreira-Turcq, P., Sinninghe Damsté, J.S., 2016. Spatial and seasonal contrasts of
 sedimentary organic matter in floodplain lakes of the central Amazon basin.
- 514 Biogeosciences, 13, 467-482.
- Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J., Bavor, H.J., 1980. Microbial lipids of an
 intertidal sediment: 1. Fatty accids and hydrocarbons. *Geochimica Et Cosmochimica Acta*, 44, 1133-1143.
- 518 Vidal, L.O., Abril, G., Artigas, L.F., Melo, M.L., Bernardes, M.C., Lobão, L.M., Reis, M.C.,
 519 Moreira-Turcq, P., Benedetti, M., Tornisielo, V.L., Roland, F., 2015. Hydrological

CCEPTED

- pulse regulating the bacterial heterotrophic metabolism between Amazonian 520
- 521 mainstems and floodplain lakes. Frontiers in microbiology, 6, 1054.
- Waichman, A.V., 1996. Autotrophic carbon sources for heterotrophic bacterioplankton in a 522
- floodplain lake of central Amazon. Hydrobiologia, 341, 27-36. 523
- 524 Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing Ecological Data, Springer, Heidelberg, Germany.
- 525
- 526
- 527
- 528

- 529
- Fig. 1. Floating meadows of *P. repens* (left) and *S. auriculata* (right). 530

532

533 Fig. 2. Nonmetric MDS of FA proportions (%) in POM. Squares (■) are for *P. repens*

treatments with high (dark green) and low (light green) biomasses, circles (•) are for

535 S. auriculata treatments with high (red) and low (orange) biomasses and blue triangles (\blacktriangle)

536 are for the Ctrl treatment.

537

538 Fig. 3. Boxplot of POC (a.) and DOC (b.) concentrations in each treatment: PR-HB (dark

539 green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue). Note that DIC

time-courses were not determined because of the CO₂ loss to the atmosphere occurring
throughout the experiment.

Fig. 4. Boxplot of δ^{13} C-POC (a.), δ^{13} C-DOC (b.) δ^{13} C-DIC (c.) in each treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl (blue).

542

545

546 Fig. 5. Boxplot of bacteria abundances (a.), DIN (b.) and PO_4 (c.) concentrations in each

547 treatment: PR-HB (dark green), PR-LB (light green), SA-HB (red), SA-LB (orange) and Ctrl

- 548 (blue).
- 549
- 550
- 551

552	Table 1. FA	concentrations	and stable	isotope c	compositions	$(\delta^{13}C an)$	$d \delta^{15} N$	of POM

553 (FA: μ g L⁻¹) and macrophytes (FA: mg g⁻¹) collected in Camaleão várzea. In bold are the

554 proportion of saturated (SFA), branched (BFA), monounsaturated (MUFA), polyunsaturated 555 (PUFA) and long chain FA (LCFA).

	POM ($\mu g L^{-1}$)	<i>P. repens</i> (mg g^{-1})	<i>S. auriculata</i> (mg g ⁻¹)
FA	$n=3 \pm S.D.$	$n=3 \pm S.D.$	$n=3 \pm S.D.$
12:0	2.25 ± 1.81	0.10 ± 0.02	$0.03 \pm 7 10^{-3}$
13:0	$0.39 ~\pm~ 0.10$	$1 \ 10^{-3} \pm 5 \ 10^{-4}$	$5 \ 10^{-3} \ \pm \ 1 \ 10^{-3}$

14:0	6.13	± 1.61	$0.10 \pm$	$4 10^{-3}$	0.20 \pm	0.05
15:0	2.25	± 0.34	$0.03 \pm$	$2 10^{-3}$	0.06 \pm	0.01
16:0	24.14	± 3.95	$3.69 \pm$	0.38	2.33 \pm	0.28
17:0	0.75	± 0.10	$0.11 \pm$	0.01	0.05 \pm	0.01
18:0	5.54	± 1.83	$0.74 \pm$	0.12	$0.22 \pm$	0.05
19:0	0.31	± 0.02	$4 \ 10^{-3} \pm$	2 10-3	$7 \ 10^{-3} \ \pm$	$1 10^{-3}$
20:0	0.30	± 0.09	0.19 ±	0.03	0.02 \pm	$5 \ 10^{-3}$
22:0	0.38	± 0.14	0.37 ±	0.07	0.04 \pm	4 10 ⁻³
%SFA	78.84 :	± 1.76	43.77 ±	4.67	$80.35 \pm$	3.23
14:0iso	0.55	± 0.13	$0.08 \pm$	0.02	$2\ 10^{-3}$ ±	$1 \ 10^{-3}$
15:0anteiso	0.78	± 0.15	0.05 \pm	0.02	0.01 \pm	$1 \ 10^{-3}$
15:0iso	2.67 :	± 0.68	0.06 ±	0.02	0.07 \pm	$5 \ 10^{-3}$
16:0iso	0.49	± 0.12	$4 \ 10^{-3} \pm$	$2 10^{-3}$	0.02 \pm	$3 10^{-3}$
17:0anteiso	0.58	± 0.18	$3\ 10^{-3}$ ±	8 10 ⁻⁴	0.01 \pm	$2 10^{-3}$
17:0iso	0.56	± 0.13	0.21 ±	0.04	0.04 \pm	0.01
%BFA	10.43	± 0.76	3.23 ±	0.10	3.98 ±	0.18
16:1ω5	0.22	± 0.03	$0.01 \pm$	$4 10^{-3}$	0.02 \pm	$6 \ 10^{-4}$
16:1ω7	0.36	± 0.32	$0.02 \pm$	5 10 ⁻³	0.01 \pm	0.02
16:1ω9	0.13	± 0.07	$0.28 \pm$	0.11	$4\ 10^{-3}$ ±	3 10 ⁻³
17:1	0.16	± 0.06	$0.01 \pm$	0.01	0.01 \pm	$2 \ 10^{-3}$
18:1w5	0.03	± 0.00	n.d. ±	n.d.	n.d. ±	n.d.
18:1ω7	0.10	± 0.04	$0.06 \pm$	0.01	$5 \ 10^{-3} \ \pm$	6 10 ⁻⁴
18:1ω9	0.01	± 0.01	n.d. ±	n.d.	n.d. ±	n.d.
18:1ω9	n.d.	± n.d.	$0.21 \pm$	0.04	$2 \ 10^{-3} \ \pm$	$2 \ 10^{-3}$
20.1.011	nd	n d	0 10 ⁻³	5 10 ⁻⁴	1	n d
20.1011	n.a. :	± n.a.	$2.10 \pm$	5 10	n.d. ±	n.a.
20:1ω11 20:1ω9	n.d. :	\pm n.d. \pm n.d.	$2 10 \pm 8 10^{-3} \pm$	$3 10^{-3}$	n.d. \pm n.d. \pm	n.d. n.d.
20:1ω1 20:1ω9 %MUFA	n.d. : n.d. : 1.83 :	± n.d. ± n.d. ± 0.35	$210 \pm 810^{-3} \pm 4.79 \pm 10^{-3}$	3 10 ⁻³ 0.66	$n.d. \pm \\ n.d. \pm \\ 1.30 \pm \\ 1$	n.d. n.d. 0.07
20:1ω9 % MUFA 16:4ω3	n.d. = n.d. = 1.83 = n.d. =	\pm n.d. \pm n.d. \pm 0.35 \pm n.d.	$ \begin{array}{r} 2 10 \pm \\ 8 10^{-3} \pm \\ \hline 4.79 \pm \\ 0.12 \pm \\ \end{array} $	0.66 0.02	$ \begin{array}{r} n.d. \pm \\ n.d. \pm \\ \end{array} $ 1.30 ± 0.01 ±	n.d. n.d. 0.07 4 10 ⁻³
20:1ω9 20:1ω9 %MUFA 16:4ω3 18:2ω6	n.d. = 1.83 = n.d. = 0.10 =	\pm n.d. \pm n.d. \pm 0.35 \pm n.d. \pm 0.08	$2 10 \pm \\8 10^{-3} \pm \\0.12 \pm \\1.34 \pm \\$	0.66 0.02 0.38	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm	n.d. n.d. 0.07 4 10 ⁻³ 9 10 ⁻⁴
20:1ω11 20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3	n.d. = 1.83 = n.d. = 0.10 = 0.12 =	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \hline \pm & 0.35 \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \end{array}$	$\begin{array}{r} 2 \ 10 & \pm \\ 8 \ 10^{-3} & \pm \\ \hline 4.79 & \pm \\ 0.12 & \pm \\ 1.34 & \pm \\ 3.60 & \pm \end{array}$	3 10 ⁻³ 0.66 0.02 0.38 1.07	n.d. \pm n.d. \pm 1.30 \pm $2 \ 10^{-3} \pm$ 0.01 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \end{array}$
20:1ω9 20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6	n.d. = 1.83 = n.d. = 0.10 = 0.12 = 0.11 =	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \hline \pm & 0.35 \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \end{array}$	$2 10 \pm 2 10^{-3} \pm 2 10^{-3}$	3 10 ⁻³ 3 10 ⁻³ 0.66 0.02 0.38 1.07 1 10 ⁻³	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2.10 ⁻³ \pm 0.01 \pm 0.08 \pm	n.d. n.d. 0.07 4 10 ⁻³ 9 10 ⁻⁴ 4 10 ⁻³ 0.07
20:1ω9 20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:3ω6 18:4ω3	n.d. : 1.83 : n.d. : 0.10 : 0.12 : 0.11 : n.d. :	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \hline \pm & \text{n.d.} \\ \hline \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \end{array}$	$2 10 \pm 2 10^{3} \pm 10^$	0.66 0.02 0.38 1.07 1 10 ⁻³ n.d.	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2.10 ⁻³ \pm 0.01 \pm 0.08 \pm 1.10 ⁻³ \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \end{array}$
20:1ω9 20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2	n.d. = 1.83 = n.d. = 0.10 = 0.12 = 0.11 = n.d. = 0.13 =	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \end{array}$	$2 10 \pm 2 10^{-3} \pm 10^$	5 10 3 10 ⁻³ 0.66 0.02 0.38 1.07 1 10 ⁻³ n.d. 4 10 ⁻³	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2.10 ⁻³ \pm 0.01 \pm 0.08 \pm 1.10 ⁻³ \pm 4.10 ⁻³ \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \end{array}$
20:1ω9 20:1ω9 %MUFA 16:4ω3 18:2ω6 18:3ω3 18:3ω6 18:4ω3 20:2 20:3ω3	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \end{array}$	$2 10 \pm 2 10^{-3} \pm 10^{-3} \pm 10^{-3} \pm 10^{-3} \pm 10^{-3} \pm 0.01 \pm 0.03 \pm 2 10^{-3} \pm 10^{-$	0.66 0.02 0.38 1.07 1 10 ⁻³ n.d. 4 10 ⁻³ 0.00	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2.10 ⁻³ \pm 0.01 \pm 0.08 \pm 1.10 ⁻³ \pm 4.10 ⁻³ \pm 0.01 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \end{array}$	$2 10 \pm 2 \pm 2 10 \pm 2 \pm $	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.01 \pm 0.01 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & 0.35 \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.05 \end{array}$	$2 10 \pm \frac{10}{2} \pm $	3 10 ⁻³ 3 10 ⁻³ 0.66 0.02 0.38 1.07 1 10 ⁻³ n.d. 4 10 ⁻³ 0.00 1 10 ⁻³ n.d.	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.01 \pm 0.01 \pm 0.02 \pm 0.03 \pm 0.01 \pm 0.0	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \hline \pm & \text{n.d.} \\ \hline \pm & \text{0.35} \\ \hline \pm & \text{n.d.} \\ \hline \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.08 \\ \hline \pm & 0.01 \\ \pm & 0.06 \\ \hline \pm & \text{n.d.} \\ \hline \pm & 0.03 \\ \hline \pm & 0.26 \\ \hline \pm & 0.10 \\ \pm & 0.05 \\ \pm & 0.02 \end{array}$	$2 10 \pm \frac{10}{2} \pm $	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 3 10 ⁻³ \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006 20:5003	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \hline \pm & \text{n.d.} \\ \hline \pm & \text{0.35} \\ \hline \pm & \text{n.d.} \\ \hline \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \hline \pm & 0.03 \\ \pm & 0.26 \\ \hline \pm & 0.10 \\ \pm & 0.05 \\ \pm & 0.02 \\ \pm & 0.01 \end{array}$	$2 10 \pm \frac{10}{810^{3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm \frac{100000}{10000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 2 \ 10^{-4} \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \end{array}$
20:10071 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006 20:5003 22:5003	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.08 0.10	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.35 \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \end{array}$	$2 10 \pm \frac{10}{810^{3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 2 \ 10^{-4} \\ 1 \ 10^{-3} \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \end{array}$
$20.10011 \\ 20:1009 \\ \hline 0.1009 \\$	n.d. n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.10 2.22	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.35 \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.43 \end{array}$	$2 10 \pm \frac{10}{810^{3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm \frac{100000}{10000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-4} \\ 1 \ 10^{-3} \\ 6 \ 10^{-3} \\ \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4003 20:4006 20:5003 22:5003 22:5006 22:5003	n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.13 0.54 0.31 0.34 0.08 0.08 0.10 2.22 0.39	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.43 \\ \pm & 0.13 \end{array}$	$2 10 \pm \frac{10}{810^{-3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm \frac{100000}{10000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-4} \\ 1 \ 10^{-3} \\ 6 \ 10^{-3} \\ 6 \ 10^{-4} \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \\ \text{n.d.} \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006 20:5003 22:5003 22:5006 22:5003 22:5006 22:6003	n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.10 2.22 0.39	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.13 \\ \pm & 0.13 \\ \pm & 1.67 \end{array}$	$2 10 \pm \frac{10}{810^{-3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 1 \ 10^{-3} \\ 6 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 5.68 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \\ \text{n.d.} \\ \hline \textbf{2.40} \end{array}$
20:1007 20:1009 %MUFA 16:403 18:206 18:303 18:306 18:403 20:2 20:303 20:306 20:403 20:406 20:503 22:503 22:506 22:506 22:603 %PUFA 24:0	n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.08 0.10 2.22 0.39 8.61 0.05	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.04 \\ \pm & 0.13 \\ \pm & 1.67 \\ \pm & 7 \ 10^{-3} \end{array}$	$2 10 \pm \frac{10}{810^{-3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 1 \ 10^{-3} \\ 6 \ 10^{-4} \\ 1 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \\ 0.11 \\ \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 0.20 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \\ \textbf{n.d.} \\ \hline \textbf{2.40} \\ 0.04 \\ \end{array}$
20:1007 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006 20:5003 22:5006 22:5006 22:5006 22:5006 22:6003 %PUFA 24:0 25:0	n.d. n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.10 2.22 0.39 8.61 0.05 0.12	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.05 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.43 \\ \pm & 0.13 \\ \pm & 1.67 \\ \pm & 7.10^{-3} \\ \pm & 0.01 \end{array}$	$2 10 \pm \frac{10}{810^{-3}} \pm \frac{10}{1000} \pm \frac{10}{1000} \pm \frac{1000}{1000} \pm \frac{10000}{1000} \pm 1000000000000000000000000000000000000$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 2 \ 10^{-4} \\ 1 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \\ 0.11 \\ 5 \ 10^{-3} \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 0.20 \pm 0.02 \pm 0.02 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \\ \text{n.d.} \\ \hline \textbf{2.40} \\ 0.04 \\ 6 \ 10^{-3} \end{array}$
20:1009 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006 20:5003 22:5003 22:5006 22:6003 %PUFA 24:0 25:0 26:0	n.d. n.d. 0.10 0.12 0.11 n.d. 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.08 0.10 2.22 0.39 8.61 0.05 0.12 n.d.	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & \text{n.d.} \\ \pm & 0.35 \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \end{array} \\ \begin{array}{c} \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.13 \\ \end{array} \\ \begin{array}{c} \pm & 0.13 \\ \pm & 1.67 \\ \pm & 7.10^{-3} \\ \pm & 0.01 \\ \pm & \text{n.d.} \end{array}$	$2 10 \pm \frac{10}{8 10^{-3}} \pm \frac{10}{4 \cdot 10^{-3}} \pm $	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 2 \ 10^{-4} \\ 1 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \\ 0.11 \\ 5 \ 10^{-3} \\ 0.06 \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 0.20 \pm 0.02 \pm 0.10 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \\ \text{n.d.} \\ \hline \textbf{2.40} \\ 0.04 \\ 6 \ 10^{-3} \\ 0.03 \end{array}$
20:10011 20:1009 %MUFA 16:4003 18:2006 18:3003 18:3006 18:4003 20:2 20:3003 20:3006 20:4003 20:4006 20:5003 22:5003 22:5006 22:6003 %PUFA 24:0 25:0 26:0 %LCFA	n.d. n.d. 0.10 0.12 0.11 n.d. 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.08 0.10 2.22 0.39 8.61 0.05 0.12 n.d. 0.28	$\begin{array}{c} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.10 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.13 \\ \pm & 0.13 \\ \pm & 1.67 \\ \pm & 7.10^{-3} \\ \pm & 0.01 \\ \pm & \text{n.d.} \\ \pm & 0.02 \end{array}$	$2 10^{\circ} \pm \frac{10^{\circ}}{8 10^{\circ}} \pm \frac{10^{\circ}}{4 10^{\circ}} \pm \frac{10^{\circ}}{2 0.01} \pm \frac{10^{\circ}}{2 0.00} \pm \frac{10^{\circ}}$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 2 \ 10^{-4} \\ 1 \ 10^{-3} \\ 6 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \\ 0.11 \\ 5 \ 10^{-3} \\ 0.06 \\ \hline 0.57 \\ \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 0.20 \pm 0.20 \pm 0.10 \pm 8.69 \pm	$\begin{array}{c} \text{n.d.} \\ \text{n.d.} \\ \text{n.d.} \\ \hline \textbf{0.07} \\ 4 \ 10^{-3} \\ 9 \ 10^{-4} \\ 4 \ 10^{-3} \\ 0.07 \\ 2 \ 10^{-3} \\ 2 \ 10^{-3} \\ 6 \ 10^{-3} \\ 0.03 \\ 8 \ 10^{-4} \\ 3 \ 10^{-4} \\ 1 \ 10^{-4} \\ 0.01 \\ \text{n.d.} \\ \hline \textbf{2.40} \\ 0.04 \\ 6 \ 10^{-3} \\ 0.03 \\ \hline \textbf{0.91} \end{array}$
$\begin{array}{r} 20.10011\\ 20.1009\\ \hline \\ \hline \\ 20.1009\\ \hline \\ \hline \\ \hline \\ 8.2006\\ 18:2006\\ 18:2006\\ 18:2006\\ 18:3003\\ 18:3006\\ 18:4003\\ 20:2\\ 20:3006\\ 20:3006\\ 20:3006\\ 20:3006\\ 20:3006\\ 20:4003\\ 20:4006\\ 20:5003\\ 22:5003\\ 22:5006\\ 22:6003\\ \hline \\ \hline$	n.d. n.d. 1.83 n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.08 0.08 0.08 0.08 0.10 2.22 0.39 8.61 0.12 0.12 0.13 0.54 0.13 0.54 0.10 2.22 0.39 8.61 0.12 0.12 0.12 0.13 0.54 0.10 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.54 0.08 0.08 0.08 0.00 0.10 2.22 0.39 8.61 0.12 0.12 0.12 0.13 0.54 0.08 0.08 0.08 0.10 2.22 0.39 8.61 0.12 0.12 0.12 0.13 0.28 0.10 0.12 0.10 0.28 0.12 0.10 0.12 0.28 0.12 0.12 0.28 0.12 0.12 0.28 0.12 0.28 0.12 0.12 0.28 0.12 0.12 0.28 0.12 0.12 0.12 0.28 0.12	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{0.08} \\ \pm & \text{0.01} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.01 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.01 \\ \pm & 1.67 \\ \pm & 0.01 \\ \pm & \text{n.d.} \\ \pm & 0.02 \\ \pm & 0.43 \end{array}$	$2 10^{\circ} \pm \frac{10^{\circ}}{8 10^{\circ}} \pm \frac{10^{\circ}}{4 10^{\circ}} \pm \frac{10^{\circ}}{2 0.01} \pm \frac{100^{\circ}}{2 0.01} \pm \frac{100^{\circ}}{2 0.01} \pm \frac{100^{\circ}}{2 0.01} \pm \frac{100^{\circ}}{2 0.001} \pm \frac{100^{\circ}}{2 0$	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 1 \ 10^{-3} \\ 6 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \\ 0.11 \\ 5 \ 10^{-3} \\ 0.06 \\ \hline 0.57 \\ 0.81 \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 0.20 \pm 0.20 \pm 0.20 \pm 0.20 \pm 0.10 \pm 8.69 \pm -30.53 \pm	n.d. n.d. 0.07 $4 \ 10^{-3}$ $9 \ 10^{-4}$ $4 \ 10^{-3}$ 0.07 $2 \ 10^{-3}$ 0.07 $2 \ 10^{-3}$ $6 \ 10^{-3}$ 0.03 $8 \ 10^{-4}$ $1 \ 10^{-4}$ 0.01 n.d. 2.40 0.04 $6 \ 10^{-3}$ 0.03 0.91 0.51
$\begin{array}{r} 20.10011\\ 20.1009\\ \hline \\ \hline \\ 20.1009\\ \hline \\ \hline \\ \hline \\ 8.2006\\ 18:2006\\ 18:3003\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 18:3006\\ 20:503\\ 20:3006\\ 20:4006\\ 20:5003\\ 20:5003\\ 22:5006\\ 22:5006\\ 22:5006\\ 22:5006\\ 22:5006\\ 22:5006\\ 22:500\\ 20:50\\ 20:$	n.d. n.d. 1.83 n.d. 0.10 0.12 0.11 n.d. 0.13 0.54 0.31 0.34 0.08 0.08 0.08 0.08 0.08 0.10 2.22 0.39 8.61 0.12 0.12 0.11 0.54 0.13 0.54 0.10 0.12 0.11 0.12 0.11 0.12 0.12 0.11 0.12 0.12 0.12 0.12 0.11 0.12 0.13 0.54 0.08 0.08 0.08 0.00 0.05 0.10 2.22 0.39 8.61 0.12 0.12 0.12 0.13 0.08 0.08 0.00 0.10 0.22 0.39 8.61 0.12 0.12 0.12 0.12 0.28 0.10 0.12 0.12 0.28 0.12 0.12 0.12 0.28 0.12 0.12 0.12 0.28 0.12 0.12 0.12 0.28 0.12 0.12 0.12 0.28 0.12 0.12 0.12 0.12 0.28 0.12 0.28 0.28 0.12 0.28 00 0.28 00 0.28 00 0.28 00 0000000000	$\begin{array}{r} \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{n.d.} \\ \pm & \text{0.35} \\ \end{array}$ $\begin{array}{r} \pm & \text{n.d.} \\ \pm & 0.08 \\ \pm & 0.01 \\ \pm & 0.06 \\ \pm & \text{n.d.} \\ \pm & 0.03 \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.03 \\ \pm & 0.26 \\ \pm & 0.02 \\ \pm & 0.01 \\ \pm & 0.04 \\ \pm & 0.13 \\ \pm & 0.01 \\ \pm & 1.67 \\ \pm & 0.01 \\ \pm & \text{n.d.} \\ \pm & 0.02 \\ \pm & 0.43 \\ \pm & 0.71 \end{array}$	$2 10^{\circ} \pm \frac{10^{\circ}}{8 10^{\circ}} \pm \frac{10^{\circ}}{4 10^{\circ}} \pm \frac{1.34^{\circ}}{4 10^{\circ}} \pm \frac{1.34^{\circ}}{4 10^{\circ}} \pm \frac{1.34^{\circ}}{4 10^{\circ}} \pm \frac{10^{\circ}}{4 10^{\circ}} \pm \frac{10^{\circ}}{2 0.04^{\circ}} \pm \frac{10.55^{\circ}}{0.04^{\circ}} \pm \frac{13.02^{\circ}}{2 0.23^{\circ}} \pm \frac{13.02^{\circ}}{4 0.01^{\circ}} \pm \frac{10^{\circ}}{4 0.01^{\circ}} \pm $	$\begin{array}{c} 5 \ 10 \\ 3 \ 10^{-3} \\ \hline 0.66 \\ 0.02 \\ 0.38 \\ 1.07 \\ 1 \ 10^{-3} \\ n.d. \\ 4 \ 10^{-3} \\ 0.00 \\ 1 \ 10^{-3} \\ n.d. \\ 2 \ 10^{-3} \\ 1 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 1 \ 10^{-3} \\ 6 \ 10^{-4} \\ \hline 4.45 \\ 0.11 \\ 5 \ 10^{-3} \\ 0.06 \\ \hline 0.57 \\ 0.81 \\ 1.32 \end{array}$	n.d. \pm n.d. \pm 1.30 \pm 0.01 \pm 2 10 ⁻³ \pm 0.01 \pm 0.08 \pm 1 10 ⁻³ \pm 4 10 ⁻³ \pm 0.01 \pm 0.04 \pm 3 10 ⁻³ \pm 9 10 ⁻⁴ \pm 3 10 ⁻³ \pm 0.05 \pm n.d. \pm 0.20 \pm 0.20 \pm 0.20 \pm 0.20 \pm 0.10 \pm 8.69 \pm -30.53 \pm 2.25 \pm	n.d. $n.d.$ 0.07 $4 \ 10^{-3}$ $9 \ 10^{-4}$ $4 \ 10^{-3}$ 0.07 $2 \ 10^{-3}$ $2 \ 10^{-3}$ $2 \ 10^{-3}$ $6 \ 10^{-3}$ 0.03 $8 \ 10^{-4}$ $3 \ 10^{-4}$ $1 \ 10^{-4}$ 0.01 $n.d.$ 2.40 0.04 $6 \ 10^{-3}$ 0.03 0.91 0.51 1.11

557

- Table 2. Summary of ANOSIM pairwise tests for FA composition of POM between
- treatments. Values in italics (R < 0.3) are for high intragroup variability.

Groups	R	p value
PR-HB : Ctrl	0.80	< 10 ⁻³
PR-HB : PR-LB	0.73	< 10 ⁻³
PR-HB : SA-HB	0.75	< 10 ⁻³
PR-HB : SA-LB	0.82	< 10 ⁻³
PR-LB : Ctrl	0.27	< 10 ⁻³
PR-LB : SA-HB	0.07	0.06 ^{NS}
PR-LB : SA-LB	0.11	< 10 ⁻³
SA-HB : Ctrl	0.04	0.15 ^{NS}
SA-HB : SA-LB	0.04	0.11 ^{NS}
SA-LB : Ctrl	0.15	0.01
NIC ' 'C'	4	

- 560 NS = non-significant
- 561 Table 3. Intragroup similarity of FA compositions in different treatments, and percentages of
- 562 FA explaining most of this similarity (SIMPER procedure).

Treatment	11.0	15.0ico	15. Oantoiso	15.0	16.0	18.0	22.506	$\Sigma(0/2)$	
(intragroup similarity)	14.0	15.0180	15.041110180	15.0	10.0	10.0	22.500	2(70)	
PR-HB (77.3 %)	6.5	11.2	6.3	3.9	44.1	4.9	5.1	76.8	
PR-LB (85.1 %)	8.7	6.8	1.6	3.7	33.7	12.7	4.5	73.7	
SA-HB (82.6 %)	8.8	3.9	1.5	3.4	37.1	13.8	5.0	75.4	
SA-LB (81.7 %)	9.4	3.4	1.4	3.5	33.0	13.2	4.0	71.7	
Ctrl (83.7 %)	8.5	3.8	1.4	3.3	39.4	14.3	4.9	77.7	

563

564	Table 4. Summary of KW and MWW	pairwise tests fo	or δ^{13} C-POC, δ^{13}	δ^{13} C-DOC, δ^{13} C-DIC;
-----	--------------------------------	-------------------	---------------------------------------	---

565 POC, DOC, DIN, PO_4^{3-} concentrations and bacterial abundances of water samples between 566 treatments.

	δ^{13} C-POC	$\delta^{13}\text{C-DOC}$	$\delta^{13}\text{C-DIC}$	[POC]	[DOC]	[DIN]	[PO ₄ ³⁻]	Bact
KW Global test	5 10-7	3 10 ⁻⁸	6 10 ⁻⁹	5 10-6	4 10-6	10-5	10-6	10-9
PR-HB : Ctrl	7 10 ⁻⁴	3 10 ⁻⁴	8 10 ⁻⁴	1 10 ⁻³	1 10 ⁻³	1 10 ⁻³	2 10 ⁻³	< 10 ⁻⁴
PR-HB : PR-LB	7 10 ⁻⁴	1 10 ⁻³	0.03	1 10 ⁻⁴	1 10 ⁻³	0.05	5 10 ⁻³	$< 10^{-4}$
PR-HB : SA-HB	7 10 ⁻⁴	$2 10^{-4}$	< 10 ⁻⁴	7 10 ⁻³	1 10 ⁻³	4 10 ⁻³	2 10 ⁻³	$< 10^{-4}$
PR-HB : SA-LB	7 10 ⁻⁴	2 10 ⁻⁴	9 10 ⁻³	1 10 ⁻⁴	2 10-4	4 10 ⁻³	2 10 ⁻³	< 10 ⁻⁴
PR-LB : Ctrl	9 10 ⁻⁴	3 10 ⁻⁴	0.44^{NS}	0.86 ^{NS}	0.71 ^{NS}	2 10 ⁻³	0.07^{NS}	0.15^{NS}
PR-LB : SA-HB	7 10 ⁻⁴	$2 10^{-4}$	< 10 ⁻⁴	0.05	0.06^{NS}	0.09 ^{NS}	0.06^{NS}	0.06^{NS}
PR-LB : SA-LB	7 10 ⁻⁴	$2 10^{-4}$	0.59^{NS}	0.64^{NS}	2 10 ⁻³	0.13 ^{NS}	0.06^{NS}	0.01
SA-HB : Ctrl	0.60^{NS}	0.23 ^{NS}	< 10 ⁻⁴	0.29 ^{NS}	0.11^{NS}	0.06^{NS}	0.90^{NS}	0.33 ^{NS}
SA-HB : SA-LB	0.11 ^{NS}	0.94 ^{NS}	< 10 ⁻⁴	0.03	0.02	0.46^{NS}	0.90 ^{NS}	0.12^{NS}
SA-LB : Ctrl	0.08^{NS}	0.25 ^{NS}	0.38 ^{NS}	0.58 ^{NS}	2 10 ⁻³	1 10 ⁻³	0.90^{NS}	0.04
NS = non signifi	Joont							

567 NS = non-significant.

568