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Abstract  

This study aims at establishing groundwater residence times, identifying mineralization 

processes and determining groundwater origins within a carbonate coastal aquifer with thick 

unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, 

SiO2, Br
-
, Ba

+
, Sr

2+
, 

18
O, 

2
H, 

13
C,

 3
H, Ne, Ar) combined with a groundwater residence time 

determination using CFCs and SF6 allows defining the global setting of the study site. A 

typical mineralization conditioned by the sea sprays and the carbonate matrix helped to 

validate the groundwater weighted residence times from using a binary mixing model. 

Terrigenic SF6 excesses have been detected and quantified, which permits to identify a 

groundwater flow from the surrounding fractured granites towards the lower aquifer 

principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible 

and very relevant despite the thick unsaturated zone and the hydraulic connexion with a 

granitic environment. 
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1. Introduction 

 

The residence time of groundwater is a fundamental parameter for the understanding of 

hydrogeosystems functioning (McCallum et al., 2014; Suckow, 2014). Indeed, the 

groundwater residence time documents on contaminant transport and sustainability of water 
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resources (Baudron et al., 2014; Cook et al., 1995; Cook and Herczeg, 2000; Gourcy et al., 

2009; Murgulet et al., 2016; Vautour et al., 2015). It is also a powerful integrative approach of 

groundwater origin and flow path organisation within aquifers (Anders et al., 2014; Bertrand 

et al., 2010; Gooddy et al., 2006; Jaunat et al., 2012; Kamtchueng et al., 2015). Furthermore, 

groundwater residence time provides information to constrain recharge area, discharge rate, 

flow directions and velocities, all necessary to either quantitatively validate a numerical or 

conceptual hydrogeological model (Aquilina et al., 2014; Post et al., 2013; Turnadge and 

Smerdon, 2014; Zuber et al., 2005). When groundwater residence times are over timescale of 

0-70 years, dating tools such as tritium, chlorofluorocarbons (CFCs) or sulphur hexafluoride 

(SF6) may be used (Aeschbach-Hertig et al., 1998; Alvarado et al., 2005; Cook and Solomon, 

1997; Corcho Alvarado et al., 2007; Delbart et al., 2014). Due to the stabilization of 
3
H 

concentrations around 10 TU in the atmosphere since the 1970s, tritium dating has lost 

precision (Blavoux et al., 2013). CFCs and SF6 are anthropogenic atmospheric gases. In 

groundwater, their presence indicates a recharge after 1950 or a mixing with older waters 

(Busenberg and Plummer, 1992). Atmospheric SF6 concentration has been continuously 

increasing since the 1960s whereas CFCs concentrations stopped increasing since the 

Montreal and Kyoto protocols (1986-1992). However a sample taken at a given location is 

often a mixture of waters that have been transported via various flow paths. Thus this 

residence time should be mostly interpreted as a weighted mean of idealized residence times 

(Bethke and Johnson, 2008; Goode, 1996; Jodar et al., 2014; Suckow, 2014; Torgersen et al., 

2013; Turnadge and Smerdon, 2014). The major advantage of CFCs and SF6 resides in the 

possibility to discriminate different water bodies considering various mixing models (piston 

flow, binary or exponential), providing information on aquifer functioning (Cook et al., 1995; 

Jodar et al., 2014; Kashiwaya et al., 2014; Zuber et al., 2005). CFCs and SF6 are commonly 

considered as pertinent dating tracers but there are nevertheless some limits to their use 

(Kashiwaya et al., 2014). CFCs may be affected by the transfer processes in the unsaturated 

zone, local contaminations and degradation processes in anoxic environments causing most of 

the time offsets to groundwater aging (Aeschbach-Hertig et al., 1998; Beyerle et al., 1999; 

Gooddy et al., 2006; Gourcy et al., 2009; Heaton and Vogel, 1981; Schwientek et al., 2009). 

SF6 is considered as a conservative tracer, but natural sources have been highlighted in 

granitic environments and some carbonates aquifers (Han et al., 2014; Harnisch and 

Eisenhauer, 1998; Harnisch et al., 2000). As a consequence, it appears difficult to employ 

CFCs and SF6 as groundwater dating tracers in presence of thick unsaturated zone, 

particularly if aquifers are hydraulically connected to granitic environments.  
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Many studies have been carried out in coastal aquifers using successfully CFCs and SF6 as 

groundwater residence times and mixing tracers (Gilmore et al., 2016; Kashiwaya et al., 2014; 

Kelly and Glenn, 2015; Lee, 2014) but none of them concerned aquifers with strong 

geological contrast and deep unsaturated zone. Investigations have been carried out within the 

coastal Miocene plateau of Bonifacio (Corsica, France), most visited place of the island 

hosting more than two million tourists each year. This aquifer is mainly composed of 

calcarenites lying on fractured granitic formations, and includes an unsaturated zone up to 50 

meters thick. It thus corresponds to an interesting study site to test the groundwater dating 

tools potential. A well-documented description of the geology and structure of this basin was 

the starting point for a detailed study of residence time, mineralization processes and 

groundwater origin within this carbonate coastal aquifer with a thick unsaturated zone. The 

strategy chosen for the study of this hydrosystem is a multi-tracing approach combining major 

ions, SiO2, Br
-
, Ba

+
, Sr

2+
, 

18
O, 

2
H, 

13
C,

 3
H, Ne, Ar with CFC-11, CFC-12, CFC-113 and SF6. 

The groundwater mineralization processes such as water-rock interactions, marine signature 

and anthropogenic influences will be clarified using stable isotopes, physico-chemical 

parameters and hydrogeochemical tracers before comparison with the c groundwater 

residence time determination using CFCs and SF6. In addition to improve the scope of CFC 

and SF6 as groundwater dating tracers, this study is expected to conclude on a description of 

the aquifer functioning in terms of groundwater mineralization, origins, flow paths and 

mixings through the establishment of a conceptual model. Indeed, this should highlight the 

relevance of such approach for complex hydrosystems.. 

 

 

2. Site description  

 

2.1. Geography, geomorphology and land uses 

The Bonifacio plateau is situated in the southeast part of Corsica (western Mediterranean, 

France) bounded in equal proportions by granites at the east and the west and by the 

Mediterranean Sea at the Northeast and South (Fig. 1). Its triangular shape extends over an 

area of approximately 25 km², with a mean elevation of 80 masl. The carbonate plateau fills a 

granitic depression and is surrounded by granitic relief with an altitude up to 250 m at the 

Mont de la Trinité (west side) and up to 110 m at San Mulari (east side). The plateau is cut by 

four East-West valleys: St. Julien, St. Jean, Canali and Canettu. The Canali River is the only 

perennial river with very low flow (Alamy and Chiari, 2010). Some coastal wetlands are 
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present in Balistra, Canettu and Sperone. The 3,000 inhabitants of Bonifacio are living along 

the two main St. Julien and Saint Jean valleys. Some scarce goat and sheep farming or 

gardening activities are present in the centre of the plateau, in Padurella and Campagro, but 

the major part of the area is covered with Mediterranean maquis. 

 

2.2. Hydroclimatology 

The southern Corsica is characterized by a typical Mediterranean climate. Climatic conditions 

are very heterogeneous from one year to another one. The mean annual temperature and 

precipitation at the Bonifacio (Capo Pertusato, Fig. 1) Meteo France station are 16.8°C and 

605 mm respectively (calculated from 01/2000 to 01/2012). The mean potential 

evapotranspiration calculated for the 01/2006-12/2014 period using the Turc formula 

(radiation and humidity data provided by Meteo France) is about 2590 mm/a. The estimated 

mean annual aquifer recharge is about 118 mm/a, which would represent 15 % of the total 

precipitation on the Bonifacio plateau. This value seems a little overestimated regarding to the 

values between 52 to 86 mm/a observed in neighbouring Sardinia (Ghiglieri et al., 2014). In 

the sector of Bonifacio wind blows 300 days per year, often with gusts above 60-80 km/h. 

These winds are causing heavy swell and generate significant sea sprays all over the study 

area. 

 

2.3. Geology  

The Bonifacio carbonate aquifer is developed in a sedimentary Miocene basin laying on a 

fractured Hercynian granitic depression (Fig.1 and 2). Several stratigraphic logs were defined 

in the area (Ferrandini et al., 2003; Orsini et al., 2010; Reynaud et al., 2012), showing three 

major sedimentary formations with little differences in the deposit sequences. In this paper, 

we refer to the stratigraphic log of Reynaud et al. (2012). 

 

2.3.1. Hercynian granitic depression 

The basement of the Bonifacio basin is made of a granitic bedrock dating from the Hercynian 

(-347 to -278 Myr) and locally known as the Corsican calco-alcaline batholith (Rossi, 1987). 

It is composed mainly of monzogranite and leucomonzogranite, coarse or fine grained. The 

granites were affected by intense fracturing during the Corsica-Sardinia Miocene block 

rotation (Gattacceca et al., 2007). Magma injections from the Miocene calco-alcaline 

volcanism (-20 to -18 Myr) are present in the granite and correspond to dolerite veins in the 
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West side of the plateau and pegmatite veins in the East side (Orsini et al., 2010). These 

intrusions are potential sources of fluoride and terrigenic SF6.  

 

2.3.2. Miocene sedimentary formations 

The Bonifacio sedimentary basin is composed, from the base to the top, of the Balistra, Cala 

di Labra and Bonifacio formations. The Balistra formation (Aquitanian) is a continental 

formation with a maximum thickness of 100 m. It is composed at the base of fluvial detrital 

series including weathering products of the surrounding granites with a carbonated fraction 

(Orsini et al., 2010), and of ignimbritic tufa series a few meter thick at the top (Deino et al., 

2001; Ottaviani-Spella et al., 2001). The Cala di Labra and Bonifacio formations forms a 

second set composed of carbonate marine sediments. The Cala di Labra formation 

(Burdigalian) can reach 90 m thick (Orsini et al., 2010). Three different levels are identified: 

shelly litharenites, a sandy silt level (materializing the separation between the upper and lower 

aquifer) and coralline-rich calcarenites (Reynaud et al., 2012). This formation was also fed by 

abundant near shore siliciclastic sediments (Tomassetti et al., 2012). The Bonifacio formation 

(Langhian) can reach 110 m thick. At the base, the Pertusato member is made of calcareous 

sandstones and sandy calcarenites. Above, the Bonifacio member is composed of coralline 

sandstones with limestone cement and of coralline sandy calcarenites. Many lens filled of 

gravel material are present. Well-cemented limestone completes the series (Reynaud et al., 

2012). 

 

2.4. Hydrogeology background 

The hydrogeology includes two main aquifers separated by a silty layer within the Cala di 

Labra formation (Fig.2). The Miocene stratifications display also a slight dipping oriented 

NE-SW which may also influence the groundwater flow. Fracturing of surrounding granitic 

massifs is potentially favourable to an hydraulic connection with the carbonated plateau, but 

no evidence has been previously established. The geophysical survey also identified two 

aquifer levels : the upper aquifer, characterized by a hydraulic conductivity of 1.3x10
-4

 to 

2.5x10
-4

 m/s and the lower aquifer with a hydraulic conductivity of 1 to 5.0×10
-6 

m/s 

(Dörfliger et al., 2002). These values can be considered as favourable to groundwater flow. 

On the contrary, the silty level of the Cala di Labra formation presents an unfavourable 

aquifer potential, with a hydraulic conductivity estimated to less than 3×10
-7

 m/s. Pumping 

tests showed more favourable values of 2.2x10
-6

 m/s at B5, 8.2x10
-6

 m/s for the upper aquifer 
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and 1.7x10
-5

 m/s for the lower aquifer (Alamy and Chiari, 2010). The values for the silty level 

of Cala di labra are similar to the geophysical approach (2.7x10
-7

 m/s). 

A major hydrogeological characteristic of the aquifer is its thick unsaturated zone. The 

piezometric levels for the upper aquifer range from -0.97 to 21.75 masl (Table 1) and from 

10.96 to 62.05 masl for the lower aquifer (some values can be influenced by pumping for 

exploited wells and boreholes). The lower aquifer can consequently be slightly artesian in 

some places but the differences in water levels between the upper and the lower aquifer are 

more in favour of a global downward vertical drainance. The morphology of the granite 

bedrock highlights the presence of channels which seems to favour the groundwater flow. 

Two main flow directions can be identified on the piezometric map: one direction is heading 

towards the Bonifacio harbour and the other one towards the Sant'Amanza bay. 

 

3. Method 

 

3.1. Sampled wells and boreholes  

The use of atmospheric gases in the multi-tracing strategy has conditioned the selection of 

sampling points which allow pumping and sampling conditions with no atmospheric contact. 

A selection of 4 wells and 13 boreholes was sampled in May 2013 and in October 2013 (Fig.1 

and Table 1) all over the study area. The screening interval of the wells and boreholes is 5 to 

15 m and 44 to 269 m respectively. In this paper, groundwater from the upper aquifer and 

located in the recharge area (UAr) corresponds to B1, B2, B3 and B10; groundwater from the 

upper aquifer and located at the bottom of the valleys (UAv) and disposed along flow lines 

corresponds to W1, W2, W3, W4, B4, B5, B6 and B7. The lower aquifer (LA) is represented 

by B8, B9 and B11. Samples B12 and B13 characterize groundwater from the granites (G).  

Sampling in the unexploited boreholes and wells was performed using a Grundfoss MP1 or a 

Comet submersible pump, depending on the sampling depth, both with a nylon tube. For 

exploited wells and boreholes, water was sampled directly at the tap avoiding any air 

contamination. For groundwater from the UAr and the UAv, water levels have been measured 

before pumping in order to establish the potentiometric map (Fig. 1). 

 

3.2. Sampling and analytical methods  

3.2.1. Geochemistry 
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Electrical Conductivity (EC), Temperature (T) and pH were measured in the field using a 

WTW Cond 3310 meter and a WTW pH 3310 meter. Alkalinity was determined in the field 

using a HACH digital titrator.  

Samples for major ions (Cl
-
, NO3

-
, SO4

2-
, Na

+
, K

+
, Mg

2+
 and Ca

2+
) analysis were collected in 

two 50 mL polyethylene bottles after filtration through 0.45 µm nitrocellulose membranes and 

stored at 4 °C. One of them was acidified with ultrapure HNO3 for cation analysis. The 

concentrations were determined by ionic chromatography using a Dionex ICS 1100 

chromatograph at the hydrogeology department of the University of Corsica, France. The 

quality of the chemical analysis was checked by calculating the ionic balance error. Analyses 

were rejected if the ionic balance error was greater than 5 %.  

Samples for trace elements Br
-
, Ba

2+ 
and B

+
 were collected in 50 mL polyethylene bottles 

after filtration through 0.20 µm nitrocellulose membranes and acidification using ultrapure 

HNO3 and then stored at 4°C. Trace elements were analysed by Q-ICPMS X series II Thermo 

Fisher at the AETE technical platform of the University of Montpellier, France.  

Samples for stable isotopes of the water molecule were collected in 20 mL amber glass bottles 

without head-space to guarantee a perfect conservation. Stable isotopes were measured using 

a liquid-water stable isotope analyser DLT-100 (Los Gatos Research) at the Hydrogeology 

Department of the University of Corsica, France, according to the analytical scheme 

recommended by the IAEA (Penna et al., 2010). The quality of the isotopic analysis was 

checked using a standard deviation condition up to 1 ‰ for δ
2
H and up to 0.1 ‰ for δ

18
O. 

For the determination of δ
13

C of the dissolved inorganic carbon (DIC), samples were collected 

in 500 mL polyethylene bottles with air-tight caps and preserved with HgCl2 to prevent 

biological activity after filtration through 0.45 µm nitrocellulose membranes. Analyses were 

performed at the Hydrogeology Department of the University of Avignon, France, using mass 

spectrometry. 

 

3.2.2. Dating tracers, excess air and recharge temperature 

Sampling for 
3
H analyses was carried out in 500 mL polyethylene bottles and analysis were 

performed at the hydrogeology Department of the University of Avignon, France, by 

electrolytic enrichment and liquid scintillation counting method (Thatcher et al., 1977). 

Groundwater for CFCs and SF6 analyses was sampled in stainless-steel ampoules after 

washing through at least three volumes of the ampoule before closing it. No contact with air 

was allowed during sampling. Water for noble gases analyses was sampled in 500 mL glass 
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bottles by over flushing. The bottles were submerged in flowing water, flushed, and capped 

without headspace. 

Analyses were performed at the OSUR Geosciences Laboratory of the University of Rennes 

1, France. CFCs and SF6 concentrations in groundwater were obtained by degassing water 

samples by N2 stripping. Gases were trapped in a stainless-steel tube filled with HayesepD
®

 

and maintained at -100°C in an ethanol bath. After 10 min of pre-concentration, the gases 

were injected into a Gas Chromatograph equipped with an Electron Capture Detector (GC–

ECD) by immersing the trap into boiling water. The analytical uncertainty is estimated to be 

1% to 3% for CFCs and near 5% for SF6. Thus, the global uncertainty on residence time, 

including sampling, analysis, selection of the recharge temperature in Henry’s law, and 

dispersion-adsorption effects, is estimated to be from 2 to 11 a (Ayraud et al., 2008; Labasque 

et al., 2006; Labasque et al., 2014). 

The concentrations of dissolved noble gases Ne, Ar and N2 (Table 3) in groundwater are used 

to estimate recharge temperatures and the excess air (Mazor, 1979 ; Heaton and Vogel, 1981 ; 

Busenberg and Plummer, 1992). The recharge temperature is the temperature at the water 

table in the recharge zone at the time of separation from the atmosphere during recharge and 

the excess air is the quantity of air trapped during recharge and dissolved in groundwater. The 

unfractionated excess-air model using N2-Ar data may be considered to calculate these values, 

essential to determine the CFCs and SF6 solubility in groundwater (Aeschbach-Hertig et al., 

1999; Aeschbach-Hertig et al., 2000; Plummer et al., 2012). In the Bonifacio aquifer this 

model was applied. The average recharge temperature obtained is around 17.4°C, 

corresponding closely to the mean annual temperature in Bonifacio (16.8°C). The excess air 

ranges from -1.53 to 6.66 mL/L. Monte Carlo simulation was performed to generate the range 

of the uncertainties of the model parameters. Uncertainty regarding the temperature is about 

2°C and 1 mL/L for the excess air volume. These uncertainties predicted by Monte Carlo 

simulation are high, but seem sufficiently similar to the temperatures measured in the field to 

be used to deduce, following the CFCs and SF6 solubility in groundwater, the corresponding 

atmospheric gas content of recharge year.  

Noble gases are extracted by head-space extraction with a He phase (Ayraud et al., 2008; 

Labasque et al., 2006). Ar and Ne were subsequently measured using a micro-gas 

chromatograph (GC 3000, SRA instruments) at the OSUR Geosciences Laboratory of the 

University of Rennes 1, France. Uncertainties are around 3% for Ne measurements and less 

than 2% for Ar. This analysis allows the Ne/Ar ratio to be assessed in order to compute an 

excess air contribution as well as recharge temperature. The calculations assume an average 
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elevation for the samples of 100 m ASL. Excess air calculation is used to correct SF6 data, 

which could be greatly influenced by this parameter in contrast to CFCs (Ayraud et al., 2008; 

Maiss and Brenninkmeijer, 1998; Plummer et al., 2001). 

The residence time corresponds to the groundwater transit time distribution in the saturated 

zone until the sampled point. In the modelling step, the residence times are calculated 

considering CFCs and SF6 as “perfect” tracers without exchange, contamination and/or 

degradation with their environment. In reality, these processes can occur and therefore may 

lead to a bias regarding residence times. Inter-comparison between the four residence times 

obtained with the 4 tracers highlights either a common residence time or a contamination or 

degradation effect influencing one or several tracers (Aeschbach-Hertig et al., 1998; Beyerle 

et al., 1999; Gooddy et al., 2006; Gourcy et al., 2009; Harnisch and Eisenhauer, 1998; 

Harnisch et al., 2000; Heaton and Vogel, 1981). For each sampled points, three models were 

tested to determine the residence times: the Piston Flow Model (PFM), the Exponential Model 

(EM) and the Binary Mixing Model (BMM), all being described in Małoszewski and Zuber 

(1982) and in Cook and Herczeg (2000). The PFM, EM and BMM modelling tests have been 

achieved with the USGS Excel Worksheets (http://water.usgs.gov/lab/software/tracer_model/) 

with the implementation of the atmospheric concentrations for 1940-2013 period. Models 

were selected on the basis of available geological, hydrogeological and hydrochemical 

information. In this study, only the BMM proved to be relevant. This model assumes a mixing 

between two main flow lines since infiltration into the saturated zone to the sampled point.  

The BMM assumes a mixing occurring between an old end-member and a younger one.  The 

groundwater weighted ages may be thus computed following the gas solubility governed by 

the Henry’s law, by a weighted proportion between an old end-member (100% of old 

groundwater corresponding to a given year) and a younger one (100% of young groundwater 

corresponding to a more recent year) giving the best fitting of groundwater samples with the 

curves. 

 

4. Results  

 

4.1. Field parameters and hydrochemistry 

Most groundwater temperatures are close to the mean annual air temperature in Bonifacio 

(16.8°C).. Some samples display a higher temperature, up to 20.1°C (Table 2) in agreement 

with the atmospheric temperature during sampling, which took place in May 2013. 

Groundwater from the carbonate plateau shows a circum neutral pH, between 6.7 and 7.3 

http://water.usgs.gov/lab/software/tracer_model/
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reflecting carbonate dissolution. Nevertheless, pH values about 6.7 are found in the granites. 

The electric conductivity (EC) ranges between 999 and 2090 µS/cm (Table 2). The lowest EC 

(<1100 µS/cm) are mainly observed in groundwater from the UAr and the LA whereas the 

highest EC (>1900µS/cm) are mainly observed in some groundwater from the UAv and the G. 

Intermediate EC (1100-1900 µS/cm) are measured in some groundwater from the UAv.  

Groundwater from the LA or the UAv displays generally the highest chloride and sodium 

concentrations (Table 2), giving a Na
+
-Cl

-
 water type (Fig. 3). Furthermore, the plot of Cl

-
 in 

relation with Na
+ 

and Mg
2+

 (Fig. 4a and 4b) are close to the seawater ratio and marked by 

correlation coefficients (r) higher than 0.90, displaying a marine origin for these elements. 

The same trend is observed with Br
-
,
 
Ba

2+
 and B

+
. For these elements, the highest values are 

observed for groundwater from the G or the UAv. The plot of Cl
-
 in relation with Br

-
, Ba

2+
 and 

B
+
 (Fig. 4c, 4d and 4e) are marked by correlation coefficients (r) higher than 0.62, suggesting 

also a marine origin for these elements and in particular for the Br
-
 with a Br

-
/Cl

-
 ratio equal 

to the seawater (Fig. 4c). The marine elements appear to be important in the high EC values of 

groundwater. 

Groundwater from the UAr and from the UAv displays the highest calcium and bicarbonate 

concentrations (Table 2), giving a Ca
2+

-HCO3
-
 water type (Fig. 3). Furthermore, the plot of 

Ca
2+

 vs HCO3
-
 is close to the calcite dissolution ratio and is marked by a correlation 

coefficient (r) around 0.63, showing the influence of carbonate dissolution for these elements 

(Fig. 4f).  

The NO3
-
, K

+
 and SO4

2-
 give evidence of an anthropogenic fingerprint on groundwater. The 

natural nitrate concentration of groundwater in the absence of nitrogen fertilization is 

estimated between 5 and 7 mg/L (Appelo and Postma, 1999). However, concentrations found 

can reach 40 mg/L in some places (Table 2) which indicates that groundwater is impacted by 

human activities. Potassium in groundwater is generally linked with igneous rocks 

(orthoclase) or clay weathering. In this case, groundwater displays concentrations up to 10 

mg/L (Rail, 2000), as observed in Bonifacio groundwater. Furthermore, the Cl
-
/ SO4

2-
 ratio is 

largely higher than seawater or anhydrite, suggesting an anthropogenic origin for SO4
2 

(Fig. 

4g and 4h). 

The boreholes from G correspond to the only points which are not influenced by a carbonated 

mineralization. However some samples from the UAr and the UAv (B1, B4 and W1) are also 

rather influenced by the marine signature. The most carbonated water type is observed for the 

UAr (B2). The hydrochemical data show a gradual evolution of the water types, from a Ca
2+

-

HCO3
-
 water type in the centre of the plateau to a Na

+
-Cl

-
 water type near the shores (Fig.3). 
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4.2. SiO2 and 
13

C 

The lowest SiO2 concentrations in groundwater are found in the UAr and UAv, whereas the 

highest concentrations are found in the LA and G. Some samples display concentrations 

different from what is expected in the granite e.g. B13 (11.2 mg/L), or in the carbonates W3 

(16.4 mg/L), probably in relation with mixing processes.  

The carbon-13 isotopic ratios range from -16.9 to -10.7 ‰ (Table 2). The most enriched 

values correspond to groundwater from the LA or the UAv reflecting interaction with 

carbonate rocks whose ratio is around 0 ‰.  

 

4.3. Stable isotopes of the water molecule 

The isotopic composition of groundwater displays values between -6.34 ‰ and -4.79 ‰ for 

δ
18

O and between -36.16 ‰ and -29.82 ‰ for δ
2
H (Fig. 5). The samples plot between the 

Global Meteoric Water Line (GMWL) and the Western Mediterranean Meteoric Water Line 

(WMMWL), the latter being characterized by the following equation δ
2
H = 8 δ

18
O + 14 

(Celle-Jeanton et al., 2001). The isotopic signal appears as relatively homogeneous within the 

aquifer. Excess deuterium is between 8.51 and 12.72 ‰ indicating no detectable evaporation, 

except for B9 which stable isotopic ratios indicate a probably slight evaporation or a little 

seawater intrusion trend (Table 2).  

 

4.4. Groundwater residence time 

4.4.1. Tritium 

The 
3
H concentrations range from 0 to 5.7 TU (Table 3). Groundwater from the LA and the 

UAv (B5, W3, B6 and B7) displays the lowest concentrations, below 1-2 TU. All other 

groundwater samples displays detectable concentrations but lower than the current 

atmospheric content, between 7.5 and 8 TU in the Northern Hemisphere (Blavoux et al., 

2013), highlighting an important mixing with post-1950’s water.  

 

4.4.2. Residence time model 

CFCs and SF6 contents in groundwater are very contrasted ranging from 9 to 255 pptv for 

CFC-11, 16 to 546 pptv for CFC-12, 4 to 160 pptv for CFC-113 and from 0.70 to 18.37 pptv 

for SF6 (Table 3). The higher values, corresponding to the actual atmospheric content, are 

mainly observed for groundwater from UAr and UAv, whereas the lowest are observed for the 
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LA. Samples from the granite display higher SF6 values than the one of the atmospheric 

chronicles, highlighting another origin for this component (Fig. 6). 

The most coherent model for all the samples was the BMM. All the values plot on the same 

binary mixing line between an old end-member (> 1950’s) and a young end-member of about 

9 years old (Fig. 6), which was suggested by the tritium data (Table 3). A gradual evolution of 

mixing ratios (giving residence times) appears in the upper aquifer. For the UAr mixing ratios 

evolve from 85 to 95% of young water (B1 and B2), whereas along potentiometric lines of the 

UAv the ratio of young water is from 50-60% (B4 and B6) to finally 20% (W2 and W3) at the 

outlet near the Bonifacio harbour. The same pattern is observed for the Canali valley, where 

mixing ratios evolve from 90 to 45% of young water respectively for B10 (UAr) and B7 

(UAv) in the outlet located in the Sant’Amanza bay. The ratio of young water is between 40 to 

65 % in the G, and between 5 to 25% in the LA. 

Even if determining mixing ratios gives lot of interesting information, it is also necessary to 

quantify the groundwater residence times to better understand the aquifer functioning. In so 

far as all groundwater samples display detectable concentrations in CFCs and SF6, no sample 

is supposed to be older than the dating method scale. The groundwater residence times have 

been thus calculated (Table 4) by a weighted proportion between an old end-member (100% 

of old groundwater corresponding to the year 1940, last year without detectable tracer 

concentrations in the atmosphere) and a younger one about 9 a (100% of young groundwater 

corresponding to the year 2004, giving the best fitting of groundwater samples with the 

curves). Groundwater from the LA and the UAv are the oldest with weighted residence times 

between 50 and 60 a (W2, W3, B5, B8 and B9). The oldest groundwaters are located in the 

lower aquifer. Conversely, groundwater from the UAr is the youngest one with weighted 

residence times between 9 and 20 a (W1, B1, B2 and B10). Intermediate weighted residence 

times are obtained for the other samples from UAv and G with weighted residence times 

between 20 and 50 a (W4, B3, B4, B6, B7, B12 and B13). 

 

5. Discussion 

 

5.1. Groundwater origin 

The very close isotopic signature of each groundwater sample suggests a same origin for all 

the groundwater regardless of their spatial distribution. The isotopic signature of groundwater 

is in good agreement with the isotopic signature of  Piombino rainwater (-6.04 for δ
18

O and -

36.6 for δ
2
H) and Sassari rainwater (-6.58 for δ

18
O and -37.3 for δ

2
H) which are the closest 



  

13 

 

Italian neighbouring rain stations (Longinelli and Selmo, 2003). The isotopic composition of 

groundwater is clearly different from the sea water composition analysed in the Strait of 

Bonifacio (1.07 for δ
18

O and 4.78 for δ
2
H). The Cl

-
 and Na

+
 concentrations and the high EC 

of the groundwater is more in agreement with a coastal situation influenced by the seas sprays 

as for Spanish and Portuguese coastal aquifers (Alcala and Custodio, 2008; Cruz et al., 2011) 

and many others Mediterranean coastal aquifers (Bouzourra et al., 2015; Dazy et al., 1997; 

Ghabayen et al., 2006; Manca et al., 2015). 

 

5.2. Groundwater flow paths  

In order to bring out flow paths within the aquifer, potentiometric heads will be compared 

with the spatial evolution of groundwater hydrochemistry and weighted residence times. The 

BMM applied in this paper is usually appropriate for multi-layers aquifers (La Salle et al., 

2012; Stuart et al., 2010). This model reveals the presence of “young” and “old” water bodies,  

in agreement with groundwater temperatures and only slightly influenced by the seasonal 

surface atmospheric conditions and by the tritium concentrations below 1-2 TU linked to an 

important ratio of pre-1950’s water. Indeed, the correlation between the tritium and the 

groundwater weighted residence times are well correlated (Fig. 7a) with the lowest tritium 

concentrations and the longest residence times observed for the LA whereas the highest 

tritium concentrations and the shortest residence times are observed for the UAr and UAv.  

At Bonifacio, the coastal and extremely windy context seems to contribute to a concentration 

of chloride, sodium and other marine elements during crystallisation of sea sprays as observed 

on stone surface in a Greek coastal environment (Chabas et al., 2000). In this case, a 

salinization can appear during the aquifer recharge, the Na
+
-Cl

-
 water type being more marked 

for groundwater infiltrated in recharge areas close to the coasts. Chemical elements associated 

to sea sprays hence constitutes good tracers of the recharge area, and thus of the ratio of 

young water. Indeed, The Na
+
+Cl

-
, Br

-
, B

+
, Ba

2+
 and Mg

2+
 versus ratio of young water graphs 

(Fig. 7b to 7f) show correlation coefficients ranging from 0.61 to 0.95. For these elements, the 

higher the ratio of young water, the greater their concentration is, which validates the mixing 

ratios established. The younger groundwater are found in the UAr whereas in the UAv, 

weighted residence time increases downstream and reaches 52 a at the outlet of the St. Julien 

valley. Same observation were made in the Canali valley where weighted ages reaches 39 a. 

The spatial distribution of residence times displays an aging along these two main flow lines 

according to the potentiometric heads identified in the hydrogeology background section (Cf. 

2.4.). 
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Hydrolysis of silicate minerals is a slow process and the resulting changes in water chemistry 

are gradual (but less developed in carbonate aquifers) and reflects, as carbon-13, a qualitative 

aging of groundwater. Consequently, SiO2 and 
13

C values in groundwater are linked to the 

intensity of water-rocks interactions, and are supposed to increase along the flow lines with 

the residence time. The pH values and chemical elements such as Ca
2+

, HCO3
-
, SiO2 and 

13
C 

hence constitutes good indicators of water-rock interactions, and thus of the ratio of old water. 

The Ca
2+

+HCO3
-
 and SiO2 versus part of young water graphs (Fig. 7g and 7h) displays 

inverse correlation coefficients ranging from 0.57 to 0.79. For these elements, the lower the 

ratio of young water, the greater their concentration is. This is confirmed by the 
13

C which 

values from -16.9 to -10.7 ‰ indicates variable intensity of water-rock interaction processes. 

Indeed, the 
13

C versus part of young water which shows an inverse correlation coefficient of 

about 0.77 (Fig. 7i), which argue in favour of the mixing ratios established. A groundwater 

aging takes place from the G to the LA, suggesting a hydraulic connection between the G and 

the LA. 

 

Finally, the gradual groundwater aging observed from the upper aquifer to the bottom of the 

valleys and to the lower aquifer is in agreement with the potentiometric data displaying higher 

levels in the upper aquifer than in the lower aquifer (Fig.2 and Table 1). A probable 

downward vertical drainance from the upper to the lower aquifer is thus evidenced but seems 

however limited regarding the relatively low EC in the lower aquifer compared to the upper 

aquifer. 

 

5.3. Limits of the dating method 

The BMM gave groundwater weighted residence times between 9 and 60 a. This information 

reveals the presence of an inertial water body, as suggested by the tritium data. Probably, the 

old end-member may be underestimated because in limits of this dating method. 

Unfortunately, the Bonifacio aquifer location is too far from any survey station for 

atmospheric tritium to be used as a quantitative tracer to specify residence times, but the good 

correlation observed between the tritium concentrations and the ratios of young groundwater 

(Fig. 7a) indicates that tritium is yet a good qualitative indicator of residence time in this 

aquifer. 

The weighted residence times are based on the equilibrium between CFC in atmospheric air 

and infiltrating water at the time of recharge. With increasing thickness of the UZ, gas 
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transport processes play a larger role in the interpretation of CFC residence times due to 

sorption to solid phase particles and potential microbial degradation (Cook et al., 1995). Lag 

times may be observed and are mostly dependant on gas solubility, diffusion coefficients and 

soil water content (Cook and Herczeg, 2000; Heaton and Vogel, 1981) and geology (Cook et 

al., 1995; Cook et al., 2006). In addition, contamination problems may occur in presence of 

individual sewage treatment plants and tips (Archbold et al., 2012; Hohener et al., 2003) or 

gardening activities (Busenberg and Plummer, 2000; Spurlock et al., 2000). Within the 

Bonifacio aquifer, the presence of a thick UZ (with variable thickness, see Table 1) as well as 

the presence of some individual sewage treatment plants and gardening activities may 

probably modify groundwater residence time in some places. Groundwater weighted 

residence times obtained from the BMM may thus lose precision, but their spatial distribution 

stays consistent with an aging process in agreement with the flow lines organization deduced 

from the potentiometric map (Fig. 1).   

 

5.4. Tracing groundwater origins using SF6 

Weighted residence times have been deduced from anthropogenic atmospheric gases and 

validated using hydrochemical data. Nevertheless, CFCs or SF6 concentrations can sometimes 

lead to different residence time for a same sample, indicating that a tracer may not be 

conservative. Indeed, within the Bonifacio aquifer, groundwater from the LA and the G 

displays SF6 contents largely higher than those resulting from atmospheric chronicles. The 

high SF6 values are probably due to the presence of pegmatite veins in the surrounding 

fractured granites, source of terrigenous SF6 (Deeds et al., 2008; Friedrich et al., 2013; 

Harnisch and Eisenhauer, 1998). Terrigenic SF6 can thus affect the groundwater dating (Koh 

et al., 2007). As no SF6 source is likely in the lower aquifer, groundwater flow from the 

granite to the lower aquifer is suspected in particular since a gradual increase in residence 

time from the granites to the lower aquifer has been highlighted (Cf. 5.2.). This kind of 

problem is current but, thanks to the multi-tracer approach, is not restrictive for interpretations 

as it may help to characterize geochemical or biogeochemical processes. As an example, poor 

agreement between 
3
H ages and CFC-11 and CFC-12 ages suggests that CFCs may not be 

conservative tracers in the Everglades (Happell et al., 2003). 
3
H/

3
He ages were used to 

calculate the expected concentration of CFC-11 and CFC-12 in groundwater. In the Bonifacio 

case, the expected SF6 contents with respect to the solubility of gas in water compatible with 

atmospheric chronicles have been calculated, and the offsets compared with the mixing line 

(Fig. 6) are reported in pptv in Table 4. Groundwater from the G displays the highest SF6 
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excess, up to 18.37 pptv. SF6 excess is also well marked in the LA, with values up to 7.05 

pptv. Conversely, SF6 excess in the UAr and the UAv are relatively low, from 0 to 4.28 pptv 

and 0 to 6.98 pptv respectively. These results consequently validate the hypothesis of an 

hydraulic connection between the surrounding granites and the sedimentary formations, with 

a major contribution in the lower aquifer and a minor one in the upper aquifer.  

 

5.5. Aquifer hydraulic conductivity estimations and residence time validation 

Hydraulic conductivity is a variable which describes the ability of a porous medium to allow 

fluid drainance. It has the dimension of a velocity (m/s), making it dependent on a time factor. 

In order to substantiate the groundwater residence times obtained in this study, it is thus 

interesting to compare the hydraulic conductivity values provided by the geophysical 

approach (Dörfliger et al., 2002) with values from a calculation incorporating the groundwater 

residence times from this paper. The calculation is performed considering the time difference 

a water parcel needs to travel between two sampling points (Suckow, 2014; Torgersen et al., 

2013). For the LA, the calculation performed between B11 and B8 gives a value about 2.1 10
-

6
 m/s, slightly lower than the geophysics estimations. This is the same for the flow taking 

place between B12 and B9, from the G to the LA, which gives a value of 4.9 10
-6

 m/s  (Cf. 

Hydrogeology section).. For the UAv and UAr, the calculation has been applied on each flow 

line identified. The flow taking place between B10 and B7 in direction of the Sant’Amanza 

bay gives a value of 2.2 10
-6

 m/s, and the one between B1 and W3 in direction of the 

Bonifacio Harbour gives a value of 1.4 10
-6

 m/s. This is in very good agreement with the 

estimations obtained using geophysics, arguing in favour of the groundwater residence times 

established. 

 

5.6. Definition of a conceptual model of flow  

A description of the aquifer functioning in terms of groundwater mineralization, origins, flow 

paths and mixings can now be established highlighting the relevance of such approach for 

complex hydrosystems. A  conceptual model of the Bonifacio plateau hydrosystem is thus 

proposed in Fig. 8 and comprises: 

 An autochthonous recharge of the UAr, provided by the input of rainwater with a lag 

time about 9 a due to the UZ. The groundwater weighted age increases from the UAr 

to the UAv. Two outlets in agreement with the potentiometric heads are highlighted 

The weighted ages implies a multi-annual renewal rate of groundwater.  
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 An allochthonous recharge provided by the fractured surrounding granites of the LA. 

The SF6 excesses due to the pegmatite veins have been quantified as very important in 

the LA and are probably related to a hydraulic connection with the granitic basement. 

Hence the aquifer system of the Bonifacio plateau must be extended out of its 

carbonate limits and also include the neighbouring granites. The weighted ages 

implies a multi-decadal renewal rate of groundwater. 

 A slight autochthonous recharge from the UA to the LA by a downward hydraulic 

connection between these two levels as suggested by the potentiometric levels.  

The results of this study imply to take into account the role of the fractured granitic bedrock in 

the functioning of the aquifer, from a quantitative and a qualitative point of view. Water-rock 

interactions need to be detailed in order to improve the end-members definition and the flow 

pattern (Bullen et al., 1996; Dogramaci and Herczeg, 2002; Gassama et al., 2012), as well as 

the impact of the sea sprays on the groundwater EC during the aquifer recharge (Alcalá and 

Custodio, 2008; Dazy et al., 1997).  

Indeed, even if saltwater intrusion is a common problem for coastal aquifers (Chandrasekar et 

al., 2014; Han et al., 2014), and moreover in Mediterranean context (Petalas and Lambrakis, 

2006; Sivan et al., 2005), no seawater intrusion is detected yet and the aquifer seems to be still 

protected from over abstraction despite an ever increasing pressure. It is nevertheless 

necessary to identify and quantify the different components of the local water balance to 

accurately evaluate the potential of the aquifer as a sustainable water resource in a semi-arid 

context.  

 

6. Conclusions 

The present study brings out interesting non-conventional implications for groundwater 

management in coastal areas. This first approach using hydrochemistry, isotopes and dating 

tools highlighted a preserved functioning of this hydrosystem in spite of the tourism 

development and the increase in private and public drinking water supply demand. This seems 

to be related with the fact that, even if the Bonifacio aquifer faces a low recharge linked to the 

semi-arid context, the granitic surroundings contribute to its recharge by raising the recharge 

area surface which is then extended to the whole surface catchment. However, this natural 

additional recharge of the aquifer needs to be quantified and the different components of the 

local water balance too, principally through the characterisation of the input signal and the 

quantification of the submarine groundwater discharge. All of these conclusions will help 

promoting the establishment of a proactive management strategy for the Bonifacio aquifer, 
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principally taking into account the pluriannual to multi-decadal rate of renewal of 

groundwater as put in evidence in this paper. This initiative being in clear opposition with the 

widespread curative managements operating in many coastal aquifers in the Mediterranean, 

allowing to maintain (and not restore) a good quality and quantity of groundwater resources 

as advocated by the European Water Framework Directive (2000/60/EC).  

From a theoretical point of view, this study also permitted to test the groundwater dating tools 

potential. Indeed, despite the complexity in the interpretation of the anthropogenic 

atmospheric gases CFCs and SF6 due to the unsaturated zone and the hydraulic connection 

with granites, relevant information on the global aquifer functioning were gained, illustrating 

the value of the multi tracer approach. The punctual multitracing experiment, coupled with 

CFCs and SF6, gave important information on groundwater mineralization processes and 

weighted residence times within this carbonate coastal aquifer with low prior knowledge, 

confirming the relevant use of this strategy as a primary investigative tool in this kind of 

system. The spatial evolution of apparent ages also allowed highlighting the flow conditions 

within the aquifer. The flow patterns were then confirmed based on the hydrogeological 

processes taking place during aquifer recharge or during groundwater aging along the flow 

lines. Isotopic (
3
H, 

18
O, 

2
H and 

13
C) and geochemical tracers (major ions, Br

-
, Ba

+
 and Sr

2+
) 

were very relevant for this step. Linking residence time and hydrochemical evolution along 

flow path may consequently constitute an effective tool to better constrain the definition of 

complex hydrogeological conceptual models. Unlike most studies, terrigenic SF6 from granite 

formations were not a limiting factor in this paper. The quantification of SF6 excess permit to 

identify a lateral groundwater flow from the surrounding fractured granites towards the lower 

part of the aquifer mainly. The SF6 then proved to be a direct tracer of groundwater origin.  
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Table 1:  

Sampling 
point 

Type Exploitation 
Altitude 
(m asl) 

Depth 
(m) 

Piezometric 
Level (m asl) 

Unsaturated 
zone thickness  

(m) 

 
Aquifer 

W1 Well Private 24 5 21.7 2.3 Upper 

W2 Well Drinking water supply 9 15.5 -0.9 10.4 Upper 

W3 Well Drinking water supply 3 7.5 0.1 2.8 Upper 

W4 Well Drinking water supply 7 15.3 1.3 6.4 Upper 

B1 Borehole Private 70 127 49.3 20.2 Upper 

B2 Borehole Non-exploited 47 44 21.0 28.0 Upper 

B3 Borehole Non-exploited 53 90 18.0 35.4 Upper 

B4 Borehole Private 22 45 19.4 2.6 Upper 

B5 Borehole Non-exploited 33 116 12.2 21.0 Upper 

B6 Borehole Private 76 90 - - Upper 

B7 Borehole Non-exploited 25 75 16.7 9.0 Upper 

B8 Borehole Non-exploited 54 269 10.1 43.1 Lower 

B9 Borehole Private 75 60 62.0 12.5 Lower 

B10 Borehole Private 88 120 70.8 16.4 Upper 

B11 Borehole Non-exploited 75 160 22.2 53.0 Lower 

B12 Borehole Private 34 100 31.4 2.3 Granitic 

B13 Borehole Private 14 160 10.0 3.6 Granitic 

 

http://ees.elsevier.com/hydrol/download.aspx?id=997010&guid=2ef0d10e-cd8c-4386-8e71-27d4c7aa6117&scheme=1
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Table 2:  

Sampling 
point 

T 
(°C) 

pH 
EC 

(µS/cm) 
TDS 

(mg/L) 
HCO3

-
 

(mg/L) 
Cl

- 

(mg/L) 
NO3

- 

(mg/L) 
SO4

2-
 

(mg/L) 
Na

+ 

(mg/L) 
K

+ 

(mg/L) 
Mg

2+ 

(mg/L) 
Ca

2+
 

(mg/L) 

Charge 
Balance 

(%) 

SiO2 

(mg/L) 
Br

- 

(mg/L) 
Ba

2+ 

(µg/L) 
B

+ 

(µg/L) 
δ

18
O 
 

δ
2
H 
 

Excess 
d 
 

δ
13

C 
(‰ vs PDP) 

                  (‰ vs VSMOW)  

W1 15.4 7.3 2340 1584.4 495 446.6 0.0 138.0 230.3 7.4 35.3 230.3 2 10.5 1.5 20.8 123.9 -5.74 -35.90 11.24 -15.19 

W2 17.8 7.2 999 678.0 298 135.3 5.1 31.6 65.7 2.4 8.3 131.2 4 9.4 0.4 6.8 59.0 -6.09 -37.49 10.08 -13.29 

W3 17.7 7.1 1093 788.3 375 136.0 5.7 37.0 73.3 3.3 9.5 148.0 3 16.4 0.5 10.3 76.7 -6.04 -36.99 8.51 -13.36 

W4 17.4 7.1 1214 860.3 381 172.9 11.6 34.9 96.5 2.9 13.5 146.5 3 11.5 0.6 9.1 66.2 -6.14 -38.16 10.98 -12.21 

B1 17.7 7.2 2050 1362.8 423 377.4 39.0 94.6 169.0 3.4 25.7 229.5 2 11.3 1.1 21.3 370.2 -5.53 -34.13 11.34 -13.02 

B2 19.1 7.3 725 583.1 353 51.4 6.3 10.9 42.0 3.7 7.4 108.0 2 18.9 0.3 10.0 63.0 -6.04 -37.21 11.24 -14.25 

B3 18.8 7.0 1096 800.0 381 148.0 5.6 28.4 81.4 1.8 10.0 143.2 2 14.8 0.5 9.6 45.0 -5.93 -36.15 11.31 -12.82 

B4 17.7 7.1 1955 1322.6 444 355.6 17.7 95.1 199.5 5.7 29.1 174.8 1 13.5 1.1 21.6 134.5 -5.67 -35.23 10.02 -12.98 

B5 18.8 7.2 1084 783.1 421 154.5 1.5 6.5 74.2 2.6 11.9 110.3 -5 - 0.5 4.8 59.2 -6.03 -36.95 11.29 -10.68 

B6 17.9 7.2 1257 885.0 371 205.6 7.7 33.3 120.2 4.0 16.8 125.6 1 10.0 0.7 9.5 88.4 -5.74 -35.63 11.12 -12.73 

B7 18.4 7.0 1038 805.6 416 124.8 4.7 29.7 74.6 3.2 13.2 139.0 1 13.8 0.5 9.9 66.3 -6.08 -37.12 11.49 -13.16 

B8 18.3 7.0 1073 788.7 398 140.0 0.0 23.7 80.0 1.1 10.1 135.4 3 15.0 0.4 8.8 40.0 -5.93 -36.33 11.08 -12.71 

B9 18.9 7.1 1676 1092.1 365 328.3 8.4 43.4 182.4 5.4 25.3 132.7 1 9.9 1.0 21.5 115.8 -4.79 -29.82 10.58 -11.85 

B10 17.9 6.7 2070 1476.8 577 340.5 34.6 76.8 170.0 2.9 19.8 254.0 1 16.3 1.3 18.4 102.5 -5.95 -36.37 10.55 -14.01 

B11 20.1 7.2 1056 704.4 316 139.4 4.9 22.4 88.0 3.4 13.4 116.4 5 17.8 0.5 8.6 65.9 -5.93 -34.91 12.49 -13.62 

B12 17.6 7.3 1405 950.2 355 232.2 0.0 57.9 213.5 4.3 24.8 61.4 3 15.3 0.7 58.2 171.7 -5.66 -34.72 12.72 -16.89 

B13 17.2 7.0 2130 1316.5 287 492.3 0.0 105.5 283.2 4.7 30.6 111.8 -1 11.2 1.5 133.6 185.4 -6.34 -37.96 10.14 -15.43 

Seawater 18.1 8.23 56800 38482 150 20760 0.0 2799 12234 437 1590 441 4 - 71 - - 1.07 4.78 -3.82 - 
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Table 3:   
Sampling point 

3
H 

(TU) 
CFC-11  CFC-12  CFC-113  SF6 Ne 

(CCSTP) 
Ar 

(CCSTP) 
Excess air Recharge 

temp. 
(°C) 

(pmol/Kg) (pptv)  (pmol/Kg) (pptv)  (pmol/Kg) (pptv)  (pmol/Kg) (pptv) (cm
3
STP/g) (mL/L) 

W1 3.4 (±0.3) 6,51E-01 48  2,08E+00 546  2,59E-01 74  2,26E-03 7.96 2,330E-07 3,735E-04 4,58E-03 4,58 16,3 

W2 3.4 (±0.2) 6,73E-01 46  3,13E-01 120  7,00E-02 6  3,20E-04 1.13 1,858E-07 3,108E-04 -9,21E-04 -0,92 16,2 

W3 1.5 (±0.3) 1,25E+00 66  1,65E+00 108  7,62E-01 43  1,65E-03 2.10 2,353E-07 3,388E-04 2,04E-03 2,04 16,9 

W4 3.5 (±0.4) 1,32E+00 95  8,96E-01 243  3,34E-01 83  5,33E-04 1.89 2,183E-07 3,227E-04 3,36E-03 3,36 19,4 

B1 2.6 (±0.4) 3,48E+00 255  2,07E+00 512  5,06E-01 125  1,90E-03 6.72 1,495E-07 2,927E-04 -1,53E-03 -1,53 16,6 

B2 2.6 (±0.4) 3,15E+00 231  1,54E+00 443  4,74E-01 160  1,61E-03 5.70 1,625E-07 2,779E-04 -9,22E-04 -0,92 21,2 

B3 5.7 (±0.4) 1,76E+00 78  1,84E+00 159  2,88E-01 25  4,00E-04 1.41 1,732E-07 3,256E-04 -3,92E-04 -0,39 16,4 

B4 2.1 (±0.3) 1,12E+00 82  1,06E+00 287  2,34E-02 6  1,01E-03 3.57 2,936E-07 4,004E-04 6,67E-03 6,66 15,2 

B5 1.4 (±0.2) 3,46E+00 234  1,99E+00 539  9,16E-02 23  1,97E-04 0.70 2,667E-07 3,814E-04 6,13E-03 6,13 16,5 

B6 1.7 (±0.2) 1,61E+00 118  1,19E+00 328  2,20E-01 54  5,44E-04 1.92 1,925E-07 3,021E-04 3,44E-03 3,43 17,0 

B7 2.3 (±0.4) 1,33E+00 89  9,27E-01 238  1,91E-02 5  2,06E-03 7.37 2,263E-07 3,256E-04 2,86E-03 2,85 19,4 

B8 4.8 (±0.4) 8,74E-01 53  6,03E-01 141  5,25E-02 24  6,58E-04 4.93 1,826E-07 3,222E-04 -1,94E-04 -0,19 17,5 

B9 3.0 (±0.5) 6,71E-01 49  4,51E-01 131  6,84E-02 55  2,00E-03 7.05 2,037E-07 3,397E-04 1,73E-03 1,73 17,2 

B10 3.9 (±0.7) 2,41E+00 171  1,85E+00 522  2,61E-01 63  6,03E-04 2.13 2,136E-07 3,482E-04 2,85E-03 2,85 17,3 

B11 < 0.5 1,40E-01 9  6,66E-02 16  2,35E-02 5  1,03E-03 3.29 - - - - - 

B12 3.2 (±0.4) 1,16E+00 85  1,08E+00 347  1,75E-01 49  2,42E-03 8.59 2,801E-07 3,671E-04 4,85E-03 4,84 17,0 

B13 1.7 (±0.2) 3,40E-01 22  1,09E+00 294  1,64E-02 4  5,38E-03 18.37 1,779E-07 3,585E-04 1,59E-03 1,59 15,6 
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Table 4:   

 

Sampling 
point 

Binary Mixing Model  
(% young water) 

Groundwater weighted 
residence times (years) 

SF6 excess 
(pptv) 

W1 100% 9 0.00 

W2 20% 52 0.90 

W3 20% 52 1.88 

W4 45% 39 1.47 

B1 90-95% 13 4.28 

B2 85% 17 3.91 

B3 30% 47 1.13 

B4 50% 36 3.31 

B5 15-30% 51 0.00 

B6 60% 31 0.00 

B7 45% 39 6.98 

B8 25% 50 4.68 

B9 25% 50 7.05 

B10 90% 14 0.00 

B11 <5% 60 3.29 

B12 55-65% 36 8.59 

B13 40-45% 40 18.37 
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Highlights 

 

- CFCs and SF6 were used to evaluate groundwater residence time in a coastal aquifer 

- CFCs can be used for carbonate aquifers with deep unsaturated zone 

- Natural SF6 found in granites can constitute a direct tracer of groundwater origin 

 

 


