Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620
E Orrù
(1)
,
S van Velzen
(1)
,
R. F. Pizzo
(1)
,
S Yatawatta
(1)
,
R Paladino
(2)
,
M Iacobelli
(3)
,
M Murgia
,
H Falcke
(4)
,
R Morganti
(5)
,
A. G. de Bruyn
(5)
,
C Ferrari
(6)
,
J Anderson
(7)
,
A Bonafede
(8)
,
D Mulcahy
(9)
,
A Asgekar
,
I. M. Avruch
(10)
,
R Beck
,
M.E. Bell
(9)
,
I van Bemmel
(1)
,
M. J. Bentum
,
G Bernardi
,
P Best
(1)
,
F Breitling
,
M Brüggen
(8)
,
J.W. Broderick
(9)
,
B Ciardi
(11)
,
A Corstanje
(4)
,
J. E. Conway
,
E de Geus
,
H. R. Butcher
,
B. Ciardi
(11)
,
A Deller
(1)
,
S Duscha
,
J Eislöffel
(12)
,
D Engels
(13)
,
W Frieswijk
(1)
,
Jean-Mathias Griessmeier
(14, 15)
,
G Heald
(1)
,
M Hoeft
(12)
,
H Intema
(3)
,
E Juette
(16)
,
J Kohler
(17)
,
M Kuniyoshi
(18)
,
G Kuper
(1)
,
M Loose
,
P Maat
,
G Mann
(19)
,
S Markoff
(14)
,
R Mcfadden
,
D Mckay-Bukowski
,
G Miley
(3)
,
J Moldon
,
G Molenaar
(14)
,
H Munk
,
A Nelles
(4)
,
H Paas
,
M Pandey-Pommier
(15)
,
G Pietka
(20)
,
W Reich
(18)
,
H Röttgering
(3)
,
A Rowlinson
(21)
,
A Scaife
(22)
,
A Schoenmakers
(1)
,
D. Schwarz
(23)
,
M Serylak
(24, 25)
,
A Shulevski
(5)
,
O Smirnov
,
M Steinmetz
(13)
,
A Stewart
(26)
,
J Swinbank
(14)
,
Michel Tagger
(24)
,
C. Tasse
(27)
,
S Thoudam
(4)
,
M.C Toribio
(1)
,
R Vermeulen
(1)
,
C Vocks
(19)
,
R.J. J van Weeren
,
R.A.M.J Wijers
(26)
,
M.W. Wise
(26)
,
O Wucknitz
(28)
1
ASTRON -
Netherlands Institute for Radio Astronomy
2 OABO - INAF - Osservatorio Astronomico di Bologna
3 Leiden Observatory [Leiden]
4 CNR-ISMN - Institute for Nanostructured Materials
5 Radboud University [Nijmegen]
6 Kapteyn Astronomical Institute [Groningen]
7 Département de Géologie
8 University of Hamburg
9 Jacobs University = Constructor University [Bremen]
10 University of Southampton
11 SRON - SRON Netherlands Institute for Space Research
12 Edin. - University of Edinburgh
13 AIP - Leibniz-Institut für Astrophysik Potsdam
14 LPC2E - Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
15 USN - Unité Scientifique de la Station de Nançay
16 Medstar Research Institute
17 RSAA - Research School of Astronomy and Astrophysics [Canberra]
18 TLS - Thüringer Landessternwarte Tautenburg
19 Hamburger Sternwarte/Hamburg Observatory
20 RUB - Ruhr University Bochum = Ruhr-Universität Bochum
21 KIT - Karlsruhe Institute of Technology = Karlsruher Institut für Technologie
22 MPIFR - Max-Planck-Institut für Radioastronomie
23 Queen's Medical Centre
24 Max Planck Institute for Astrophysics
25 Onsala Space Observatory, Dept. of Radio and Space Science, Chalmers University of Technology
26 AI PANNEKOEK - Astronomical Institute Anton Pannekoek
27 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique
28 Center for Information Technology CIT
2 OABO - INAF - Osservatorio Astronomico di Bologna
3 Leiden Observatory [Leiden]
4 CNR-ISMN - Institute for Nanostructured Materials
5 Radboud University [Nijmegen]
6 Kapteyn Astronomical Institute [Groningen]
7 Département de Géologie
8 University of Hamburg
9 Jacobs University = Constructor University [Bremen]
10 University of Southampton
11 SRON - SRON Netherlands Institute for Space Research
12 Edin. - University of Edinburgh
13 AIP - Leibniz-Institut für Astrophysik Potsdam
14 LPC2E - Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
15 USN - Unité Scientifique de la Station de Nançay
16 Medstar Research Institute
17 RSAA - Research School of Astronomy and Astrophysics [Canberra]
18 TLS - Thüringer Landessternwarte Tautenburg
19 Hamburger Sternwarte/Hamburg Observatory
20 RUB - Ruhr University Bochum = Ruhr-Universität Bochum
21 KIT - Karlsruhe Institute of Technology = Karlsruher Institut für Technologie
22 MPIFR - Max-Planck-Institut für Radioastronomie
23 Queen's Medical Centre
24 Max Planck Institute for Astrophysics
25 Onsala Space Observatory, Dept. of Radio and Space Science, Chalmers University of Technology
26 AI PANNEKOEK - Astronomical Institute Anton Pannekoek
27 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique
28 Center for Information Technology CIT
M Murgia
- Fonction : Auteur
R Morganti
- Fonction : Auteur
- PersonId : 778165
- ORCID : 0000-0002-9482-6844
C Ferrari
- Fonction : Auteur
- PersonId : 743106
- IdHAL : chiara-ferrari
- ORCID : 0000-0002-2917-9759
A Asgekar
- Fonction : Auteur
R Beck
- Fonction : Auteur
M. J. Bentum
- Fonction : Auteur
G Bernardi
- Fonction : Auteur
F Breitling
- Fonction : Auteur
J. E. Conway
- Fonction : Auteur
E de Geus
- Fonction : Auteur
H. R. Butcher
- Fonction : Auteur
S Duscha
- Fonction : Auteur
Jean-Mathias Griessmeier
- Fonction : Auteur
- PersonId : 737206
- IdHAL : jean-mathias-griessmeier
- ORCID : 0000-0003-3362-7996
- IdRef : 235780871
G Heald
- Fonction : Auteur
- PersonId : 778166
- ORCID : 0000-0002-2155-6054
M Loose
- Fonction : Auteur
P Maat
- Fonction : Auteur
R Mcfadden
- Fonction : Auteur
D Mckay-Bukowski
- Fonction : Auteur
J Moldon
- Fonction : Auteur
H Munk
- Fonction : Auteur
H Paas
- Fonction : Auteur
O Smirnov
- Fonction : Auteur
Michel Tagger
- Fonction : Auteur
- PersonId : 4538
- IdHAL : michel-tagger
- ORCID : 0000-0003-2962-3220
- IdRef : 097156310
R.J. J van Weeren
- Fonction : Auteur
Résumé
Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in AGN, as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts.
Aims. Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view. Methods. We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources.
Results. The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m −2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1.
Conclusions. The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of wide-field imaging (e.g., time and frequency variation of the beam, directional dependent calibration errors) can be solved using LOFAR commissioning data, thus demonstrating the potential of the full LOFAR telescope to discover millions of powerful AGN at redshift z ∼ 1.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...