

The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

André Pouclet, H Bellon, K Bram

▶ To cite this version:

André Pouclet, H Bellon, K Bram. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions. Journal of African Earth Sciences, 2016, 121, pp.219-246. 10.1016/j.jafrearsci.2016.05.026. insu-01330382

HAL Id: insu-01330382 https://insu.hal.science/insu-01330382

Submitted on 11 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

A. Pouclet, H. Bellon, K. Bram

PII: S1464-343X(16)30177-7

DOI: 10.1016/j.jafrearsci.2016.05.026

Reference: AES 2585

To appear in: Journal of African Earth Sciences

Received Date: 19 November 2015

Revised Date: 2 April 2016 Accepted Date: 29 May 2016

Please cite this article as: Pouclet, A., Bellon, H., Bram, K., The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions, *Journal of African Earth Sciences* (2016), doi: 10.1016/j.jafrearsci.2016.05.026.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting,
2	geochemistry, and geochronology of the volcanic activity in the South-Kivu
3	and Virunga regions.
4	
5	A. Pouclet ^a *, H. Bellon ^b , K. Bram ^c
6 7	^a 3 rue des foulques, 85860 Longeville-sur-mer, France
8	b Université européenne de Bretagne, Université de Brest, UMR Domaines océaniques, IUEM, 6 av. Le Gorgeu,
9	29238 Brest Cedex3, France
10	^c Uhlenkamp 8, D-30916 Isernhagen, Germany
11 12	* Corresponding author. E-mail address: andre.pouclet@sfr.fr
13	Key words: East African Rift, Kivu, Virunga, tholeiitic, alkaline and potassic lavas, K-Ar age
14	dating
15	
16	ABSTRACT
17	
18	The Kivu rift is part of the western branch of the East African Rift system. From Lake
19	Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of
20	weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift
21	direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures
22	which developed during the late Cenozoic rifting and controlled the volcanic activity. From
23	Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern.
24	Development of tension gashes in the Virunga area indicates a clockwise rotation of the
25	constraint linked to dextral oblique motion of crustal blocks. The extensional direction was
26	W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time.
27	The volcanic rocks are assigned to three groups: (1) tholeites and sodic alkali basalts in
28	the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western
29	Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu
30	magmas were generated by melting of spinel+garnet lherzolite from two sources: an enriched
31	lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The
32	latter source was implied in the genesis of the tholeitic lavas at the beginning of the South-
33	Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing
34	outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the

35	asthenorpheric contribution and a change of the rifting process. The sodic nephelinites of the
36	northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-
37	continental mantle due to pressure release during swell initiation. The Virunga potassic
38	magmas resulted from the melting of garnet peridotite with an increasing degree of melting
39	from nephelinite to basanite. They originated from a lithospheric source enriched in both K
40	and Rb, suggesting the presence of phlogopite and the local existence of a metasomatized
41	mantle. A carbonatite contribution is evidenced in the Nyiragongo lavas.
42	New K-Ar ages date around 21 Ma the earliest volcanic activity made of nephelinites. A
43	sodic alkaline volcanism took place between 13 and 9 Ma at the western side of the Virunga
44	during the doming stage of the rift and before the formation of the rift valley. In the South-
45	Kivu area, the first lavas were tholeiitic and dated at 11 Ma. The rift valley subsidence began
46	around 8 to 7 Ma. The tholeitic lavas were progressively replaced by alkali basaltic lavas
47	until to 2.6 Ma. Renewal of the basaltic volcanism happened at ca. 1.7 Ma on a western step
48	of the rift. In the Virunga area, the potassic volcanism appeared ca. 2.6 Ma along a NE-SW
49	fault zone and then migrated both to the east and west, in jumping to oblique tension gashes.
50	The uncommon magmatic evolution and the high diversity of volcanic rocks of the Kivu
51	rift are explained by varying transtensional constraints during the rift history.
52	
53	1. Introduction
54	
55	The Kivu Rift is the middle part of the western branch of the East African Rift system (Fig.
56	1). This branch separated from the main rift to the north of Lake Malawi and outlined a
57	westward curved path from Lake Rukwa to Lake Albert. The rift valley is discontinuous in
58	displaying a succession of deep lacustrine basins and structural heights commonly overlain by
59	volcanic rocks, i. e. from south to north: Rungwe volcanic area, Rukwa and Tanganiyka
60	basins, South-Kivu volcanic area, Kivu basin, Virunga volcanic area, Edward basin, Toro-
61	Ankole volcanic area, and Albert basin.
62	The East African rift system is commonly explained as the result of one or two mantle
63	plumes beneath Afar and Kenyan Plateaux (Ebinger and Sleep, 1998; Rogers et al., 2000;
64	Furman et al., 2006). It is assumed that the plateaux are dynamically supported by convective
65	activity in the underlying asthenosphere (Ebinger et al., 1989), providing heat transfer for
66	partial melting of the sub-continental lithospheric mantle. Numerous chemically distinctive,
67	but dominately alkaline sodic volcanic provinces emplaced along the entire length of

69	wranch displays limited and localized volcanic products with a great diversity of chemical
70	compositions including potassic lavas which are rare in the eastern branch. Moreover, the
71	time and space distribution of these various lavas, from oversaturated to undersaturated, sodic
72	to potassic and per-potassic, is problematical and hardly understandable. No "conventional"
73	timing of the magmato-tectonic evolution of the rift can be evidenced. Which kind of rift may
74	provide such a diversity of magmatic rocks with unclear time-related setting? What happened
75	in the western branch of the East African Rift system?
76	To document this question, it is necessary to constrain the volcano-tectonic evolution, to
77	comfort the geochemical data, and to obtain numerous age markers. Many years ago, we
78	sampled and studied all the volcanic rocks of the South-Kivu and Virunga areas (Pouclet,
79	1973, 1976, 1980; Pouclet et al., 1981, 1983, 1984; Marcelot et al., 1989). We provided the
80	first significant age data set and discovered the North Idjwi nephelinites, the oldest lavas of
81	the rift (Bellon and Pouclet, 1980). Since that time, a lot of papers were published, some of
82	them providing new and accurate geochemical data (references therein in section 3).
83	In this study, we expose an updated synthesis of the volcano-tectonic features of the Kivu
84	rift on the base of unpublished maps of the Kivu Lake area, Kahuzi horst, Tshibinda Volcanic
85	Chain, Virunga area, and West-Virunga area (Figs. 2 to 6). We complete the analytical data
86	set if necessary for some badly known volcanic series (Table. 1) and investigate the
87	magmatological characteristics of the various volcanic series on the base of a revised
88	nomenclature. We perform seventeen new K/Ar age measurements (Table 2) and improve the
89	geodynamical history of the Kivu rift. We discuss about the varying behaviour of the rift
90	tectonic constraints, the subsequent conditions of magma genesis from heterogenous mantle
91	sources, and the role of carbonate metasomatism.
92	
93	2. Volcano-tectonic features of the Kivu Rift
94	
95	2.1. Background
96	
97	The Kivu Rift is linked with a large lithospheric swell centred in the Lake Kivu region. It
98	encompasses two volcanic areas: the South-Kivu area to the south, around the city of Bukavu,
99	and the Virunga area to the north, close to the city of Goma (Fig. 1). The main structural
100	features consist of interplayed two fault patterns: a NW-SE trending fault set and a NE-SW to
101	NNE-SSW trending fault set. Some of these faults are reworked fractures of the Precambrian

crust which played as normal faults when a large uplift event affected the eastern Congo. The

102

103	NW-SE faults control the rift section from Lake Rukwa to north of Lake Tanganyika. They
104	are inherited from Palaeoproterozoic Rusizian and Ubendian structural patterns. Clearly, the
105	rift extends along the Ubendian Belt, a prominent NW-SE crustal structural weakness
106	between the Archaean Bangweulu Block and the Tanzania Craton (Boven et al., 1999; Tack et
107	al., 2010). The NE-SW faults dominate the Lake Kivu region. They belong to the
108	Mesoproterozoic Karagwe-Ankole Belt and are overprinted, to the west of Lake Kivu, by
109	NNE-SSW faults of the Neoproterozoic Itombwe Synclinorium which reoriented the rift
110	direction (Villeneuve, 1987: Villeneuve and Chorowicz, 2004). At the NW to NNE turn of rift
111	direction, from Tanganyika to Kivu lakes, the two fault sets are crosscut by newly born N-S
112	fractures constituting a third set, which developed during late stage of the rift tectonic process.
113	The rift is asymmetric. The western edge is larger and higher than the eastern edge, and east-
114	facing faults are more abundant than the west-facing ones. Similar half-graben structure is
115	described in the Tanganyika rift and explained by the flexural cantilever model (Kusznir and
116	Ziegler, 1992), implying isostatic response of the lithosphere to a continental extension by
117	planar faulting in the upper crust. The E-W crustal extension is estimated to be less than 16
118	km (Ebinger,1989a, b). The offset of the rift axis between the Tanganyika and Kivu lakes is
119	accommodated by oblique-slip transfer faults along the Rusizi valley. Besides, we explain the
120	southwestern segment of Mwenga by a southwestward propagation of the rift, based on age
121	dating of the basaltic lavas (see geochronological section).
122	The South-Kivu volcanic area is centred at the crossing of the NW-SE and NNE-SSW fault
123	sets in a classical accommodation zone (Ebinger et al., 1999). It consists of abundant lava
124	flows of olivine tholeiites and sodic alkali basalts, and of few trachy-phonolitic extrusions, all
125	being dated from late Miocene to Pleistocene. The Virunga volcanic area is located at a
126	WSW-ENE dextral shift of the rift, and also in an accommodation zone. It consists of eight
127	large strato- and shield-volcanoes, Nyamuragira (3,058 m), Nyiragongo (3,470 m), Mikeno
128	(4,437 m), Karisimbi (4,507 m), Visoke (3,711 m), Sabinyo (3,634 m), Gahinga (3,500 m),
129	and Muhavura (4,127 m), from south-west to north-east. Mikeno and Sabinyo are the oldest
130	volcanoes and are dated, respectively, to late Pliocene and to Early Pleistocene. Nyiragongo
131	and Nyamuragira are presently active. The other volcanoes were active from Middle
132	Pleistocene to recent time. Two different magmatic suites are displayed: leucite-bearing
133	basanites and evolved lavas at Nyamuragira, Karisimbi, Visoke (pro parte), Sabinyo, Gahinga
134	and Muhavura, and leucite-melilite nephelinites and nepheline-leucitites at Nyiragongo,
135	Mikeno and Visoke (pro parte) (Pouclet et al., 1981, 1983, 1984). In addition, remnants of
136	basaltic lava flows, dated to Miocene, are preserved at the upper western edge of the rift. They

137	predated the major fault motion of the rift shoulder and the building of the great volcanoes of
138	the main Virunga area (Pouclet, 1975, 1977).
139	
140	2.2. Main features of the Lake Kivu and South-Kivu volcanic area
141	
142	2.2.1. Tectonic pattern
143	The tectonic evolution of the Kivu rift is witnessed by the Lake Kivu structural and
144	sedimentological features. Dating the sedimentary deposition pattern is the best way for
145	defining the tectonic events. Oscillations of the water level are related to climatic phases but
146	also to tectonic pulses and lava damming of outlets. For these reasons, we draw the tectonic
147	map of the Lake Kivu of the Figure 2, after the bathymetric map and the geophysical data of
148	Degens et al. (1973) and Wong and Von Herzen (1974). The Kahuzi Mountain is another key
149	sector for timing the doming of the rift and the subsidence of the rift valley, because it is the
150	source of the Lugulu flows, a large lava pile running down to the west (Fig. 1). For that
151	reason, a field work was done and we draw a sketch map of the volcanic source area in the
152	Figure 3. The youngest volcano-tectonic activity took place in a western upper step of the rift,
153	east of the Kahuzi horst and built a chain of strombolian volcanoes. We mapped this chain in
154	the Figure 4, in order to illustrate its tectonic relationships.
155	The Lake Kivu is made of a northern basin and two western and eastern basins. The
156	northern basin is a tectonic trough including 400 m of lacustrine sediments. According to the
157	sedimentation rate, the basin may be dated back to about 5 Ma (Degens et al., 1973). The
158	sediment substratum is at around 600 m of elevation. The mountainous edges reaching 3,000
159	m, the relative vertical motion is calculated at 2,400 m (Pouclet, 1975). The western and
160	eastern basins, on both sides of the Idjwi Island, were former valleys, with rivers flowing
161	down to the northern basin. These valleys were flooded after the damming of the lake
162	northern run-off, which resulted from building of the Nyiragongo and Nyamuragira
163	volcanoes, in the late Pleistocene. The maximum water level reached 1,650 m, at the Bukavu
164	shelf level, ca. 10,000 years ago (Denaeyer, 1954; Pouclet, 1975, 1978). Then, it lowered in
165	furthering the excavation of the Rusizi canyon. The Lake Kivu southward overflow is
166	recorded in the Lake Tanganyika sediments at 9,400 yr BP (Haberyan and Hecky, 1987) or
167	10,600 yr BP (Felton et al., 2007). The early Holocene high water level coincided with the
168	formation of sub-lacustrine flank volcanoes in the Virunga area, at the northern shore of the
169	lake. But this high level cannot explain the formation of the under-water hyaloclastite vents of
170	South-Idjwi which are much older and thus related to a previous lacustrine basin (Pouclet,

1/1	19/5, 19/8). The present-day level of 1,462 m is stabilized by the hydroelectric dam of
172	Bukavu.
173	The deep northern basin is crosscut by SW-NE tectonic steps (cross-section A-B, Fig. 2).
174	The southern part consists of an alternation of horsts and basins trending SSW-NNE (cross-
175	section C-D). All the fractures play as normal faults with horst uplifting, graben sinking, and
176	tilting of the steps. The western edge culminates at Mount Kahuzi (3,308 m), which is a
177	Neoproterozoic intrusive complex of acmite- riebeckite-bearing granite, syenite, and quartz-
178	porphyry microgranite, as well as the neighbouring Mount Biega (2,790 m) (Ledent and
179	Cahen, 1965; Kampunzu et al., 1985). These intrusions are dated between 800 and 700 Ma,
180	according to the ages of neighbouring similar alkaline intrusions in the western edge of the
181	rift (Van Overbeke et al., 1996; Kampunzu et al., 1998a).
182	The Kahuzi Mountain is the source area of important flows (Fig. 3). At its western and
183	southern feet, basaltic flows poured out in westward direction from a fracture system, in the
184	Miocene to Pliocene time. Four main lava flow units are distinguished. Doleritic facies are
185	localized along NW-SE fractures, at the southern to south-western foot of the massif,
186	indicating the feeder sites. Heating of the Kahuzi area by rising of this basaltic magma is
187	probably responsible for rejuvenation to 134 and 55 Ma of K-Ar ages of the Kahuzi rocks
188	(Bellon and Pouclet, 1980). At present, the Lugulu flows consist of a reverse topographic
189	relief of elongated hills. The lava flowed down to the west, but not to the east. They poured
190	out during the doming stage of the rift and predated the formation of the rift because they are
191	cut by the major faults of the rift scarp. Indeed, to the eastern foot of the Kahuzi heights, on
192	the Tshibinda step (Fig. 4), the Quaternary Tshibinda basaltic flows overlie metasediments of
193	the Precambrian substratum, which is devoid of any older lava cover. We thus conclude that a
194	true rift valley did not exist across the swell at the Kahuzi lava flowing time, and lavas only
195	flowed down to the western slope of the dome.
196	The rift valley initiated in the latest Miocene. East of the western higher steps, Late
197	Miocene lavas are preserved in the Kavumu lowland where they are partly overlain by the
198	Tshibinda Quaternary flows (detailed in the following section). They widely flooded to the
199	Lake Kivu and to the Bukavu and Bugarama grabens, and also poured out in the SSW
200	segment of the rift, the Mwenga graben (Figs. 1 and 2). The western basin of the Lake Kivu is
201	the continuation of the Bukavu Graben. The Idjwi Island is the northern prolongation of the
202	Mushaka horst that separated the Bukavu and Bugarama-Bitare grabens. There is not a single
203	rift valley. However, the deepest part locates in the eastern basin of the lake, where the main
204	rift axis can be assumed to be in the continuation of the Ritare-Rugarama Graben (Fig. 1)

205	Fault associated mineral hot springs are abundant (Fig. 2). Many of the faults are more or less
206	presently active as illustrated by the Frebuary 3, 2008 earthquake along the Luhini Fault (Fig.
207	4).
208	
209	2.2.2. Volcanic activity
210	The South-Kivu volcanic activity mainly consisted of basaltic flow piling from fissural

The South-Kivu volcanic activity mainly consisted of basaltic flow piling from fissural eruptions, in the Late Miocene to Late Pliocene (10 to 2.6 Ma; Kampunzu et al., 1998b). In the Pleistocene, a renewed strombolian volcanic activity has built the chain of Tshibinda (Bellon and Pouclet, 1980) (Fig. 4). In the stacked lava field, the old volcanic vents can be localized by their feeder dykes and by interbedded pyroclastic materials, which locally gain a few metres in thickness. Occurrences of intercalated tephra are common, but well-preserved scoria cones are absent or limited to the recent Tshibinda volcanic chain. Some metre-sized basaltic dykes are present in the western (Congo side) and eastern (Rwanda side) upper steps and also in the Mwenga area. They are trending N-S to NE-SW. These features are consistent with linear basaltic eruptions along cracks fringed with small scoria cones. Trachy-phonolitic extrusions are only known in the Bukavu Graben, into and close to the upper-Rusizi canyon. They are dated from 6.14 Ma to 5.05 Ma (Pasteels et al., 1989). In this area, we number five decametre- to hectometre-sized bodies, which intruded a lower basaltic pile and are overlain

The Pleistocene chain of Tshibinda consists of numerous well-preserved scoria cones and lava flows (Fig. 4). The chain is named after the Tshibinda site, in its southern end, where the first scoria cones were discovered (Meyer and Burette, 1957). The cones are set at the border of the Tshibinda step, at the eastern foot of the Kahuzi upper shoulder. The chain is 33 kmlong in a SSW-NNE direction, from Tshibinda to Leymera. During our mapping, we numbered sixty strombolian cones, 50- to 150 m-high. Most of them are opened and have supplied lava flows. A few flows run to the west, in following the slope of the tilted step, but most of them came down the fault scarp and spread towards the eastern lowlands. A prominent feature is the alignment of vents along SSE-NNW fractures (N 160° trend) in the Tshibinda and Tshibati sectors. This fracture system is consistent with a NE-SW left-lateral strike slip constraint, and an ENE-WSW extensional strain. We dated the Tshibinda chain activity from 1.9 to 1.6 Ma (Bellon and Pouclet, 1980). Younger ages have been suggested but not proved (Pasteels et al., 1989).

2.3. Main features of the Virunga volcanic area

by flows of olivine basalt and hawaiite.

239	
240	2.3.1. Tectonic pattern
241	The Virunga volcanic area is located between the Kivu and Edward lakes on a structural
242	height or shoal between two troughs (Fig. 5). The continuation of this shoal beneath the
243	Nyiragongo and Nyamuragira volcanoes is based on sedimentological, volcanological and
244	geophysical evidence (Pouclet, 1975). Its level averages 1,200 m, while the nearest higher
245	topographical Mount Muhungwe rift edge reaches 2,990 m. Thus, the relative vertical motion
246	of the rift floor is around 1,800 m. Subsidence of the Lake Kivu bottom reached
247	approximately 600 m below the shoal level.
248	The tectonic pattern is linked to right lateral shift of the rift axis between Kivu and Edward
249	lakes, which is underlined by the SW-NE Tongo, Muhungwe, and Rutshuru faults.
250	However, motion along these faults is dominantly vertical. This motion is evidenced by the
251	uprising of sedimentary terraces at the foot of the Tongo scarp to the west, and along the
252	Rutshuru Fault to the east as shown in the Figure 6. These terraces contain Early to Middle
253	Pleistocene littoral sediments of the Lake Edward. They recorded an uplifting of 1,000 m
254	along the Tongo Fault, and of 500 m along the Rutshuru Fault (Pouclet, 1975). Taking into
255	account a vertical motion of 500 m before the Early Pleistocene sediment deposition, the total
256	vertical motion of the Tongo Fault is calculated around 1,500 m. The south-eastern side
257	registered a vertical motion of 1,000 m at the Muhungwe Fault. This motion in evidenced
258	along the N-S Kisenyi Fault, in the continuation of eastern border of the Lake Kivu northern
259	trough. Meanwhile, at the eastern end of the Virunga area, vertical displacements are limited
260	to a few hundred of metres along N-S and SSE-NNW faults.
261	The structure and nature of the volcanic substratum are constrained by the trends of the
262	volcano-tectonic framework and the composition of the volcanic xenoliths. In the Virunga
263	area, underlying cliffs moulded by lavas can explain some major topographic uneven
264	differences. It is the case for the N-S west-facing scarp between the Karisimbi-Mikeno
265	volcanoes, in the upper eastern side, and the Nyiragongo-Nyamuragira volcanoes, in the
266	lower western side. This scarp is in the continuation of Rwandese east-Kivu Fault (Fig. 1) and
267	is connected with the eastern fault of the Kirwa sedimentary terrace (Fig. 5). It is named the
268	"Virunga Fault". This fault has right-lateral en echelon segments, as shown by shift of the
269	Kirwa Fault to the fault of the low Rutshuru terrace. A sub-parallel less important scarp
270	separates the Mikeno to the Karisimbi-Visoke, and is linked to a fault at the north-western
271	border of the Precambtian substratum, south of the Rutshuru Fault. It is named the "Mikeno
272	Fault". A third scarp is located between Sabinyo and Gahinga. To the lower southern flank of

273	Nyiragongo, a transverse WNW-ESE scarp is merely related to a fault between the Virunga
274	shelf and the northern basin of Lake Kivu.
275	Two types of volcanic fractures are distinguished. Some fractures show radial distribution
276	on the flank of the largest volcanoes. But many others are aligned independently of the
277	volcano building shape. A SW-NE trend of fractures locates in the prolongation of the east
278	fault of the M'Buzi peninsula. It reveals a major fault between Nyiragongo and Nyamuragira,
279	the "Kameronze Fault", which is ascertained for many reasons. Firstly, the M'Buzi block is
280	extended below the lava cover, according to gravimetric data (Evrard and Jones, 1963).
281	Secondly, the xenoliths of Nyiragongo consist, solely, of granite rocks, while those of
282	Nyamuragira are made of metashales, quartzites, and micaschists. Thus, the two volcanoes
283	were emplaced in two geologically different steps of the rift floor. Thirdly, there is a
284	deepening of focal depth of tectonic earthquakes from west, in the Nyamuragira area, to east,
285	in the Nyiragongo area (Tanaka, 1983). Fourthly, the Kameronze fractures have provided
286	original lava, the rushayite, an ultrabasic olivine-rich melilitite, which is unknown in the rest
287	of Virunga. This rare lava could be originated from a deep cumulate zone of the Nyiragongo
288	magma chamber or from an independent reservoir (see discussion in section 3.4.). Thus, the
289	Kameronze Fault separates the low granitic step of Nyiragongo to the upper meta-sedimentary
290	step of Nyamuragira. The two neighbouring volcanoes have very different lava compositions.
291	Their different setting in two distinct crust compartments may explain their different way of
292	magma feeding. A SSW-NNE fracture set is partly in the continuation of the Kameronze
293	Fault to the north-east. But, its related eruptive vents produced Nyamuragira-type lavas. An
294	important SW-NE fissural complex is located between Visoke and Sabinyo. In the same
295	direction, main fractures crosscut the Mikeno, Visoke, and Sabinyo edifices. This complex is
296	linked to a SW-NE major fault emplaced between the Mikeno NW-base and the Karisimbi-
297	Visoke step, parallel to the Muhungwe Fault of the rift edge.
298	Undeniably, the most important present-day fracture system is the great NNW-SSE
299	fracture zone or weakness zone of Nyamuragira that crosscuts the caldera and the shield
300	volcano, reaching 20 km in length (Pouclet and Villeneuve, 1972; Pouclet, 1976, 1977). In
301	many parts, this tectonic zone is a trench, 15 to 30 m wide and 20 to 30 m deep, limited by
302	two parallel sub-vertical fractures. It is associated with slightly parallel secondary fissures, on
303	the NNW and SSE upper flanks. It extended from Nyamuragira to the Nyiragongo area,
304	across the Kameronze Fault, with large fissures at the NNW flank of this Nyiragongo. This
305	tectonic system, having an axial direction of N 155°, can be considered as a mega tension

gash. In the NNW flank of the Nyamuragira caldera, there is a spectacular fan-shaped
succession of fissures where thirteen eruptive events took place since the year 1900.
In addition, the Nyamuragira shield is crossed by N-S faults. In the northern wall of the
caldera, a N-S fault shows a two metres-displacement of the lava pile and is intruded by a
dyke. The fault motion has occurred after the setting up of the initial summit cone, but before
the caldera collapse (Pouclet, 1976). In the SW upper flank, a N-S fault was active during the
1938 eruption that drained a large volume of lava from the caldera. The western flank of the
shield displays a morphological lowering of 30 to 40 m. A less important lowering of the SSE
flank is due to a N-S fault associated with the Kameronze Fault. Important N-S fractures also
concern the southern flank of Nyiragongo. They were responsible for draining of the caldera
lavas during the dramatic 1977 and 2002 eruptions (Pottier, 1978; Komorowski et al., 2002).
It is concluded that the N-S fractures, not only controlled the structural pattern of the Virunga
substratum (Virunga and Mikeno faults), but also play a present-day important role in the
tectonic constraints triggering volcanic eruptions.

2.3.2. Volcanic activity

The Volcanic activity began in the Late Miocene. The oldest lavas are preserved as residual basaltic flows, above the western edge of the Bishusha-Tongo area as depicted in Figure 6. They are dated between 12.6 and 8.6 Ma (Bellon and Pouclet, 1980; Kampunzu et al., 1998b). They predated the 1,500 m vertical motion of the Tongo fault system, and then, the rifting process and the main volcanic activity of the Virunga area (Pouclet, 1977). For these lavas we use the term "pre-Virunga" magmatic activity because there is an important time gap and a drastic difference of composition between these Miocene lavas and the Quaternary Virunga lavas. We numbered and sampled a dozen of scattered outcrops of basaltic rocks at small hills in the Bishusha area, above and along the Mushebele scarp, and above the Tongo scarp (Fig. 6). They belong to different dissected and highly eroded lava flows, as it is attested by the various petrographical compositions (olivine basalt, basanite, hawaiite, mugearite, benmoreite) and frequent doleritic textures of the mafic rocks. The lava setting is controlled by NW-SE and NNW-SSE fractures, the same directions that were used by the two recent Mushari fractures of satellite eruptions of Nyamuragira. No field relationships between the flows, in term of succession order, can be inferred. In addition, a thick blanket of tephra coming from the numerous Nyamuragira flank eruptions overlies the entire area.

339	At the middle flank of Mount Mushebele, an olivine basalt lava flow seems to be overlain
340	by a hawaiite flow that crops out at the top of the scarp. However, the hawaiite is dated at
341	12.6 ± 0.7 Ma (Bellon and Pouclet, 1980) and the basalt at 10.8 ± 1.7 Ma (Kampunzu et al.,
342	1998b). The 12.6 Ma age was questioned because the hawaiite being at a higher altitude than
343	the basalt must be younger (Kampunzu et al., 1983). There is an alternative explanation: The
344	two lavas are separated by an important normal fault and the hawaiite was tectonically
345	displaced above the basalt.
346	The other lavas of the west Virunga area are the Mweso valley flows and the Pinga flows
347	(Fig. 1). The Mweso flows poured out in the Mokoto Bay. Their source is hidden by the
348	recent flows of Nyamuragira (Fig. 6). The lavas extended along 32 km in the valley, from
349	Mokoto to the NNW end of the flow system. Our sampling shows that the petrographical
350	composition remains constant: olivine basalt with microphenocrysts of skeletal olivine and
351	aggregated phenocrysts of diopside and labradorite. At the Pinga area, residual basaltic flows
352	are pointed out in the Pinga village and 35 km west of this village, in the Oso valley, (De La
353	Vallée-Poussin, 1933). These lavas cannot belong to the Mweso flow, for topographical
354	evidences, but recalls the Numbi lava for their western position out of the rift. More accurate
355	studies are needed for precising their petrographical and chemical compositions.
356	The volcanic activity of the Virunga main area began with Mikeno, in the middle part of
357	the shelf between the Kivu and Edward troughs. This volcano was active around 2.6 Ma and
358	maybe until 0.3 or 0.2 Ma (Guibert et al., 1975). The old age of Sabinyo, the second oldest
359	volcano, is only attested by its erosional feature similar to that of Mikeno. Its base is totally
360	covered by lavas from Gahinga and Visoke. It was active around 0.1 Ma (Bagdasaryan et al.,
361	1973; Rançon and Demange, 1983; Brousse et al., 1983; Rogers et al., 1998). Thus, the
362	erosion of Sabinyo may be recent and due to violent volcano-tectonic activities. Gahinga and
363	Muhavura are dated between 0.29 and 0.03 Ma (Rançon and Demange, 1983; Rogers et al.,
364	1998), but recent activities are suspected (Brousse et al., 1983). Visoke consists of two
365	superposed stratovolcanoes (Ongendangenda, 1992). The upper one is as old as 0.08 Ma
366	(Bagdasaryan et al., 1973). Its last eruption in 1957 produced the adventive cone of Mugogo
367	on the lower north flank (Verhaeghe, 1958). Karisimbi is made of a shield volcano overlain
368	by two successive upper flank large cones (De Mulder, 1985). It is dated between 0.14 and
369	0.01 Ma (De Mulder et al., 1986: De Mulder and Pateels, 1986). Nyiragongo and
370	Nyamuragira emplaced since 12 ka on the lower steps of the Virunga shelf (Pouclet, 1978).
371	Nyiragongo is a combination of three stratovolcanoes, from south to north: Shaheru.

372	Nyiragongo main cone and Baruta. Shaheru, the first volcano of the complex, may be as old
373	as 0.1 Ma (Demant et al., 1994).
374	
375	3. Geochemical composition of lavas
376	
377	Numerous geochemical analyses of South-Kivu and Virunga lavas are available from the
378	literature, though their accuracy is highly variable. Trace element and isotopic data are
379	provided by Mitchell and Bell (1976), Vollmer and Norry (1983), Hertogen et al. (1985),
380	Vollmer et al. (1985), De Mulder et al. (1986), Auchapt (1987), Auchapt et al. (1987),
381	Marcelot et al. (1989), Toscani et al. (1990), Demant et al. (1994), Rogers et al. (1998),
382	Furman and Graham (1999), Platz et al. (2004) and Chakrabarti et al (2009a). These data are
383	reviewed and, when necessary, completed by new analyses (Table 1). The analytical set is
384	used to discuss the petrological features and the magmato-tectonic relationships dealing with
385	the rift formation and evolution. South-Kivu basalts derived from a heterogeneous lithosphere
386	mantle source by variable degrees of melting (Auchapt et al. 1987; Furman and Graham,
387	1999). Both the leucite-basanite and leucite-nephelinite series of Virunga resulted from
388	moderate or small amount of partial melting of mica-garnet-lherzolite lithospheric and/or
389	asthenospheric mantle, with contribution of carbonatite for the more alkaline series (Pouclet,
390	1973; Furman and Graham, 1999; Chakrabarti et al., 2009a).
391	In the South-Kivu and Virunga area, it has been shown in the section 2 that volcanism and
392	doming preceded the rifting, with the Kahuzi and pre-Virunga basalts. Asthenospheric
393	upwelling caused uplift of the lithosphere and partial melting of various sources. However, to
394	document that model, we have to clarify some intriguing questions, because the geochemical
395	data from literature are, in many cases, incomplete and not representative, and sometimes
396	inexact. The questions concern the early and late activity of South-Kivu, the poorly known
397	volcanism of North-Idjwi between South-Kivu and Virunga, and the early activity of Virunga.
398	What is the composition of the earliest volcanic rocks in South-Kivu? Is it really tholeitic?
399	It is necessary to ascertain the existence, the age, and the tectonic location of true tholeiites, in
400	one hand, and the timing of the rift formation, in the other hand. The Quaternary South-Kivu
401	Tshibinda volcanoes erupted simultaneously with some Virunga volcanoes. Their basaltic
402	composition is close to that of South-Kivu lavas. What is their place in the South-Kivu
403	magmatic evolution? The early Miocene North-Idjwi lavas are the oldest dated lavas of the
404	Kivu rift. They are not tholeiites but nephelinites. What is their magmato-tectonic meaning
405	between the South-Kivu and Virunga areas? The Miocene pre-Virunga lavas predated the rift

406	formation, and may be contemporaneous with the first South-Kivu activities. They are very
407	different from the Quaternary Virunga lavas. Their composition, tholeitic to alkaline, is a
408	matter of debate. What is the true composition of the pre-Virunga lavas? Is it similar to that of
409	the South-Kivu? And, finally, what is the origin of the original features of the Virunga lavas?
410	
411	3.1. South-Kivu lavas
412	
413	South-Kivu lavas mainly consist of alkali basalts and tholeiites. The first question deals
414	with the true composition of tholeiites and their meaning in the rift evolution. Then, we revise
415	the composition and the nomenclature of the various volcanic rocks. Most of the activities are
416	dated in the Miocene and Pliocene, but a renewal occurred during the Pleistocene in the
417	Tshibinda site. New analytical data are provided for to better constrain this last magmatic
418	event.
419	
420	3.1.1. The tholeiite question
421	
422	Tholeiite lavas have been pointed out at different parts of the South-Kivu volcanic area and
423	in the pre-Virunga field, with various ages. They are very important in the debate about the
424	tectono-magmatic history of the rift. But, examination of these lavas is problematic. Many
425	"tholeiites" have been defined on the basis of their major element composition (low
426	abundance of alkali elements), without mineralogical arguments. As they are always more or
427	less altered, in having high loss on ignition, they could be former alkali basalts secondary
428	depleted in alkali elements. It is tritely verified that altered olivine-rich basalt may display
429	oversaturated norm composition. In addition, it is ascertain for tholeiites by Pasteels and
430	Boven (1989) that many K-Ar ages are questionable, due to alteration (loss of K and/or Ar)
431	and to magmatic argon excess. This tholeiite problem leads to three questions: 1) Are there
432	true tholeiites? 2) Is there a space distribution of tholeiites from the border to the rift axis? 3)
433	Is there a time relationship in the tholeiite and alkali basalt production?
434	The criteria for defining true tholeiites are their mineral content, crystallization order, and
435	major and trace element composition. Early olivine phenocrysts are absent. Calcic plagioclase
436	crystallizes before sub-calcic pyroxene. For that reason, the tholeitic doleritic facies displays
437	intersertal texture. Olivine only exists as residual and corroded xenocrysts. There is a single
438	pyroxene of sub-calcic augite composition, or two coexisting pyroxenes that are augite and
439	ferrous hypersthene. The norm calculation gives variable amount of quartz and more than

440	10% hypersthene. Trace element pattern of continental tholeiites exhibits moderate
441	enrichment of the most incompatible elements. However, olivine-tholeiites contain
442	microphenocrysts of ferrous olivine and partly syncrystallizing plagioclase and augite leading
443	to intergranular or sub-ophitic textures in doleritic facies. Their norm composition is saturated
444	with variable amount of hypersthene. The most incompatible elements are slightly more
445	enriched than for tholeiites.
446	On the basis of these mineralogical and geochemical criteria, examination of the South-
447	Kivu lavas indicates that true tholeiites are present at five sites: West-Kahuzi, South-Idjwi and
448	Mushaka horst, Bitare-Buragama graben, lower-Rusizi (southern continuation of the
449	Bugarama graben), and Mwenga. Olivine-tholeiites are present at the same sites, plus the
450	Bukavu graben. The answer to the question of space and time distribution is more
451	complicated. Tholeiites are localized along the rift axis, but also at distant fields, though they
452	are concentrated close to the rift axis. Concerning the chronological setting of tholeiites
453	versus alkali basalts, tholeiites are everywhere overlain by alkali basalts, but the transition is
454	diachronic. For instance, at the Mwenga site, tholeiites are younger than the alkali basalts of
455	Bukavu. On the whole, tholeiites predated alkali basalts, and, for that reason, they crop out in
456	the most eroded topographical landscapes. Because the erosion process is variable, the
457	distribution of tholeiites is not known for all the volcanic area.
458	
459	3.1.2. Composition of lavas
460	
461	To display relative abundances and features of tholeiitic rocks compared with alkaline
462	lavas, a set of representative and accurate chemical analyses is provided in Table 1. Poorly
463	described and altered lavas are eliminated. Thanks to this precaution, we adopt a normative
464	classification slightly modified from Green (1969): 1) quartz-bearing and hypersthene-rich
465	tholeiite, 2) olivine-tholeiite containing olivine and more than 15% hypersthene, 3) olivine
466	basalt containing olivine and less than 15% hypersthene, 4) alkaline-basalt with 0 to 5%
467	nepheline, 5) basanite with 5 to 15% nepheline, and 6) nephelinite having more than 15%
468	nepheline. Classification of the South-Kivu, North-Idjwi, and Pre-Virunga lavas is
469	accomplished using a tetrahedral diagram of normative proportions of Qtz, Hy, Ol, Ne+Le,
470	and Ab+Or (Fig. 7). Compared with the tetrahedral diagram of Yoder and Tilley (1962),
471	diopside is replaced by albite + orthose because the alkali amount is more significant than the
472	calcium content, and the alkali abundance cannot be shown only by feldspathoids. True
473	tholeiites plot in the Qtz – Hy – Ab+Or triangle. In the Ol – Hy – Ab+Or triangle, olivine-

474	tholeites are discriminated to olivine basalts by Hy normative amount of more than 15 %. In
475	the $Ol-Ne-Ab+Or$ triangle, the alkali basalt - basanite and basanite - nephelinite limits are
476	determined by Ne normative amounts of 5% and 15%, respectively. In this triangle, some
477	basanites of the Mwenga site are characterized by high MgO contents (9-12 wt %). They are
478	rich in olivine, although being not cumulative. Then they are termed "Mg-basanites".
479	Trace element data of the new analyses (Table 1) are completed by those of Auchapt
480	(1987), Auchapt et al. (1987), Marcelot et al. (1989), and Furman and Graham (1999). In the
481	Primitive Mantle normalized incompatible elements diagram (Fig. 8A) tholeiites and olivine-
482	tholeiites are moderately fractionated in the light rare earth elements. Their La/Yb ratios range
483	from 8 to 13 and from 10 to 15, respectively. They are not enriched in Ba and Th, and are
484	poor in Rb. Similar patterns are exhibited, with increasing trace element abundances and rare
485	earth element fractionation, from tholeiites to olivine basalts (15 <la alkaline-basalts<="" td="" yb<30),=""></la>
486	(20 <la (25<la="" (40<la="" already<="" and="" as="" basanites="" mg-basanites="" td="" yb<35),="" yb<40),="" yb<50).=""></la>
487	suggested by Auchapt et al. (1987), Marcelot et al. (1989) and Furman and Graham (1999),
488	this is consistent with varying degree of partial melting of a lithospheric mantle source, which
489	decreases from tholeiites to Mg-basanites, as shown by the Yb vs. La/Yb diagram (Fig. 9A).
490	Auchapt (1987) has calculated the source composition from a set of tholeitic and basanitic
491	lavas of the Mwenga area. A first source, moderately enriched, (C1, Table 3) can be assumed
492	for most of the lavas. A second less enriched source (C2, Table 3) is suitable for lavas that are
493	poor in the most incompatible elements.
494	Having tested the accuracy of the Auchapt's results, we calculated the degrees of partial
495	melting after the reverse method and the source composition C1, for all the South-Kivu mafic
496	lavas and using light rare earth elements (LREE). We obtained the following values: tholeiites
497	and olivine-tholeiites = 15 to 7%, olivine- and alkaline-basalts = 6 to 4%, basanites and Mg-
498	basanites = 3 to 2%. However, to get consistency of partial melting degrees between large ion
499	lithophile elements (LILE) and high field strength elements (HFSE), it is necessary to
500	increase the bulk partition coefficient of heavy rare earth elements (HREE), particularly in the
501	basanite case implying the presence of garnet in the source. This assertion is supported by
502	increasing HREE depletion from alkaline-basalts to basanites characterized by increasing
503	values of Tb_N/Yb_N normalized ratio from 1.78 to 2.27 locating the melting column in the
504	garnet stability field. Indeed, due to the residual garnet effect, the Tb_N/Yb_N melt ratio passes
505	beyond 1.8 at the spinel-garnet transition (Furman et al., 2004; Rooney, 2010).
506	Batch melting is calculated for the enriched source C1 and the less enriched source C2;
507	results are shown in the La/Sm versus Sm/Yb diagram (Fig. 9B). Melt curves are drawn for

508	spinel-Inerzolite, garnet-Inerzolite, and a 50:50 mixture of spinel- and garnet-Inerzolite.
509	Modal compositions of spinel-lherzolite (olivine 53%, OPX 27%, CPX 17%, spinel 3%) and
510	garnet-lherzolite (olivine 60%, OPX 20%, CPX 10%, garnet 10%) are after Kinzler (1997)
511	and Walter (1998). Mineral/melt partition coefficients for basaltic liquids are after the
512	compilation of Rollinson (1993). Tholeiites may have resulted from ca. 10% of partial
513	melting of spinel-lherzolite from a moderately enriched source. But, globally, South-Kivu
514	magmas may be generated by melting of spinel+garnet lherzolite, from enriched source
515	between the C1 and C2 calculated compositions, assuming increasing amount of garnet, from
516	tholeiites to basanites. Hence, melting took place in the spinel-garnet transition zone at depth
517	surrounding 80 km. The more abundant garnet content in the basanite source locates its
518	melting in the lower part of the transition zone. Partial melting degree of the C1 source
519	decreases from 20% to 5%, from basalts to basanites, along the 50:50 spinel+garnet-lherzolite
520	curve. Lower degrees of partial melting (8% to 2%) and lower amounts of garnet are
521	determined with the C2 source. But, the large dispersion of plots suggests compositional
522	heterogeneities and/or mixing in the melted sources.
523	Contribution of these different sources has to be tested by using all the incompatible
524	elements. However, chemical bias may be due to crustal contamination and assimilation. This
525	latter process can be evidenced in the Nb/Yb versus Th/Yb diagram (Fig. 10). Crustal effect is
526	suspected in the case of thorium enrichment unrelated to magmatic processes. In this diagram,
527	all the lavas plot in the Mantle array along the partial melting vector. No particular Th-
528	enrichment is visible, precluding perceptible crustal assimilation. In addition, Sr-isotopic data
529	of Furman and Graham (1999) do not display Sr anomalous pattern. Hence, the chemical
530	scatter only resulted from magmatic processes, and the analytical data, namely the
531	incompatible element values, can be used to discern magmatic patterns of the different lava
532	suites.
533	To test the behaviour of incompatible elements, bivariate diagrams have been carried out.
534	Results are illustrated in Figure 11 with three selected diagrams. La versus Yb diagram
535	shows data scatter between two partial melting curves: a low-Yb and high-La curve, and a
536	low-La curve (1 and 2, Fig. 11A). The lack of significant Yb increase is due to garnet effect,
537	mainly in basanites, which are the most LILE-enriched and-HREE-depleted lavas. The high-
538	La curve evolves from basanites to olivine basalts and can be related to the enriched C1
539	source. The low-La trend characterizes tholeiites and some olivine basalts; it may be inherited
540	from the less-enriched C2 source (3), as suggested above (Fig. 9B). Fractional crystallization
541	is limited to few tholeiites and olivine basalts (see also Fig. 10A). The Ba versus La diagram

542	displays a high-Ba curve, a low-Ba curve and an intermediate high-Ba and high-La pattern (1,
543	2 and 3, Fig. 11B). Nb versus Zr diagram shows a low-Zr curve, a high-Zr curve and an
544	intermediate trend (1, 2 and 3, Fig. 11C). It is concluded that high-Ba and low-Zr values
545	(trend # 1) agree with the enriched source C1 and are best displayed in the Tshibinda
546	Volcanic Chain. Low-Ba and high-Zr values (trend # 2), observed in tholeitic lavas, comply
547	with the C2 less enriched source. Thus, the double source model can be assumed.
548	Intermediate trends and scattering of plots are explained by varying contributions of the two
549	sources.
550	Existence of two source components is inferred from Sr-Nd isotopes (Furman and Graham,
551	1999). The lavas define a Sr-Nd isotope array between a high ^{143/144} Nd and low ^{87/86} Sr end-
552	member and a low ^{143/144} Nd and high ^{87/86} Sr end-member. The latter end-member
553	characterizes Tshibinda lavas, and complies with the C1 enriched source, that is the main
554	source of these lavas. Further isotope features including the East Africa data by Furman and
555	Graham (1999) indicate that this end-member belongs to the continental lithospheric mantle
556	(CLM). In return, the isotopically depleted end-member is allotted to sub-lithospheric source.
557	Its isotope values correspond to an asthenospheric mantle source much more depleted than the
558	C2 source and close to the FOZO composition as redefined by Stracke et al. (2005). Then, the
559	C2 composition is not an end-member, but probably a mixture of asthenospheric and
560	lithospheric (C1) components.
561	In short, diversity of South-Kivu magmas results from interplay of three parameters: 1)
562	mixing of two source components, a lithospheric enriched component and a sub-lithospheric
563	(asthenospheric) less enriched or depleted component; 2) varying degree of partial melting as
564	a function of melt depth; 3) modal composition of the melted source with varying amount of
565	garnet. It is concluded that the South-Kivu magmas were generated in the sub-continental
566	mantle at depth surrounding 80 km (spinel-garnet transition zone) with important degree of
567	partial melting for tholeites, and slightly below 80 km, with low degree of partial melting for
568	basanites. Olivine- and alkaline-basalts were produced under intermediate conditions. It can
569	be assumed that the magma genesis was initiated by upwelling of asthenospheric hot material
570	and by decompression linked to extensional tectonic regime of the rift area.
571	
572	3.1.3. The Tshibinda Volcanic Chain
573	
574	According to previous chemical data (Meyer and Burette, 1957; Pouclet, 1976; Guibert,
575	1977; Villeneuve, 1978; Kampunzu et al., 1979; Bellon and Pouclet, 1980; Pasteels et al.,

5/6	1989), the lavas of the Tshibinda Volcanic Chain (TVC) share the composition of olivine
577	basalt and alkaline-olivine basalt similar to that of the Mio-Pliocene alkaline lavas (Fig. 7).
578	However, on the base of four samples from south of the volcanic chain, Furman and Graham
579	(1999) emphasize significant differences in some trace element abundances between the
580	Tshibinda lavas and the other South-Kivu lavas (higher Th/Nb, Nb/Zr, Ba/La, Ba/Nb), while
581	Sr and Nd isotope ratios show that Tshibinda lavas form an end-member in the South-Kivu
582	suite.
583	To better document the chemical data, we carried out new analyses along the chain (Table
584	1, Fig. 4). Compared with the South-Kivu alkaline lavas, the TVC lavas are significantly less
585	enriched in less mobile HFS elements, but relatively more enriched in Ba (Fig. 8B). These
586	features are exposed in the Nb versus Zr and Ba versus La covariation diagrams of Figure 11.
587	Tshibinda magma resulted from 4 to 2.5% of partial melting of the C1 lithospheric source as
588	discussed above (Fig. 9B). HREE fractionation points to low amount of garnet (Fig. 8B).
589	Indeed, the Tb_N/Yb_N ratio ranges from 1.41 to 1.85, the higher values corresponding to the
590	more alkali basalts. The source melted in upper level of the spinel-garnet transition zone.
591	Chemical variations along the chain can be explained by increasing of melting degree from
592	south (Tshibinda volcanoes) to the middle part (Tshibati volcanoes). However, in the northern
593	part of the TVC, the Leymera volcanoes, which are set after a volcanic gap of 8 km (Fig. 4),
594	show different chemical (Fig. 11) and isotopical features (Furman and Graham, 1999). The
595	Leymera lava has more Zr, less Th, and is isotopically depleted. This feature is close to the
596	depleted end-member attributed to upwelling asthenosphere, which is absent in the rest of the
597	TVC. This strong difference in a single magmatic event exemplifies heterogeneity of the
598	sources that resulted from mingling of asthenospheric blobs dispersed in the lithosphere.
599	
600	3.2. North-Idjwi lavas
601	
602	To the northern tip of Idjwi Island, two decametre-sized outcrops of maftic lava are
603	situated on a hill above the Lake Kivu shore and in a small island, two miles from the
604	mainland. These outcrops are residues of an old volcanic cover. The rock, a nephelinite,
605	displays an intergranular texture with microphenocrysts of olivine and diopside in a
606	nepheline-rich groundmass. Compositionally, the rock is highly undersaturated and sodic-
607	rich (Bellon and Pouclet, 1980; Marcelot et al., 1989; Table 1; Fig. 7). Similar nephelinitic
608	lava occurs on the upper western edge of the rift, in the Numbi area (Fig. 1) (Agassiz, 1954).

But, unfortunately, we were not able to sample these outcrops. The Primitive Mantle

609

610	normalized incompatible element pattern (Fig. 12) shows high incompatible element
611	abundances and strong fractionation (64 <la an<="" degree="" indicating="" low="" melting="" of="" td="" yb<67)=""></la>
612	enriched source. This source is clearly related to the garnet-lherzolite mantle (Figs. 9, 11A)
613	complying with high values of the Tb_N/Yb_N ratio from 2.41 to 2.50. The partial melting
614	degree is calculated at 2%.
615	Structural position of these nephelinites is peculiar in the Kivu Rift, far north to the South-
616	Kivu volcanic area, and south to the Virunga area beyond the Lake Kivu. The nephelinites
617	have been K-Ar dated at 28 Ma (Bellon and Pouclet, 1980). A new K-Ar age shows that the
618	lavas are ca. 21 Ma (also see forward, geochronological section). Consequently, the first
619	volcanic activity related to the western branch of the rift was nephelinitic, and took place
620	somewhere between the South-Kivu and Virunga areas, a long time before the rifting and the
621	Lake Kivu formation.
622	
623	3.3. Pre-Virunga lavas
624	
625	The Middle Miocene Pre-Virunga lavas consist of dismembered flows roosted on the
626	western edge of the rift. Flows are cut by the Mushebele and Tongo faults (Fig. 6). First
627	petrographical and chemical data allocated these lavas to basaltic alkaline and sodic series
628	(Denaeyer, 1960; Pouclet, 1976). But, some other analyses were used to assume the presence
629	of olivine-tholeiites (Kampunzu et al., 1983, 1998b), which is not supported by petrographical
630	data. However, it is fitting to discard altered samples having high loss on ignition and
631	displaying a false tholeiitic norm composition. Using criteria given above in the South-Kivu
632	section, all the suspected lavas are olivine basalts and not tholeiites. We performed new
633	analyses in the Bishusha and Tongo sectors (Fig. 6; Table 1). All the lavas belong to a sodic-
634	rich basanite series highly fractionated in the light rare earth elements (44 <la nb,<="" td="" yb<49),=""></la>
635	Th, and Ba (Fig. 12). The convenient source must be garnet lherzolite (Fig. 9) taking into
636	account high value of the Tb_N/Yb_N ratio of 2.92. This source may be the same than the
637	lithospheric source of South-Kivu, but with smaller partial melting degrees of 4% to 2%.
638	In the Tongo sector, the new analyses confirm the presence of mugearite and benmoreite
639	evolved lavas, and thus the occurrence of crustal reservoirs where differentiation processes
640	could have worked. This implies a focusing of a long-lasting source melting.
641	An intriguing question is the initial geographical distribution of Pre-Virunga lavas.
642	Present-day location of these lavas is limited to western upper step of the rift, west of Tongo
643	Fault. Similar old lavas are totally lacking in the eastern edge, namely in the Muhungwe area.

644	But one may assume that such lavas may have poured out above the lower steps of the rift,
645	presently overlain by the recent Virunga volcanoes. If it is the case, these lavas must have
646	been sampled by the numerous eruptions of Virunga, and may be collected as xenoliths, like
647	any basement rocks, in the Quaternary Virunga lavas. We have investigated the 107 flank and
648	parasitic cones of Nyamuragira, many flank cones of Nyiragongo, and the Nyamuragira and
649	Nyiragongo calderas. All our collected xenoliths (excluding the cognate xenoliths) only
650	consist of quartzites, shales, and micaschists in the Nyamuragira sector and of granite in the
651	Nyiragongo sector. No Pre-Virunga-like basalts were sampled. Only one sample of basaltic
652	lava has been found in 1959, as ejected block in the inner pit of Nyiragongo. Petrography of
653	this sample was done by Sahama (1978), but without any chemical analysis. The origin of this
654	"basalt" remains questionable. It is concluded that the Pre-Virunga magmatic activity was
655	restricted to the west part of the rift, between 13 and 9 Ma and before the rift valley
656	formation. Volcanic activity of the Virunga area along the rift axis only began in the late
657	Pliocene.
658	To the west of the rift, close to Pre-Virunga lavas, the Mweso lava flow has run along the
659	valley, from south-east to north-west (Figs. 1, 5, 6). This flow highly post-dated the Pre-
660	Virunga lavas that crop out at the hilltops. It is overlain by recent flows from Nyamuragira
661	parasitic events. Poor chemical data are available for this lava flow (Table 1). However, its
662	alkaline content is close to that of the neighbouring Nyamuragira lavas that belong to a
663	potassic basanite series, and is very different to the sodic series of Pre-Virunga lavas.
664	
665	3.4. Virunga lavas
666	
667	Virunga lavas exhibit many outstanding compositions, such as high-potassium content
668	shared with lavas of north part of the Kivu Rift in the Toro-Ankole volcanic area, but
669	unmatched by any other lavas of the East African Rift, except some nephelinites and
670	melilitites of North Tanzania. In this section, the analyzed rocks are distributed according
671	their petrographical features in a simplified nomenclature. The geochemical groups are
672	defined and the question of their magma sources is discussed.
673	
674	3.4.1. Magma compositions
675	
676	Virunga lavas are characterized by a potassic magmatic signature, but range in two
677	contrasting series: a leucite basanite series and a leucite-melilite nephelinite series, illustrated

678	by the two currently active volcanoes, Nyamuragira and Nyiragongo. Because the
679	nomenclature of potassic lavas was imprecise and confusing, we proposed a simplified
680	taxonomic system (Pouclet, 1980, b; Pouclet et al., 1981, 1983, 1984) that has been adopted
681	in most of the following studies of the Virunga lavas. We use the K-prefixed rock names of
682	the sodic series commonly known in the international community: K-basanite, K-hawaiite, K-
683	mugearite, K-benmoreite, and K-trachyte. Limits of the terms are defined by the
684	differentiation index (DI) of Thornton and Tuttle (1960) values of 35, 50, 65, and 80. The
685	more mafic terms (DI < 25) enriched in phenocrystic olivine and/or pyroxene, are named K-
686	limburgite and K-ankaratrite, respectively. The K-basanite and K-hawaiite correspond to local
687	terms of porphyritic kivite and kivite, respectively. The feldspathoid-rich lavas are named
688	after their main mineral contents: olivine melilitite, olivine nephelinite, nepheline melilitite,
689	melilite-leucite nephelinite, leucite nephelinite, and nepheline leucitite.
690	The leucite basanite series is located at Nyamuragira, Karisimbi, old Visoke, Sabinyo,
691	Gahinga, and Muhavura. It is suspected at Shaheru. The leucite-melilite nephelinite series is
692	located at Nyiragongo, Baruta, Mikeno, and young Visoke. Various compositions of these
693	volcanoes are depicted by the Primitive Mantle normalized trace element diagrams (Fig. 13).
694	Chemical data are given by Hertogen et al. (1985), De Mulder et al. (1986), Marcelot et al.
695	(1989), Toscani et al. (1990), Rogers et al. (1992), Rogers et al. (1998), Platz et al. (2004),
696	Chakrabarti et al. (2009a), and by new analyses (Table 1).
697	Nyamuragira lavas are characterized by moderate enrichment of large ion lithophile
698	elements (LILE; La/Yb = 25-34), slight Sr-negative anomaly, and HREE depletion with
699	Tb/Yb_N ratios ranging from 1.95 to 2.24 (Fig. 13A). All the mobile LILE are equally
700	moderately enriched, including Rb. This last feature distinguishes the Nyamuragira-related
701	western lavas of Kamatembe (N46) and Mushari (N572) from the Pre-Virunga lavas (Table 1;
702	Figs. 5 and 6). These two successive magmatic activities (Pre-Virunga and W-Nyamuragira)
703	came from very different sources (Figs. 12 and 13A). Compared to Pre-Virunga lavas, the
704	Nyamuragira lavas are less enriched in LILEs with the noticeable exception of Rb. The
705	basanitic volcanoes Karisimbi, early Visoke, Sabinyo, Gahinga, and Muhavura share the same
706	trace-element patterns with Nyamuragira (Fig. 13B), though their evolved lavas are normally
707	more enriched in the whole incompatible elements.
708	Nyiragongo lavas are much more enriched in incompatible elements than Nyamuragira
709	lavas (Fig. 13C). Their La/Yb ratios range from 43 to 58 in the olivine nephelinites, 54 to 69
710	in the nephelinites and leucitites, and 63 to 73 in the melilitites. They are depleted in HREEs
711	with Tb/Yb _N ranging from 1.93 to 2.86. A peculiar feature is the prominent depletion in Hf.

/12	The other leucite nephelinite volcanoes, Baruta, Mikeno and young Visoke, share similar
713	composition (Fig. 13D). It is worth noting that melilitites are the most enriched in
714	incompatible elements. Leucite-rich leucitites show Rb (and K) enrichment and Ti (and Mg,
715	Fe) depletion, but also high Hf depletion.
716	In Virunga lavas, HREE depletion points to low degree of partial melting with residual
717	garnet in the source. By using similar approach than for the South-Kivu lavas, the magmatic
718	source of the Virunga lavas may be a garnet peridotite with low or no content of spinel (Fig.
719	14). The nephelinitic magma originated from lower degree of partial melting than the
720	basanitic magma.
721	Both K and Rb enrichments suggest the presence of phlogopite in the source (Furman,
722	2007), while low to moderate values of the K/Rb ratio (70-174 in K-basanite series and 117-
723	202 in K-nephelinite series) preclude an amphibole-bearing source, as emphasized by
724	Chakrabarti et al. (2009a and b). In the Ba/Rb vs. Rb/Sr diagram of Furman et al. (2006),
725	elevated Rb/Sr ratios may indicate phlogopite or carbonatite metasomatism. High values are
726	recorded in the K-basanite series ($Rb/Sr = 0.06-0.11$), excluding the crustal contaminated
727	evolved lavas analyzed by De Mulder et al. (1986) and by Rogers et al. (1998), while the
728	values of the K-nephelinite series are moderate ($Rb/Sr = 0.04-0.09$). Zr/Hf ratios (41-47) of
729	the K-basanites are consistent with low partial melting of a garnet-clinopyroxene bearing
730	mantle source (Dupuy et al., 1992; Chakrabarti et al., 2009a) and do not indicate carbonate
731	contribution. A phlogopite contribution is retained for K-basanites. Very high Zr/Hf ratios in
732	the Nyiragongo leucite-nephelinites and leucitites ($Zr/Hf = 47-94$) may be a consequence of
733	carbonatite metasomatism (Dupuy et al., 1992). We show that high Zr/Hf values are due to Hf
734	depletion (Fig. 15). This implies contribution of a Hf-poor component in the Nyiragongo
735	source. According to analytical data of Andrade et al. (2002), Zr- and Hf-contents in
736	carbonatites display very large range of values and ratios. This is explained by heterogeneities
737	in the mantle source that are amplified by very low degrees of partial melting of the
738	carbonatite melt. Hf-poor carbonatites with super-chondritic Zr/Hf ratios occurred in Brazilian
739	and Namibian Cretaceous complexes, and in the Oldoinyo Lengai volcano of Tanzania (Fig.
740	15) (Andrade et al., 2002). In the Quaternary carbonatite lava of Fort-Portal in the Toro-
741	Ankole volcanic area, northern end of Western Rift, the Zr/Hf ratio is 78 (Eby et al., 2009). In
742	the Namibian Kalkfeld Carbonatite Complex, associated nephelinites exhibit Zr and Hf
743	contents close to those of Nyiragongo nephelinites (Fig. 15). In this Complex, the carbonatite
744	melt contribution to nephelinitic magma has been demonstrated (Andrade et al., 2002). It is
745	concluded that the Nyiragongo pephelinitic magma is mixed with a carbonatite melt

746	In summary, K-basanite lavas originated from melting of a garnet- and phlogopite-bearing
747	source. According to both garnet and phlogopite stabitity fields in the mantle, the melt depth
748	must be between 80 and 150 km (Chakrabarti et al., 2009a). K-nephelinite series may be
749	derived from the same source, with lower partial melting degree. But, in the Nyiragongo area,
750	this magma has been contaminated by a carbonate component. The questions are: what is the
751	origin of this component, and why very neighbouring volcanoes, Nyamuragira and
752	Nyiragongo, may exhibit very different chemical composition, only one being contaminated?
753	Chakrabarti et al. (2009a) suggest two distinct melting of a very distant heterogeneous plume.
754	This model needs two different channelling in a very long distance for the spatially adjacent
755	volcanoes, and also for the other Virunga volcanoes. Thus, it seems to be an improbable
756	process. It is useful to re-examine the question of the Virunga heterogeneous source, because
757	until now, there is no convincing model.
758	
759	3.4.2. The carbonatite deal and the sources of Virunga volcanoes
760	
761	Carbonate metasomatism in Nyiragongo lavas is an old hypothesis for the Virunga magma
762	genesis to explain high alkali and lithophile element contents. Some authors also underline the
763	possible contribution of the crust, without or with carbonatite (Higazy, 1954; Holmes, 1965;
764	Bell and Powell, 1969). Others favour the role of a carbonatite melt (Dawson, 1964) or a
765	volatile transfer (Sahama, 1973). Petrological analyses ruled out the crust contribution
766	(Pouclet, 1973). The isotopic studies gave decisive data. Th isotope ratios are consistent with
767	carbonate metasomatism beneath Nyiragongo according to Williams and Gill (1992). Nd, Sr,
768	and Pb isotope systematics of Nyiragongo nephelinites imply that a previous fluid
769	contamination and LILE enrichment of the source has occurred around 500 Ma ago (Vollmer
770	and Norry, 1983; Vollmer et al., 1985) or between 750 and 850 Ma (Rogers et al., 1992). The
771	style of enrichment could be common metasomatism by mobile fluid or, more probably, melt
772	addition before and during magma genesis (Rogers et al., 1992; Williams and Gill, 1992).
773	Fluid and solid inclusions in Nyiragongo melilites shows that the lava was in equilibrium with
774	a carbonatitic liquid (Louaradi, 1994). The opportunity of carbonatitic enrichment is
775	supported by neighbouring occurrence of the nepheline syenite-carbonatite intrusive complex
776	of Lueshe dated at 619 \pm 42 Ma by Van Overbeke et al. (1996) and at 558 \pm 11 by Kramm et
777	al. (1997). We discard the 822 ± 120 Ma date of Kampunzu et al. (1998a) having a bad mean
778	square of weighted deviates (MSWD). Coincidently, large flakes of biotite developed close to
779	cancrinite-bearing syenite, in the Lueshe pyrochlore-rich sövite, display a K-Ar age of 516 ±

780	26 Ma (Bellon and Pouclet, 1980). The Lueshe complex is associated with, at least, four
781	alkaline syenitic intrusions of similar Late Neoproterozoic ages, in the neighbouring west-
782	Virunga area (Kirumba, Bishusha, Fumbwe, Numbi, Fig. 16). The cancrinite- and sodalite-
783	bearing syenite of Kirumba is partly rimed with a thin fringe of ankeritic carbonatite.
784	Occurrence of pyrochlore in the alkaline syenite of Numbi suggests a close association with a
785	carbonatite body. Hence, alkaline fluids have contaminated many parts of the sub-continental
786	mantle in the Virunga area at the time of the carbonatite-syenite magmatic activities.
787	We tentatively locate the potassium-enriched mantle beneath the Virunga volcanic system
788	as a function of magma fingerprints of the different volcanic activities. This mantle extends
789	WSW-ENE from the south-western and western small volcanoes: Nahimbi, Rumoka,
790	Rushayo, Suri-Turunga and Muvo (Nh, Rm, Rs, St, Mv) which are the sites of the most
791	primitive magmas (K-limburgites and olivine-melilitites or "rushayites") fed by independent
792	tectonic drains unrelated to the tectonic system of the great volcanoes, to the north-east
793	Bufumbiro Bay (Bf) small volcanoes of primitive lavas (K-limburgites or "ugandites" and K-
794	ankaratrites or "murambites"), which were directly fed by their own drains with no magmatic
795	relationships to the neighbouring Muhavura (Fig. 16). This mantle source area includes the
796	more enriched carbonate core extending from Nyiragongo-Baruta to Mikeno and Visoke. The
797	Virunga volcanism began after the uplift of the west (Tongo) and east (Muhungwe) borders,
798	and the sinking of the Kivu and Edward basins dated around 5 Ma. We assume that the early
799	activity took place along the SW-NE oblique zone of the anomalous mantle underlining the
800	offset of rift axis, because the Mikeno emplaced in the middle part of this zone ca. 2 Ma.
801	The melting depth increased from the western uplifted rift edges (1) to the upper-middle
802	steps (2) and the lower step (3) of the rift valley with the following magma genesis: 1) pre-
803	Virunga sodic basalt, 2) potassic basanite of Nyamuragira and eastern volcanoes, and 3)
804	potassic nephenilite of Nyiragongo, Mikeno and Visoke. Hence the metasomatised mantle
805	was melted at the deepest level of magma genesis of the Virunga area. Similar melting is
806	exhibited in the northern part of the Kivu rift, in the Toro-Ankole volcanic area characterised
807	by highly alkaline, potassic and carbonated lavas defining the kamafungite series. The
808	kamafungite magma genesis implied important contribution of the potassium-rich and
809	carbonatitic component from very deep metasomatised source (Rosenthal et al., 2009).
810	In the eastern rift, the most K-enriched alkaline lavas are located in northern Tanzania
811	where the rift valley becomes poorly defined in a wide zone overlapping the boundary of the
812	Archaean Tanzanian craton and the Palaeo and Neoproterozoic Ungaran and Mozambique
813	belts. Volcanoes emplaced on the craton and the remobilized craton margin and exhibit K-

814	nephelinites and melilitites similar to the Virunga ones, and also carbonatites similar to the
815	Toro-Ankole ones (Le Bas, 1981, 1987). A carbonatite metasomatism has been evidenced
816	from mantle xenoliths originated from the lithospheric craton root (Rudnick et al., 1993).
817	Isotopic compositions suggest that the metasomatism occurred recently. The carbonatite was
818	generated either by melting lithosphere that had become carbonated by asthenosphere-derived
819	melts, or directly from the asthenosphere in relationship with the mantle plume heating.
820	In the Kivu rift, isotope data suggest an older carbonatitic event, may be Neoproterozoic
821	(Vollmer and Norry, 1983; Vollmer et al., 1985; Rogers et al., 1992). But, we cannot exclude
822	the contribution of a volatile-rich transfer from the hot upwelling asthenosphere. In the Toro-
823	Ankole field, Nd, Sr and Hf isotope arrays suggest two time-spaced enrichments of the
824	source: a potassic alkaline silicate metasomatism and later a carbonate-rich metasomatism
825	(Rosenthal et al., 2009).
826	To comply with these data, we conclude that the distribution of geochemical variations in
827	the Virunga area is explained by zoning of a lithosphere enrichment that has occurred during
828	a Neoproterozoic alkaline magmatic event and by the contribution of plume-related hot and
829	fluid-rich asthenospheric components.
830	
831	4. Geochronology and history of the rift
832	
833	4.1. Previous data
834	
835	Reliable K-Ar geochronological data are provided by Bagdasaryan et al. (1973), Guibert et
836	al. (1975), Bellon and Pouclet (1980), Rançon and Demange (1983), De Mulder (1985), De
837	Mulder and Pasteels (1986), Pasteels et al. (1989), and Kampunzu et al. (1998b). Some Ar/Ar
838	ages of the Sabinyo and Muhavura volcanoes were obtained by Rogers et al. (1998).
839	There is a consensus about a three stages volcanic story of the South-Kivu area. Activity
840	began around 10 Ma with outpouring of tholeiites and olivine-tholeiites. While this tholeiitic
841	production seems to decline, the magma evolves to an alkali basaltic composition, around 8
842	Ma. A new rising alkaline activity, the second stage, took place between 7 and 4 Ma. These
843	Miocene to Pliocene activities supplied the main part of the basaltic pile of the South-Kivu
844	area. The third stage consists of strombolian eruptions of the Tshibinda Chain, in the early
845	Pleistocene. Around the Virunga area the Pre-Virunga activity is dated between 13 and 9 Ma.
846	Activities of the Virunga main volcanoes are dated from 2.6 Ma to present time (see section
847	23)

848	The northernmost volcanic area of Toro-Ankole, north-east of Lake Edward, is
849	approximately dated to the Late Quaternary, with some accurate ages between 50 and 10 ka
850	after Boven et al. (1998).
851	
852	4.2. New K-Ar age data
853	
854	We display a new set of 17 whole rock K-Ar determinations (Table 2). Samples locate
855	from north and south of Idjwi Island, Bitare-Bugarama graben, Bukavu graben (Cyangugu-
856	upper Rusizi), and western upper edge of the rift (Fig. 17).
857	We paid a special attention to the Idjwi Island where we previously obtained very old ages
858	(Bellon and Pouclet, 1980) not supported by further studies (Pasteels and Boven, 1989;
859	Pasteels et al., 1989).
860	The small outcrops of nephelinite lava were sampled north of Idjwi Island. They are
861	residues of an old flow cover (see above). First dating yielded 28 ± 1.4 Ma, a rather old age
862	that has been declared "not reliable" by Kampunzu et al. (1998b). Enrichment of radiogenic
863	argon may be suspected. A new measurement (LKa4) indicates 19.98 ± 1.00 Ma. One another
864	sample (BK8) of the same lava gives a similar age of 20.97 \pm 0.56 Ma. According these new
865	data, an early Miocene nephelinitic activity is proved. It took place between the South-Kivu
866	area and the Virunga area, before the birth of the Lake Kivu (dated ca. 5 Ma) that separates
867	the two areas.
868	The southern Idjwi Island is partly covered with tholeiitic and alkali basaltic flows
869	belonging to the South-Kivu volcanic area. Tholeiites poured out over the crystalline
870	basement and are overlain by alkali basalts. In two places, tholeiitic flows are linked to
871	accumulations of hyaloclastites that are remnants of under-water volcanic cones. They are
872	also few small outcrops of diatomite-rich lacustrine deposits that are dated to the early
873	Holocene by their diatom composition. These last deposits were produced when the Lake
874	Kivu has reached its highest level, between 10 and 8 ka B.P., before the digging of the Rusizi
875	canyon (Pouclet, 1975) and thus are not related to the hyaloclastites. New ages measurements
876	of tholeiite flows yield ages of 10.30 ± 0.35 , 9.56 ± 0.48 , 8.76 ± 0.44 , 7.73 ± 0.30 and 6.62 ± 0.48
877	0.66 Ma (BK14, 19, 15, 36 and 7, respectively). An alkali basalt (BK-18) overlying the
878	tholeiites is dated at 7.07 ± 0.51 Ma.
879	Finally, what could be the true age for this tholeittic activity? An analytical study of argon
880	behaviour in similar tholeiitic lavas from South-Idjwi has been conducted by Pasteels and
881	Boven (1989). Apparent ages were obtained from 16.9 to 3.9 Ma. The authors concluded to

882	the presence of excess argon and discarded the older ages. They dated to 4.1 Ma a sample of
883	alkali basalt overlying tholeiites, and suggested that tholeiite activity may be as young as 5
884	Ma. It is known that sample preparation for K-Ar analyses cannot totally eliminate
885	xenocrystic fragments of the substratum that cause argon gain leading to old apparent ages.
886	Conversely, alteration is responsible for potassium and radiogenic argon losses that likely
887	make the ages younger. Unfortunately, South-Kivu tholeiites are rich in vitreous groundmass
888	containing most of the potassium and radiogenic argon, and this groundmass is easily altered.
889	So, young ages are not more credible than the old ones. Taking up to 7.07 Ma the age of the
890	overlying (fresh and not vitreous) olivine basalt, the South-Idjwi tholeiites must be dated
891	between 10.3 and 7 Ma, owing to our new datings.
892	To document the question of initial tholeiitic activity of South-Kivu area, tholeiites from
893	the on-land southern prolongation of South-Idjwi lavas (RW86, 87) have been analyzed by
894	one of us (H.B.) and age results were listed in Marcelot et al., (1989). Respectively, the
895	following results are obtained: 8.97 ± 0.45 , and 11.42 ± 0.57 . These results are consistent with
896	previous age data of tholeiites from upper Rusizi (10.0 to 7.6 Ma; Pasteels et al., 1989), and
897	from the western edges (8.2 to 6.9 Ma; Kampunzu et al., 1998b).
898	Additional alkali basalts were dated in the middle part of the rift (Fig. 17): Bugarama
899	graben (RW88, 83) 10.63 ± 0.53 and 7.75 ± 0.39 Ma, and upper Rusizi area (RW90, 89, 82,
900	81) 8.10 ± 0.40 , 7.68 ± 0.38 , 7.18 ± 0.36 , and 6.33 ± 0.32 Ma. Of important are the lavas of
901	the Kahuzi fracture zone, which are cross-cut by the main faults of the western upper steps. A
902	dating (MM2) gives 8.19 ± 0.40 Ma (Figs. 1, 3).
903	
904	4.3. Geodynamical history of the rift
905	
906	Taking into account the revised and the new data, in addition to the previously published
907	data (Bagdasaryan et al., 1973; Guibert et al., 1975; Bellon and Pouclet, 1980; Pasteels and
908	Boven, 1989; Pasteels et al., 1989; Kampunzu et al., 1998b) there is a total of 67 K-Ar ages
909	for South-Kivu, pre-Virunga, and Mikeno lavas (Table 4). We exclude the post-1 Ma young
910	lavas. These ages are plotted on a histogram in Figure 18.
911	The earliest volcanic event happened around 21 Ma in the North-Idjwi, close to the future
912	axis of the rift, and likely, to the western side (Fig. 19). It is assumed that most of the lavas of
913	this first activity are hidden by the South-Kivu and Virunga lavas. These early Miocene lavas
914	are strongly alkaline and nephelinitic and resulted from a very low partial melting of mantle
915	source. At that time, the rift valley did not exist and no swell is evidenced. A large outcrop of

916	old nephelinites is located west of the Lake Kivu, close to an alkaline syenite intrusion
917	(Numbi, Fig. 16) belonging to the Neoproterozoic anorogenic alkaline activity already
918	checked in the Kahuzi area, and west of the Virunga. The alkaline intrusions are set along a
919	NNE-SSW striking line named "the Neoproterozoic Weakness Line" (Fig. 19A). It is
920	postulated that the initial volcanic activity of the Kivu Rift, as well as the Pre-Virunga early
921	activity was drained by such an inherited fracture zone.
922	We indicate that, in the Kivu Rift, volcanism began contemporaneously with that of the
923	Kenya Rift ca. 23 Ma (Hendrie et al., 1994) and of southern Ethiopia ca. 21 Ma (George and
924	Rogers, 2002), though the earliest magmatism of the eastern rift is dated at 45 Ma in the main
925	rift Ethiopia (George et al., 1998). Our data rectify common belief that the Western Rift
926	volcanism began 5-10 m.y. after the Kenya Rift volcanism.
927	Pre-Virunga volcanic activity took place between 13 and 9 Ma. It is located in the
928	Neoproterozoic Weakness Line, and controlled by NW-SE faults oblique to the rift axis
929	(Fig.19A). The Tongo Fault was not yet active. The existence of a crustal magma chamber
930	beneath this volcanic field is attested by the output of evolved lavas. The composition is
931	alkaline sodic and indicates a low degree of melting of the source.
932	At ca. 11 Ma, tholeiitic volcanism was emplaced in the South-Kivu, along the South-Idjwi
933	- Bitare-Bugarama structure, parallel to the rift axis (Fig. 19). Flows poured out along a
934	north-south fracture system. Besides, the 8.2 Ma Kahuzi flow (MM2) to the edge of the upper
935	step ran down to the west. This flow direction complies with the existence of a swell and with
936	the absence of a rift graben. However, the tholeiitic underwater hyaloclastites and flows of
937	South-Idjwi, which are dated around 8 Ma, involve the existence of a lacustrine basin. It must
938	be assumed that a first, though limited graben was formed along the rift axis, at ca. 8 Ma.
939	Afterwards, the tholeiite magma contribution decreased until 5 Ma, but was no longer
940	restricted to the rift axis. Last tholeiitic lavas poured out on the western upper Kahuzi step and
941	on the Mwenga area where they are overlain by 5.8 to 2.6 Ma alkaline lavas (Fig. 19). In the
942	same time, since 10.6 Ma or 8.5 Ma, an alkaline magma production resulted from less partial
943	melting of a heterogeneous source. The activity was located along the Bugarama north-south
944	tectonic axis, and then, along the N-S and NNE-SSW trending faults of the whole area. The
945	most significant basaltic supply is dated between 8 and 7 Ma. The alkali basalt lava flew
946	down above the western steps of the rift. Their local unconformity above the tholeites in the
947	Bugarama graben confirm that the rift valley was initiated around 8 Ma. Subsidence of the
948	northern basin of Lake Kivu began ca. 5 Ma. Between 6 and 5 Ma, extrusion of evolved lavas
949	(trachyte-phonolite) into and close to the Bukayu graben, pointed to the ponding of alkaline

950	magma into crustal reservoirs in a limited area. After 5 Ma, volcanic activity decreased and
951	migrated to the south-west tectonic zone of Mwenga until 2.6 Ma, in correlation with the
952	decreasing of the partial melting degree of the source which produced Mg-basanites. Such a
953	timing and the magmatic feature are consistent with a rift propagation in the Mwenga branch.
954	The last activity, around 1.7 Ma, has built the Tshibinda Chain at the edge of Mount Kahuzi.
955	Its alkaline lavas imply a new and moderate degree of melting of a similar source.
956	Consequently, a thermal anomaly was persisting below the higher western part of the rift in
957	the Lake Kivu area. More recent eruptions (possibly late Pleistocene) in the Tshibinda Chain
958	and Rwandese shore lake have been assumed by Pasteels et al. (1989) and by Ebinger
959	(1989a). However, new accurate chronological data are needed to improve the temporal
960	constraints of these latest eruptions.
961	In the Virunga area above the shelf between lakes Kivu and Edward, volcanic activity was
962	initiated along a SW-NE fracture zone at the Mikeno area, ca. 2.6 Ma (Guibert et al., 1975),
963	and then propagated to the SW at the Shaheru, and to the NE at the early-Visoke, early-
964	Karisimbi, Sabinyo, Gahinga and Muhavura until to 0.1 Ma (Bagdasaryan et al., 1973;
965	Rançon and Demange, 1983; Rogers et al., 1998). In recent time, volcanism occurred
966	simultaneously in the eastern side at young-Visoke, Karisimbi and Muhavura (Rançon and
967	Demange, 1983; De Mulder, 1985; Rogers et al., 1998), and in the middle area, at Baruta.
968	Lastly, eruptions were focused in the middle Virunga at Nyiragongo, and to the west at
969	Nyamuragira.
970	
971	7. Conclusions
972	
973	This study addresses the tectonic pattern, volcanic rock compositions, and age dating of the
974	Kivu Rift in the western branch of the East African Rift system, with the aim of improving the
975	history of the rift and deciphering the relationships between the volcano-tectonic pattern and
976	the conditions of magma genesis.
977	The rift resulted from stretching of the continental lithosphere that produced thinning and
978	passive upwelling of hot asthenosphere. The tectonic framework evolved with linking of fault
979	segments inherited from weakness zones of the basement, and with development of isolated
980	basins in the rift axis. Rising of the top of the asthenosphere with thinning of the lithospheric
981	mantle initiated the decompressional driven partial melting of the lithosphere and
982	asthenosphere, successively. This first pre-rift doming stage is portrayed with the 21 Ma
983	nephelinites of North-Idjwi, the 13-9 Ma alkaline basalts of West-Virunga, and the 11-8 Ma

984	tholeiites of South-Kivu. At that time, no fault scarps were developed and the rift valley was
985	not yet created, though a small lacustrine basin existed in the South Idjwi area owing to the
986	occurrence of hyaloclastites. The magma composition logically evolved from highly alkaline
987	to moderately alkaline and to sub-alkaline with increasing amount of lavas, in relationships
988	with increasing degree of partial melting and more important contribution of the
989	asthenospheric component. The N-S and NNW-SSE trend of the fertile fractures suggests an
990	E-W strain field direction.
991	But, in the following stage, the magma production stopped in the Virunga area and
992	completely changed in South Kivu with the outpouring of alkaline basalts, as soon as 8.5 Ma.
993	The partial melting decreased and was limited to lithospheric mantle. One may note the lack
994	of voluminous flood basalts, a salient component of the extensional rifting evolution in the
995	Ethiopian-Somalian branch of the East African rift. Then, the rift valley was created and the
996	lake basins subsided, namely around 5 Ma for the Lake Kivu. This indicates the cessation of
997	the extensional process and the cooling of the underlying mantle, as proved by the decreasing
998	degree of partial melting of the late Pliocene Mg-basanites of the Mwenga branch. The
999	extrusion of differentiated lavas between 6 and 5 Ma in the Bukavu graben, points to magma
1000	storage into crustal reservoir, and to the non-existence of an opened fissural system.
1001	Again, the Kivu rift evolution completely changed when a new highly alkaline and potassic
1002	volcanism appeared in the Virunga site around 2.6 Ma. From that time until now, this event is
1003	controlled by a transtensional constraint and the opening of a tension gash with an ENE-
1004	WSW extensional displacement. This constraint affected the South-Kivu and induced a
1005	moderate melting of the lithosphere in the Tshibinda Volcanic Chain during the Pleistocene.
1006	In the Virunga area, the magmas tapped a deep mantle source previously enriched by
1007	carbonated metasomatism. The success of the melt production is explained by the high
1008	volatile content of the mantle source which facilitated the melting. In the same structural
1009	context, a normal mantle would not melt. In return, the presence of a metasomatized mantle is
1010	the effect of a former Proterozoic magmato-tectonic event which created the structural
1011	weakness zone reactivated and used by the Kivu rift. Thereby, the existence of the
1012	outstanding Virunga volcanic province is not really fortuitous.
1013	The history of the Kivu rift is not a smooth running of a standard rift development. It is
1014	strongly dependent on space and time distribution and changing of the surrounding driving
1015	forces in the African plate. Meanwhile, no accurate correlations can be evidenced with the
1016	eastern branch of East African Rift. Further studies and age datings are needed to attempt a
1017	more comprehensive model of the East African magmato-tectonic evolving constraints.

1018	
1019	Acknowledgments
1020	
1021	We gratefully acknowledge Peter Kunkel, director of the "Institut pour la Recherche en
1022	Afrique Centrale", the former "Centre de Recherches en Sciences Naturelles" (CRSN), for
1023	providing facilities during the four years of field studies and for his warmful support. We
1024	thank Andrew Conly and Alfred Wittaker for improving the English text.
1025	
1026	References
1027	
1028	Agassiz, J.F., 1954. Géologie et pegmatites stannifères de la région de Mumba-Numbi.
1029	Comité National du Kivu (Congo) N.S. n° 7, 78 pp.
1030	Andrade, F.R.D. de, Möller, P., Dulski P., 2002. Zr/Hf in carbonatites and alkaline rocks:
1031	New data and a re-evaluation. Revista Brasileira de Geociências 32, 361-370.
1032	Auchapt, A., 1987. Les elements traces dans les basalts des rifts continentaux : exemple de la
1033	province du Sud Kivu (Zaïre) dans le rift Est-Africain. Documents et Travaux du Centre
1034	Géologique et Géophysique de Montpellier, France, n° 12, 99 pp.
1035	Auchapt, A., Dupuy, C., Dostal, J., Kanika, M., 1987. Geochemistry and petrogenesis of rift-
1036	related volcanics from South Kivu (Zaire). Journal of Volcanological and Geothermal
1037	Research 31, 33-46.
1038	Bagdasaryan, G.P., Gerasimovskiy, V.I., Polyakov, A.I., Gukasyan, R.K.H., 1973. Age of
1039	volcanic rocks in the rift zones of East Africa. Geochemistry International 10, 66-71.
1040	Bell, K., Powell, J.L., 1969. Strontium isotopic studies of alkalic rocks: The potassium-rich
1041	lavas of the Birunga and Toro-Ankole. Journal of Petrology 10, 536-572.
1042	Bellon, H., Pouclet, A., 1980. Datations K-Ar de quelques laves du rift-ouest de l'Afrique
1043	Centrale; implications sur l'évolution magmatique et structurale. Geologische Rundschau
1044	69, 49-62.
1045	Bellon H., Quoc Buü N., Chaumont J. and Philippet J.C., 1981. Implantation ionique d'argon
1046	dans une cible support: application au traçage isotopique de l'argon contenu dans les
1047	minéraux et les roches. Comptes Rendus de l'Académie des Sciences, Paris (France),
1048	Série II, 292, 977-980.
1049	Boven, A., Pasteels, P., Punzalan, L.E., Yamba, T.K., Musisi, J.H., 1998. Quaternary
1050	perpotassic magmatism in Uganda (Toro-Ankole Volcanic Province): age assessment and

- significance for magmatic evolution along the East African Rift. Journal of African Earth
- 1052 Sciences 26, 463-476.
- Boven, A., Theunissen, K., Sklyarov, E., Klerkx, J., Melnikov, A., Mruma, A., Punzalan, L.,
- 1054 1999. Timing of exhumation of a high-pressure mafic granulite terrane of the
- Paleoproterozoic Ubende belt (West Tanzania). Precambrian Research 93, 119-137.
- Brousse, R., Lubala, R.T., Katabarwa, J.-B., 1983. Découverte d'une formation de nuées
- ardentes dans la région de Ruhengeri au flanc sud du volcan Sabyinyo (chaîne volcanique
- des Birunga-Rwanda). Comptes Rendus de l'Académie des Sciences, Paris (France), Série
- 1059 II, 297, 623 626.
- 1060 Chakrabarti, R., Basu, A.R., Santo, A.P., Tedesco, D., Vaselli, O., 2009a. Isotopic and
- geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics,
- Western rift, East African Rift system. Chemical Geology 259, 273-289.
- 1063 Chakrabarti, R., Sims, K.W.W., Basu, A.R., Reagan, M., Durieux, J., 2009b. Timescales of
- magmatic processes and eruption ages of the Nyiragongo volcanics from ²³⁸U-²³⁰Th-²²⁶Ra-
- 1065 ²¹⁰Pb disequilibria. Earth and Planetary Science Letters 288,149-157.
- Dawson, J.B., 1964. Reactivity of the cations in carbonate magmas. Proceedings Geological
- 1067 Association of Canada 15, 103-113.
- Degens, E.T., Von Herzen, R.P., Wong, H.-K., Deuser, W.G., Jannash, H.W., 1973. Lake
- 1069 Kivu: structure, chemistry and biology of an East African rift lake. Geologische Rundschau
- 1070 62, 245-277.
- 1071 De La Vallée-Poussin, J., 1933. Découverte de nouveaux gisements de lave au Kivu. Bulletin
- de la Société Belge de Géologie 43, 74-75.
- Demant, A., Lestrade, P., Lubala, R.T., Kampunzu, A.B., Durieux, J., 1994. Volcanological,
- and petrological evolution of Nyiragongo volcano, Virunga volcanic field, Zaire. Bulletin
- of Volcanology 56, 47-61.
- 1076 De Mulder, M., 1985. The Karisimbi volcano (Virunga). Musée Royal de l'Afrique Centrale,
- 1077 Tervuren, Belgique, Annales, Série in-8°, Sciences géologiques n° 90, 101 pp.
- 1078 De Mulder, M., Pasteels, P., 1986. K-Ar geochronology of the Karisimbi volcano (Virunga,
- Rwanda-Zaire). Journal of African Earth Sciences 5, 575-579.
- De Mulder, M., Hertogen, J., Deutsch, S., André, L., 1986. The role of crustal contamination
- in the potassic suite of the Karisimbi volcano (Virunga, African Rift Valley). Chemical
- 1082 Geology 57, 117-136.
- 1083 Denaeyer, M.-E., 1954. Les anciens volcans sous-lacustres de la bordure nord du lac Kivu.
- Bulletin de la Société Belge de Géologie 63, 280-298.

- 1085 Denaeyer, M.-E., 1960. Les laves de la bordure occidentale du fossé tectonique du Kivu, à
- 1086 l'ouest des Virunga. Bulletin de l'Académie Royale Sciences Outre-Mer de Belgique N. S.
- 1087 6, 1074-1085.
- 1088 Denaeyer, M.-E., 1972. Les laves du fossé tectonique de l'Afrique Centrale (Kivu, Rwanda,
- 1089 Toro-Ankole). I. Supplément au recueil d'analyses de 1965, II. Magmatologie, III. –
- Magmatogenèse. Annales du Musée Royal de l'Afrique Centrale, Tervuren, Belgique,
- 1091 Série in-8°, Sciences Géologiques n° 72, 134 pp.
- 1092 Denaeyer, M.-E., Schellinck, F., Coppez, A., 1965. Recueil d'analyses des laves du fossé
- 1093 tectonique de l'Afrique Centrale (Kivu, Rwanda, Toro-Ankole). Annales du Musée Royal
- Afrique Centrale, Tervuren, Belgique, Série in-8°, Sciences Géologiques n° 49, 234 pp.
- De Paepe, P., Fernandez-Alonso, M., 1981. Contribution à la connaissance du volcanisme du
- 1096 Sud-Kivu : la région de Cyangugu-Bugarama (Rwanda). Musée Royal de l'Afrique
- 1097 Centrale, Tervuren, Belgique, Dépt. Géologie et Minéralogie, Rapport annuel 1980, 111-
- 1098 126.
- Dupuy, C., Liotard, J.M., Dostal, J., 1992. Zr/Hf fractionation in intraplate basaltic rocks:
- 1100 Carbonate metasomatism in the mantle source. Geochimica et Cosmichimica Acta 56,
- 1101 2417-2423.
- 1102 Ebinger, C.J., 1989a. Geometric and kinematic development of border faults and
- accommodation zones, Kivu-Rusizi rift, Africa. Tectonics 8, 117-133.
- Ebinger, C.J., 1989b. Tectonic development of the western branch of the East African rift
- system. Bulletin of the Geological Society of America 101, 885-903.
- Ebinger, C.J., Sleep, N.H., 1998. Cenozoic magmatism throughout east Africa resulting from
- impact of a single plume. Nature 395, 788-791.
- Ebinger, C.J., Bechtel, T.D., Forsyth, D.W., Bowin, C.O., 1989. Effective elastic plate
- thickness beneath the East African and Afar Plateaus and dynamic compensation of the
- 1110 uplifts., J. Geophys. Res. 94, 2883-2901.
- Ebinger, C.J., Jackson, J.A., Foster, A.N., Hayward, N.J., 1999. Extensional basin geometry
- and the elastic lithosphere. Phil. Trans. R. Soc. London A 357, 741-765.
- Eby, G.N., Lloyd, F.E., Woolley, A.R., 2009. Geochemistry and petrogenesis of the Fort
- Portal, Uganda, extrusive carbonatite. Lithos 113, 785-800.
- 1115 Evrard, P., Jones, L., 1963. Etude gravimétrique du graben de l'Afrique centrale. La région
- des volcans Nyiragongo et Nyamuragira. Mémoire de l'Académie royale des Sciences
- d'Outre-Mer de Belgique, Sciences et techniques 15(5), 1-71.

- 1118 Felton, A.A., Russell, J.M., Cohen, A.S., Baker, M.E., Chesley, J.T., Lezzar, K.E., McGlue,
- 1119 M.M., Pigati, J.S., Quade, J., Stager, J.C., Tiercelin, J.J., 2007. Paleolimnological evidence
- for the onset and termination of glacial aridity from Lake Tanganyika, Tropical East
- Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 405-423.
- Furman, T., 2007. Geochemistry of East African Rift basalts: An overview. Journal of African
- 1123 Earth Sciences 48, 147-160.
- 1124 Furman, T., Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift
- system: geochemical evidence from the Kivu volcanic province. Lithos 48, 237-262.
- Furman, T., Bryce, J.G., Karson, J., Iotti A., 2004. East African Rift System (EARS) plume
- structure: Insights from Quaternary mafic lavas of Turkana, Kenya. Journal of Petrology
- 1128 45, 1069-1088.
- Furman, T, Kaleta, K.M., Bryce, J.G., Hanan, B.B., 2006. Tertiary mafic lavas of Turkana,
- 1130 Kenya: Constraints on East African plume structure and the occurrence of High-μ
- volcanism in Africa. Journal of Petrology 47, 1221-1244.
- George, R.M., Rogers, N.W., 2002. Plume dynamics beneath the African Plate inferred from
- the geochemistry of the Tertiary basalts of southern Ethiopia. Contributions to Mineralogy
- and Petrology 144, 286-304.
- George, R., Rogers, N., Kelley, S., 1998. Earliest magmatism in Ethiopia: evidence for two
- mantle plumes in one flood basalt province. Geology 26, 923-926.
- Green, D.H., 1969. The origin of basaltic and nephelinitic magmas in the Earth's mantle.
- 1138 Tectonophysics 7, 409-432.
- 1139 Guibert, P., 1977. Contribution à l'étude du volcanisme du sud Kivu (Zaïre). Archives des
- Sciences (Genève, Suisse) 30, 15-43.
- Guibert, P., Delaloye, M., Hunziker, J., 1975. Contribution à l'étude géologique du volcan
- Mikeno, Chaîne des Virunga (République du Zaïre) I: Données géochronologiques K/Ar.
- II: Données isotopiques Rb/Sr. Comptes Rendus Séances Société Physique Histoire
- 1144 Naturelle 10, 57-66.
- Haberyan, K.A., Hecky, R.E., 1987. The late Pleistocene and Holocene stratigraphy and
- paleolimnology of Lakes Kivu and Tanganyika. Palaeogeography, Palaeoclimatology,
- 1147 Palaeoecology 61, 169-197.
- Hendrie, D.B., Kusznir, N.J., Morley, C.K., Ebinger, C.J., 1994. Cenozoic extension in
- northern Kenya: a quantitative model of rift basin development in the Turkana region.
- 1150 Tectonophysics 236, 409-438.

- Hertogen, J., Vanlerberghe, L., Namegabe, M.R., 1985. Geochemical evolution of the
- 1152 Nyiragongo Volcano (Virunga, Western African Rift, Zaire). Bulletin Geological Society
- of Finland 57, 21-35.
- Higazy, R.A., 1954. Trace elements of volcanic ultrabasic potassic rocks of southwestern
- 1155 Uganda and adjoining part of the Belgian Congo. Bulletin Geological Society of America
- 1156 65, 39-70.
- Holmes, A., 1965. Principles of physical geology. Ronald Press, New-York, 2nd edition.
- Kampunzu, A., Pottier, Y., Vellutini, P.-J., 1979. A propos des produits volcaniques de
- Cibinda, région de Bukavu (Sud-Kivu, Zaïre). Annales de la Faculté des Sciences de
- Lubumbashi, Université nationale du Zaïre 2, 21-30.
- Kampunzu, A.B., Lubala, R.T., Caron, J.P.H., Vellutini, P.-J., 1983. Sur l'existence de deux
- cycles volcaniques précédant le volcanisme actuel des Virunga (Nord Kivu-Zaïre).
- 1163 Comptes Rendus de l'Académie des Sciences, Paris (France), Série II, 296, 839-844.
- Kampunzu, A.B., Lubala, R.T., Makutu, M.N., Caron, J.-P.H., Rocci, G., Vellutini, P.-J.,
- 1165 1985. Les complexes alcalins de la région interlacustre à l'Est du Zaïre et au Burundi: un
- exemple de massifs anorogéniques de relaxation. Journal of African Earth Sciences 3, 151-
- 1167 167.
- Kampunzu, A.B., Kramers, J.D., Makutu, M.N., 1998a. Rb-Sr whole rock ages of the Lueshe,
- Kirumba and Numbi igneous complexes (Kivu, Democratic Republic of Congo) and the
- break-up of the Rodinia supercontinent. Journal of African Earth Sciences 26, 29-36.
- Kampunzu, A.B., Bonhomme, M.G., Kanika, M., 1998b. Geochronology of volcanic rocks
- and evolution of the Cenozoic Western Branch of the East African Rift System. Journal of
- 1173 African Earth Sciences 26, 441-46.
- 1174 Kanika, M., Kampunzu, A.B., Caron, J.P.H., Vellutini, P.J., 1981. Données nouvelles sur le
- volcanisme de la Haute Ruzizi (Sud Kivu, Zaïre). Comptes Rendus de l'Académie des
- 1176 Sciences, Paris (France), série II, 292, 1277-1282.
- 1177 Kinzler, R.J., 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet
- transition: application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical
- 1179 Research 102, 853-874.
- Komorowski, J.-C., Tedesco, D., Kasereka, M., Allard, P., Papale, P., Vaselli, O., Durieux, J.,
- Baxter, P., Halbwachs, M., Akumbe, M., Baluku, B., Briole, P., Ciraba, M., Dupin, J.-C.,
- Etoy, O., Garcin, D., Hamaguchi, H., Houlie, N., Kavotha, K.S., Lemarchand, A.,
- Lockwood, J., Lukaya, N., Mavonga, G., de Michele, M., Mpore, S., Mukambilwa, K.,
- Munyololo, F., Newhall, C., Ruch, J., Yalire, M., Wafula, M., 2002. The January 2002

- flank eruption of Nyiragongo volcano (Democratic Republic of Congo): chronology,
- evidence for a tectonic rift trigger, and impact of lava flows on the city of Goma. Acta
- 1187 Vulcanologica 14-15, 27-62.
- Kramm, U., Maravic, H.V., Morteani, G., 1997. Neodymium and Sr isotopic constraints on
- the petrogenetic relationships between carbonatites and cancrinite syenites from the Lueshe
- Alkaline Complex, east Zaire. Journal of African Earth Sciences 25, 55-76.
- 1191 Kusznir, N.J., Ziegler, P.A., 1992. The mechanics of continental extension and sedimentary
- basin formation: A simple-shear/pure-shear flexural cantilever model. Tectonophysics 215,
- 1193 117-131.
- 1194 Le Bas, M.J., 1981. Carbonatite magmas. Mineralogical Magazine 44, 133-140.
- Le Bas, M.J., 1987. Nephelinites and carbonatites. In Fitton, J.G., Upton, B.G.J. (Eds)
- Alkaline igneous rocks: Geological Society of London, Special Publication vol. 30, pp. 53-
- 1197 83.
- 1198 Ledent, D., Cahen, L., 1965. Quelques données géochronologiques nouvelles sur les minéraux
- des roches du Kivu méridional. Musée Royal de l'Afrique Centrale, Tervuren (Belgique),
- 1200 Rapport annuel 1964, 94-95.
- Louaradi, D., 1994. Etude isotopique (carbone, oxygène) et microthermométrique (inclusions
- fluides et vitreuses) des magmas alcalins et carbonatitiques du rift est africain et de la
- presqu'île de Kola. Ph. D. Thesis, University of Paris VII, France.
- 1204 Lubala, R.T., 1981. Etude géologique du massif de Biega (Kivu, Zaïre). Structure,
- géochronologie et signification géotectonique. Ph. D. Thesis, Univ. Zaïre, Lubumbashi,
- 1206 308 pp.
- 1207 Lubala, R.T., Kampunzu, A.R., Caron, J.P.H., Vellutini, P.J., 1982. Sur la nature et la
- 1208 signification possible des basaltes de la Lugulu au Sud-Kivu (Zaïre). Comptes Rendus de
- 1209 l'Académie des Sciences, Paris, Série II, 294, 325-328.
- 1210 Lubala, R.T., Kampunzu, A.R., Caron, J.P.H., Vellutini, P.J., 1984. Minéralogie des basaltes
- saturés tertiaires du Kahuzi-Biéga (Rift du Kivu, Zaïre). Annales de la Société Géologique
- 1212 de Belgique 107, 125-134.
- Lubala, R.T., Kampunzu, A.R., Caron, J.P.H., Vellutini, P.J., 1987. Petrology and
- 1214 geodynamic significance of the Tertiary alkaline lavas from the Kahuzi-Biega region,
- Western rift, Kivu, Zaire. In: Bowden, P. and Kinnaird, J. (Eds) African geology reviews,
- 1216 Geological journal 22, pp. 515-535.

- Mahood G. and Drake R. E. 1982. K-Ar dating young rhyolite rocks: a case study of the
- 1218 Sierra La Primavera, Jalisco, Mexico, Geological Society of America Bulletin 93, 1232-
- 1219 1241.
- Marcelot, G., Dupuy, C., Dostal, J., Rançon, J.P., Pouclet, A., 1989. Geochemistry of mafic
- volcanic rocks from the Lake Kivu (Zaire and Rwanda) section of the western branch of
- the African rift. Journal of Volcanology and Geothermal Research 39, 73-88.
- 1223 Meyer, A., 1953. Notes vulcanologiques. Les basaltes du Kivu méridional. Mémoires du
- 1224 Service géologique du Congo belge et du Ruanda Urundi 2, 25-52.
- Meyer, A., Burette, H., 1957. Nouveaux phénomènes volcaniques au sud-Kivu. Bulletin du
- 1226 Service Géologique du Congo belge 7 (4), 1-15.
- 1227 Mitchell, R.H., Bell, K., 1976. Rare Earth element geochemistry of potassic lavas from the
- Birunga and Toro-Ankole regions of Uganda, Africa. Contributions to Mineralogy and
- 1229 Petrology 58, 293-303.
- 1230 Ongendangenda, T., 1992. Le magmatisme potassique du volcan Visoke (Chaîne des Virunga,
- Rift Est Africain): aspects volcanologiques, pétrologiques et géochimiques. Ph. D. Thesis,
- University of Aix-Marseille III, France, 304 pp.
- Pasteels, P., Boven, A., 1989. Excès d'argon dans les basaltes de la zone volcanique d'Idjwi
- sud (Kivu, Zaïre). Musée Royal de l'Afrique Centrale, Tervuren (Belgique), Département
- de Géologie et Minéralogie, Rapport annuel 1987-1988, 101-107.
- Pasteels, P., Villeneuve, M., De Paepe, P., Klerkx, J., 1989. Timing of the volcanism of the
- southern Kivu province: implications for the evolution of the western branch of the East
- 1238 African Rift system. Earth and Planetary Science Letters 94, 353-363.
- Platz, T., Foley, S.F., André, L., 2004. Low-pressure fractionation of the Nyiragongo volcanic
- rocks, Virunga Province, D.R. Congo. Journal of Volcanology and Geothermal Research
- 1241 136, 269-295.
- 1242 Pottier, Y., 1978. Première éruption historique du Nyiragongo et manifestations adventives
- 1243 simultanées du volcan Nyamulagira (Chaîne des Virunga Kivu Zaïre : Déc. 76 Juin
- 1244 77). Musée Royal de l'Afrique Centrale, Tervuren (Belgique), Département de Géologie et
- Minéralogie, Rapport annuel 1977, 157-175.
- Pouclet, A., 1973. Contribution à la connaissance du Volcan Nyiragongo (Rift ouest-africain).
- Les éruptions intra-cratérales de juillet 1971 à avril 1972. Bulletin Volcanologique 37-1,
- 1248 37-72.

- Pouclet, A., 1975. Histoire des grands lacs de l'Afrique Centrale. Mise au point des
- 1250 connaissances actuelles. Revue de Géographie physique et de Géologie dynamique (2) 17,
- 1251 475-482.
- Pouclet, A. 1976. Volcanologie du rift de l'Afrique Centrale. Le Nyamuragira dans les
- 1253 Virunga. Essai de magmatologie du rift. Ph. D. Thesis, University of Paris-Sud, France,
- 1254 610 pp.
- 1255 Pouclet, A., 1977. Contribution à l'étude structurale de l'aire volcanique des Virunga, rift de
- 1256 l'Afrique Centrale. Revue de Géographie physique et de Géologie dynamique (2) 19, 115-
- 1257 124.
- Pouclet, A., 1978. Les communications entre les grands lacs de l'Afrique Centrale.
- 1259 Implications sur la structure du rift occidental. Musée Royal de l'Afrique Centrale,
- 1260 Tervuren (Belgique), Département de Géologie et Minéralogie, Rapport annuel 1977, 145-
- 1261 155.
- Pouclet, A., 1980. Contribution à la systématique des laves alcalines, les laves du rift de
- 1263 l'Afrique Centrale (Zaïre-Uganda). Bulletin Volcanologique 43-3, 527-540.
- Pouclet, A., Villeneuve, M., 1972. L'éruption du Rugarama (mars-mai 1971) au volcan
- Nyamuragira (Rép. Zaïre). Bulletin Volcanologique 36-1, 200-221.
- 1266 Pouclet, A., Ménot, R.P., Piboule, M., 1981. Classement par l'analyse factorielle
- discriminante des laves du rift de l'Afrique Centrale (Zaïre, Rwanda, Uganda). Comptes
- Rendus de l'Académie des Sciences, Paris (France) 292 (série II), 679-684.
- Pouclet, A., Ménot, R.P., Piboule, M., 1983. Le magmatisme alcalin potassique de l'aire
- volcanique des Virunga (Rift occidental de l'Afrique de l'Est). Une approche statistique
- dans la recherche des filiations magmatiques et des mécanismes de différenciation.
- Bulletin de Minéralogie 106, 607-622.
- Pouclet, A., Ménot, R.P., Piboule, M., 1984. Différenciation des laves de l'Afrique Centrale
- 1274 (Rift Ouest). Contribution de l'analyse statistique multivariée. Neues Jahrbuch für
- 1275 Mineralogie Abhandlungen 149, 283-308.
- Rançon, J.P., Demange, J., 1983. Reconnaissance géothermique de la République du Rwanda.
- Bureau de Recherches Géologiques et Minières, rapport 83 SGN 192GTH, 130 pp.
- 1278 Rogers, N.W., De Mulder, M., Hawkesworth, C.J., 1992. An enriched mantle source for
- potassic basanites: evidence from Karisimbi volcano, Virunga volcanic province, Rwanda.
- 1280 Contribution to Mineralogy and Petrology 111, 543-556.
- Rogers, N.W., James, D., Kelley, S.P., De Mulder, M., 1998. The generation of potassic lavas
- from the Eastern Virunga Province, Rwanda. J. Petrology 39, 1223-1247.

- Rogers, N.W., Macdonald, R., Fitton, J.G., George, R., Smith, M., Barreiro, B., 2000. Two
- mantle plumes beneath the East African Rift system: Sr, Nd and Pb isotope evidence from
- Kenya rift basalts. Earth Planet. Sci. Lett. 176, 387-400.
- Rollinson, H., 1993. Using geochemical data: Evaluation, presentation, interpretation.
- Longman Group UK Limited, 352 pp.
- Rosenthal, A., Foley, S.F., Pearson, D.G., Nowell, G.M., Tappe, S., 2009. Petrogenesis of
- strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of
- the East African Rift. Earth and Planetary Science Letters 284, 236-248.
- Rooney, T.O., 2010. Geochemical evidence of lithospheric thinning in the southern Main
- 1292 Ethiopia Rift. Lithos 117, 33-48.
- Rudnick, R.L., McDonough, W.F., Chappell, B.W., 1993. Carbonatite metasomatism in the
- northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and
- Planetary Science Letters 114, 463-475.
- Sahama, Th.G., 1973. Evolution of the Nyiragongo magma. Journal of Petrology 14, 33-48.
- 1297 Sahama, Th.G., 1978. The Nyiragongo main cone. Musée Royal de l'Afrique Centrale,
- 1298 Tervuren (Belgique), Annales, Sciences géologiques 81, 88pp.
- 1299 Steiger, R.H., Jäger, E., 1977. Subcomission of geochronology: convention on the use of
- decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36,
- 1301 359-362.
- 1302 Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantle zoo.
- Geochemistry Geophysics Geosystem 6 (5), 1-20.
- Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:
- 1305 Implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J.
- 1306 (Eds), Magmatism in the ocean basins: Geological Society of London, Special Publication
- 1307 vol. 42, pp. 313-345.
- 1308 Tack, L., De Paepe, P., 1983. Le volcanisme du Sud-Kivu dans le nord de la plaine de la
- Rusizi au Burundi et ses relations avec les formations géologiques avoisinantes. Musée
- Royal de l'Afrique Centrale, Tervuren, Belgique, Département de Géologie et Minéralogie,
- 1311 Rapport annuel 1981-1982, 137-145.
- Tack, L., Wingate, M.T.D., De Waele, B., Meert, J., Belousova, E., Griffin, B., Tahon, A.,
- Fernandez-Alonso, M., 2010. The 1375 Ma "Kibaran event" in Central Africa: Prominent
- emplacement of bimodal magmatism under extensional regime. Precambrian Research
- 1315 180, 63-84.

1016	7T 1 TZ	1000 0	• • • •	1 (1	1 .	C .1	1 .	.1 1	• .1	T 7.
1316	Tanaka K	TUXX VA	emicity a	and tocal	mechanism	of the v	Cleanic	earthquak	ec in tr	ie Viriinga
1510	ranaka, ix.,	1703. 50	isinicity of	ma rocar	mechanism	or the v	Ofcamic	cartifquan	co III u	ic virunga

- 1317 Volcanic Region. In: Hamagushi, H. (Ed.), Volcanoes Nyiragongo and Nyamuragira:
- Geophysical Aspects. Tohoku University, Sendai, Japan, pp. 19-28.
- Thornton, C.P., Tuttle, O.F., 1960. Chemistry of igneous rocks. I, differentiation index.
- 1320 American Journal of Sciences 253, 664-684.
- Toscani, L., Capedri, S., Oddone, M., 1990. New chemical and petrographic data of some
- undersaturated lavas from Nyiragongo and Mikeno (Virunga-Western African Rift –
- 1323 Zaire). Neues Jahrbuch Miner. Abh. 161, 287-302.
- Van Overbeke, A.-C., Demaiffe, D., Verkaeren, J., 1996. The syenite-carbonatite complex of
- Lueshe (N-E Zaïre): petrography, geochemistry and Rb-Sr chronology. In: Demaiffe, D.
- 1326 (Ed.), Petrology and Geochemistry of magmatic suites of rocks in the continental and
- oceanic crusts. Université libre de Bruxelles and Royal Museum for Central Africa
- 1328 (Tervuren, Belgique) pp. 355-370.
- 1329 Verhaeghe, M.A.P., 1958. Eruption du volcan Mugogo au Kivu. Comptes Rendus de
- 1330 l'Académie des Sciences, Paris (France), 246, 2917-2920.
- 1331 Villeneuve, M., 1978. Les centres d'émissions volcaniques du rift africain au sud du lac Kivu
- 1332 (République du Zaïre). Revue de Géographie physique et de Géologie dynamique (2) 20,
- 1333 323-334.
- Villeneuve, M., 1987. Géologie du synclinal de l'Itombwe (Zaïre oriental) et le problème de
- 1335 l'existence d'un sillon plissé Pan-africain. Journal of African Earth Sciences 6, 869-880.
- Villeneuve, M., Chorowicz, J., 2004. Les sillons plissés du Burundien supérieur dans la
- chaîne Kibarienne d'Afrique centrale. Comptes rendus Géoscience 336, 807-814.
- 1338 Vollmer, R., Norry, M.J., 1983. Possible origin of K-rich volcanic rocks from Virunga, East
- Africa, by metasomatism of continental crust material: Pb, Nd and Sr isotope evidence.
- Earth and Planetary Science Letters 64, 374-386.
- Vollmer, R., Nixon, P.H., Condliffe, E., 1985. Petrology and geochemistry of a U and Th
- enriched nephelinite from Mt. Nyiragongo, Zaire: Its bearing on ancient mantle
- metasomatism. Bulletin Geological Society of Finland 57, 37-46.
- Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted
- lithosphere. Journal of Petrology 39, 29-60.
- Williams, R.W., Gill, J.B., 1992. Th isotope and U-series disequilibria in some alkali basalts.
- Geophysical Research Letters 19, 139-142.
- 1348 Wong, H.-K., Von Herzen, R.P., 1974. A geophysical study of Lake Kivu, East Africa.
- Geophysical Journal of the Royal Astronomy Society 37, 371-389.

1350	Yoder, H.S., Tilley, C.E., 1962. Origin of basalt magmas: an experimental study of natural
1351	and synthetic rock systems. Journal of Petrology 3, 342-532.
1352	
1353	Caption
1354	
1355	Fig. 1 - Tectonic pattern of the western branch of the Eastern Africa rift system in the Lake
1356	Kivu region, after Pouclet (1976) slightly modified. Map of the South-Kivu and Virunga
1357	volcanic areas. Volcanoes of Virunga: Nyamuragira (N), Nyiragongo (Ny), Mikeno (M),
1358	Karisimbi (K), Visoke (V), Sabinyo (S), Gahinga (G), and Muhavura (Mh).
1359	
1360	Fig. 2 - Tectonic map of the Lake Kivu and altitude of rift steps in metres. This new map is
1361	drawn after the bathymetric map and the geophysical data of Degens et al. (1973) and
1362	Wong and Von Herzen (1974), which were acquired during two cruises of the Woods Hole
1363	Oceanographic Institution in 1971 and 1972. The sub-water volcanoes were discovered
1364	using echo sounder and magnetometer records. A-B and C-C, interpreted cross-sections in
1365	the northern and southern basins, respectively. Sub-lacustrine volcanoes of the northern
1366	lake side are linked to the Late Pleistocene activity of Virunga during the high level stage
1367	(Pouclet, 1975). The South-Idjwi sub-lacustrine volcanoes are much older (Miocene), see
1368	section 4.2. Mineral hot springs deposited thick travertine terraces or sinters in the
1369	Holocene. The up-lifting points are localized using topographical data. They mark the
1370	westward and eastward tilting of the horst steps, in the west side and the east side,
1371	respectively.
1372	
1373	Fig. 3 - Geological sketch map of the Mount Kahuzi area showing the birth of tholeiitic
1374	Lugulu flows (new map). The MM2 basaltic lava is dated at 8.19 ± 0.40 Ma (new dating,
1375	Table 2). This lava flow westward poured out during the doming stage of the Kivu Rift,
1376	before the rift valley formation. Igneous intrusions are dated to Neoproterozoic and consist
1377	of quartz-porphyry microgranite in Mount Kahuzi and of acmite-riebeckite-bearing
1378	granites and syenites in the other areas (ref. in the text).
1379	
1380	Fig. 4 - Map of strombolian cones of the Tchibinda Volcanic Chain (new map) and location
1381	of the analysed lavas. The CRSN "Centre de Recherches en Sciences Naturelles", formerly
1382	IRSAC "Institut pour la Recherche Scientifique en Afrique Centrale" is located at Lwiro.

1383	Sample numbers refer to analysed rocks (Table 1). Full dots are dated samples: $TB4 = 1.9$
1384	Ma ; MM1 = 1.7 Ma ; KT1 = 1.6 Ma (Table 4); MM2 = 8.19 Ma (Table 2).
1385	
1386	Fig. 5 - Map of the Virunga Volcanic area locating the Plio-Quaternary volcanic activities
1387	after Pouclet (1977) completed with the recent volcanic centres. Main edifices:
1388	Nyamuragira (N), Nyiragongo (Ny) and its two "elder brothers" Shaheru (Sh) and Baruta
1389	(B), Mikeno (M), Karisimbi (K) and its older craters Branca (Br) and Muntango (Mt),
1390	Visoke (V), Sabinyo (S), Gahinga (G), and Muhavura (Mh). Lithology of the surrounding
1391	substratum is specified. Red dots, flank or parasitic cones; red diamonds, historical
1392	parasitic activities.
1393	
1394	Fig. 6 - Map of the Bishusha-Tongo area (new map). Outcrops of the Miocene lavas.
1395	Altitudes of the Tongo uplifted Pleistocene terraces in metres.
1396	
1397	Fig. 7 - Qtz-Ab+Or-Hy-Ol-Ne combined ternary diagrams of the Kivu basaltic lavas. Data
1398	after Meyer (1953), Meyer and Burette (1957), Denaeyer et al. (1965), Denaeyer (1972),
1399	Pouclet (1976), Guibert (1977), Villeneuve (1978), Kampunzu et al. (1979, 1983, 1998b),
1400	Bellon and Pouclet (1980), De Paepe and Fernandez-Alonso (1981), Kanika et al. (1981),
1401	Lubala (1981), Lubala et al. (1982, 1984, 1987), Tack and De Paepe (1983), Auchapt
1402	(1987), Auchapt et al. (1987), Marcelot et al. (1989), Pasteels et al. (1989), Furman and
1403	Graham (1999), and new analyses (Table 1). Normative nomenclature: T, tholeiite (Qtz);
1404	Ol-T, olivine-tholeiite (Ol and > 15% Hy); Ol-B, olivine basalt (Ol and < 15% Hy); Alk-B
1405	alkali basalt (0.01% < Ne < 5%); Bs, basanite (5% < Ne < 15%); Neph, nephelinite (Ne >
1406	15%).
1407	
1408	Fig. 8 - Primitive Mantle normalized incompatible element diagram of the South-Kivu
1409	tholeiitic and alkali basaltic lavas. Tholeiitic and basaltic areas drawn after the analytical
1410	data set. New analyses of (A) Miocene lavas, and (B) Pleistocene lavas of the Tchibinda
1411	Volcanic Chain from Table 1. Normalizing values after Sun and McDonough (1989).
1412	
1413	Fig. 9 - Yb vs. La/Yb and La/Sm vs. Sm/Yb diagrams for determining the enrichment of the
1414	source and the partial melting degrees of mantle source. (A) The Yb vs. La/Yb diagram
1415	indicates an increase of partial melting, from basanites to tholeiites, and/or varying
1416	enrichment of sources compared with the average OIB-type source. (B) Batch melting of

141/	the enriched source C1 and of the less enriched source C2. Melt curves are drawn for
1418	spinel-lherzolite, garnet-lherzolite and a 50:50 mixture of spinel- and garnet-lherzolite.
1419	Modal compositions of spinel-lherzolite (olivine 53%, OPX 27%, CPX 17%, spinel 3%)
1420	and garnet-lherzolite (olivine 60%, OPX 20%, CPX 10%, garnet 10%) are after Kinzler
1421	(1997) and Walter (1998). Mineral/melt partition coefficients for basaltic liquids are after
1422	compilation of Rollinson (1993). Tholeiites may have resulted from ca. 10% of partial
1423	melting of spinel-lherzolite from a moderately enriched source. Basaltic and alkaline lavas
1424	resulted from lower degrees of partial melting (10% to 2%) of a spinel- and garnet-
1425	lherzolite mixture of varying amount of spinel and garnet.
1426	OIB, Primitive Mantle, N-MORB, and E-MORB compositions are from Sun and
1427	McDonough (1989).
1428	
1429	Fig. 10 - Nb/Yb vs. Th/Yb diagram to test crustal contamination. Same symbols as for Figure
1430	9. OIB, Primitive Mantle, and N-MORB compositions are from Sun and McDonough
1431	(1989). All the lavas plot in the mantle array, precluding any perceptible crustal
1432	contamination.
1433	
1434	Fig. 11 - (A) La vs. Yb, (B) Ba vs. La, and (C) Nb vs. Zr covariation diagrams. Same symbols
1435	as for Figure 9. Tsh, Tshibinda Volcanic Chain; Lem, Leymera; PM, partial melting
1436	curves; FC, fractional crystallization; trend #1, low-Yb, high-La, high-Ba, and low-Zr
1437	curves evolving from basanites to olivine basalts (enriched source); trend # 2, low-La, low-
1438	Ba, and high-Zr curves characterizing the tholeiites and some olivine basalts (less enriched
1439	source); trend # 3, intermediate high-Ba and high-La pattern, and intermediate Nb and Zr
1440	feature (intermediate or mixed source). The pattern of these trends attests for the
1441	contribution of two sources. The trend # 1, best exposed by the Tshibinda Chain lavas,
1442	derived from an enriched source. The trend # 2 derived from a less enriched source. These
1443	two sources are documented by isotopic studies (see text). The enriched source is
1444	lithospheric, while the less enriched source can be mixed lithospheric and asthenospheric
1445	materials.
1446	
1447	Fig. 12 - Primitive Mantle normalized incompatible element diagram of North-Idjwi and Pre-
1448	Virunga lavas. These sodic-rich lavas are more fractionated than the basaltic lavas of
1449	South-Kivu. Normalizing values after Sun and McDonough (1989).
1450	

43

1451	Fig. 13 - Primitive Mantle normalized incompatible element diagram of (A) Nyamuragira
1452	lavas compared with South-Kivu lavas, (B) the other basanitic volcanoes of Virunga, (C)
1453	Nyiragongo lavas compared with Nyamuragira lavas, and (D) the other leucite-nephelinitic
1454	volcanoes of Virunga.
1455	
1456	Fig. 14 - La/Sm vs. Sm/Yb diagram of Virunga mafic lavas. Batch melting of the enriched
1457	source C1. Melt curves as in Figure 9. The Virunga magma can be originated from a
1458	garnet- and a few spinel-bearing lherzolite source. The degree of partial melting is higher
1459	for the basanite magma than for the nephelinite magma. Same symbols as for Figure 13.
1460	
1461	Fig. 15 - Zr/Hf vs. Hf diagram of mafic lavas of Virunga. Hf and Zr/Hf chondritic values of
1462	K-basanites of Nyamuragira, Karisimbi, and eastern volcanoes are consistent with partial
1463	melting of common mantle. High Zr/Hf ratios in the Nyiragongo lavas imply the
1464	contribution of Hf-poor carbonatite component, as shown by the Namibian nephelinite-
1465	carbonatite association. Same symbols as for Figure 13.
1466	
1467	Fig. 16 - Inferred location of the metasomatized and carbonated mantle in the sub-lithospheric
1468	mantle of the Virunga area, after geochemical signatures of the Plio-Quaternary volcanoes.
1469	Normal mantle is suspected below the Miocene volcanic area.
1470	Small red stars are the eruptive centers of the most primitive lavas unrelated to the magma
1471	chambers of the large volcanoes (St, Suri-Turunga; Mv, Muvo; Nh, Nahimbi; Rm,
1472	Rumoka; Rs, Rushayo; Bf, Bufumbiro). Large star is the Lueshe carbonatite. Circled stars
1473	are Late Neoproterozoic intrusions of nephelinitic syenites (N, Numbi; F, Fumbwe; B,
1474	Bishusha; K, Kirumba).
1475	
1476	Fig. 17 - Location of the new geochronological data in the Lake Kivu and South-Kivu
1477	volcanic area. Data in Table 2.
1478	
1479	Fig. 18 - Histogram of all the geochronological data. Volcanic activity initiated south of the
1480	future Lake Kivu trough, at 21 Ma, with alkaline sodic nephelinite. It evolved to sodic
1481	basanite in the Pre-Virunga region, between 13 and 9 Ma. A distinct tholeitic volcanism
1482	appeared in the South-Kivu region at 11 Ma, and is progressively replaced by alkaline
1483	activity until the last pulse in the Tshibinda Chain ca. 1.7 Ma. The oldest activity of the
1484	Virunga area is dated at 2.6 Ma in the Mikeno volcano.

1485	
1486	Fig. 19 - Geographical distribution of the volcanic activity
1487	(A) Data from 21 to 9 Ma. The initial activity is nephelinitic and is limited to the middle part
1488	of the future Lake Kivu. In the Virunga area, the rift valley did not exist during the Pre-
1489	Virunga activity. In the South-Kivu area, the activity is tholeiitic and located along N-S
1490	fractures of the future rift axis. Late Neoproterozoic alkaline intrusions: L, Lueshe; K,
1491	Kirumba; B, Bishusha; F, Fumbwe; N, Numbi; Kz, Kahuzi; Bg, Biega. The layout of these
1492	intrusions suggests a structural weakness line.
1493	(B) Data from 9 Ma to Present. In the Virunga area, activity began ca. 2.6 Ma in the middle of
1494	the oblique rift segment. In South-Kivu, activity extended to the whole area along N-S and
1495	NNE-SSW fractures and changed from tholeiitic to alkaline between 8.5 and 5.9 Ma.
1496	Activity occurred to the south-west along the NE-SW fractures of Mwenga, ca. 5.8 to 2.6
1497	Ma, and, finally, to the west, in the Tshibinda Chain, ca. 1.7 Ma.
1498	
1499	Table 1 - New analyses and analyses of dated samples from Marcelot et al. (1989). Alk-B,
1500	alkali basalt; Ol-B, olivine basalt; Bs, basanite; Na-Bs, sodic basanite; Benm, benmoreite;
1501	H, hawaiite; Mug, mugearite; Neph, nephelinite; T, tholeiite.
1502	Analytical method and laboratory: H = atomic absorption spectrometry (AA) for the major
1503	elements and instrumental neutron activation (INAA) and X-ray fluorescence (XRF) for
1504	the minor elements at the University of Halifax (Canada); O = inductively-coupled plasma
1505	spectrometry (ICP-OES) at the analytical laboratory of the University and CNRS of
1506	Orléans (France); P = atomic absorption spectrometry at the Department of Petrography-
1507	Volcanology of the University of Paris-Sud; T = XRF at the Musée Royal de l'Afrique
1508	Centrale of Tervuren (Belgique).
1509	Ages are from Tables 2 and 4.
1510	
1511	Table 2 - New K-Ar geochronological analyses. Most of potassium-argon ages were
1512	measured at the "Université de Bretagne Occidentale" in Brest (France) on grains of
1513	whole-rock, 0.3 to 0.15 mm in size, obtained after crushing and subsequent sieving of the
1514	solid samples. One aliquot of grains was powdered in an agate grinder for chemical attack
1515	of around 0.1 g of powder by 4 cc of hydrofluoric acid, before its analysis of K content by
1516	AAS (Atomic Absorption Spectrometry). A second aliquot of grains was reserved for
1517	argon analysis. About 0.7 g to 0.8 g of grains were heated and fused under vacuum in a
1518	molybdenum crucible, using a high frequency generator. Released gases during this step

1519	were cleaned successively on three quartz traps containing titanium sponge when their
1520	temperature was decreasing from 800°C to the ambient one, during 10 minutes; at the final
1521	step the remaining gas fraction was ultra-purified using a Al-Zr SAES getter. Isotopic
1522	compositions of argon and concentrations of radiogenic argon 40Ar* were measured in a
1523	stainless steel mass spectrometer with a 180° geometry and a permanent magnetic field.
1524	Isotopic dilution was realized during the fusion step, using precise concentrations of ³⁸ Ar
1525	buried as ions in aluminium targets (Bellon et al., 1981). Ages are calculated using Steiger
1526	and Jäger's (1977) constants and errors, following the equation of Mahood and Drake
1527	(1982).
1528	
1529	Table 3 - Trace element composition of the South-Kivu magma sources according to Auchapt
1530	(1987).
1531	
1532	Table 4 - K-Ar geochronological data for the Lake Kivu area lavas (Western Branch of the
1533	East African Rift) excluding the post-1 Ma lavas. References: 1, Bagdasaryan et al. (1973);
1534	2, Guibert et al. (1975); 3, Bellon and Pouclet (1980); 4, Pasteels and Boven (1989); 5,
1535	Pasteels et al. (1989); 6, Kampunzu et al. (1998b); 7, this work.

		(continued 2)	Table 1 (continued 3)	Table 1 (continued 4)	Table 1 (continued 5)
# MM2 BK34 BK24 RW82 RW89 BK7 BK14 BK15 BK19 BK20 # Method TO TO H H H H O O TO P-O P-O Method	ntion South-Idjwi Blare Bugurama Tshibiinda Chaina (ten ucuth to moth). Location BiX16 BiX18 RW85 RW87 RW83 RW88 MM1 TB4 TB4 TB4- g hod TO O H H H H TO P-O H TO Method	KT1 KT1 KT1a KT26 KT23 KT21 KT16 KT14 KT12 KT PO H TO TO TO TO TO TO TO TO	Location Tshibinda Chain North-Idjwi Bishusha	Tongo Location Tongo Mweso West-Nyamunagira 75' N378 # N378' N377(2) N377(4) N337 N46 N341 N346a N363 1 P-O Method H T-O T-O P P-O P P	Location Nyamuragira N404 N556 # N572 N2 P P Method P-0 H
Rock Alk-B Bs Bs Bs Alk-B T T T T Rock Age (Ma) 8.19 7 7.18 7.68 6.62 10.30 8.76 9.56 Age	k T Alk-B T T Bs Bs Bs Bs Na-Bs Bs Rock (Ma) 7.73 7.07 8.97 11.42 7.75 10.63 1.7 1.9 Age (Ma	OI-B OI-B OI-B Na-Bs OI-B Alk-B Alk-B Alk-B Al i) 1.6	k-B Rock Alk-B Ol-B Neph Neph Neph Na-Bs Na-Bs Haw Ha Age (Ma) 19.98 20.97 12.6	w Na-Bs Rock Bs Mug Benm Ol-B K-Bs K-Bs K-Bs K-Bs 8.9 Age (Ma)	s K-Bs K-Bs Rock K-Bs K-Bs Age (Ma)
TiO ₂ 2.28 2.07 2.04 2.06 2.33 1.90 1.69 2.24 2.03 1.58 TiO ₂	2 52.64 4623 52.57 49.68 46.60 43.90 46.58 45.67 46.84 48.50 SiO2 2 1.63 2.01 1.57 1.59 2.12 2.87 1.82 1.53 1.53 1.46 TiO2 03 15.49 15.12 13.98 13.75 14.10 14.94 15.08 14.04 13.56 12.76 Al2O3	1.07 1.17 1.17 1.87 1.32 1.18 2.08 1.51 1.46 1.	48 TiO2 1.49 1.46 1.66 1.77 1.60 1.40 1.50 1.64 1.6	90 45.35 SiO2 44.13 53.16 57.86 48.93 46.24 45.42 45.93 46.01 66 1.49 TiO2 1.53 1.04 1.13 2.38 2.75 3.55 2.75 3.16	2.71 2.73 TiO2 3.10 3.37
Ag0, 14.48 14.57 15.80 14.45 14.55 15.40 15.42 14.0 14.41 14.59 ALX. Fe ₂ O ₃ t 15.33 10.46 10.90 10.85 11.50 11.01 10.73 13.64 12.19 11.48 Fe ₂ X MaO 0.16 0.19 0.18 0.20 0.15 0.15 0.17 0.17 0.14 0.15 MaG	D3 t 12.36 12.55 10.86 13.26 10.95 12.88 10.21 12.41 11.20 10.61 Fe2O3 t	13.50 13.55 14.92 13.25 15.36 14.90 16.50 15.60 15.08 15 9.71 10.57 10.67 10.22 10.55 10.54 13.83 9.45 10.85 10 0.15 0.16 0.13 0.22 0.18 0.18 0.19 0.20 0.17 0.	.76 Fe2O3 t 11.00 10.78 10.50 10.47 9.87 11.36 11.56 17.27 11.	62 10.93 Fe2O3 t 11.08 8.27 4.41 12.51 11.12 12.77 11.38 12.58	3 11.25 12.71 Fe2O3 t 13.63 12.80
MgO 10.19 8.66 8.61 7.17 6.70 6.13 6.30 6.52 6.74 5.77 MgC CaO 10.83 10.93 10.90 11.54 10.66 9.94 10.15 6.86 9.35 9.35 9.35 9.13 2.05 9.35 9.13 0.00 2.27 2.65 3.20 2.77 2.68 Na2	9.11 9.87 8.23 8.86 10.70 9.85 9.38 12.12 11.59 10.90 CaO	9.98 10.68 9.23 9.63 9.00 11.11 6.96 9.20 10.18 9. 10.08 10.10 10.36 10.08 9.38 9.91 9.33 10.60 10.01 10 2.78 2.56 2.72 4.14 3.13 2.87 3.01 2.38 2.79 2.	36 MgO 10.36 9.80 12.41 12.11 12.44 5.97 6.35 3.56 5.0 27 CaO 9.84 9.75 13.55 12.90 13.23 11.43 11.46 8.89 8.8	35 4.46 MgO 6.52 3.36 1.36 7.24 7.76 5.62 9.89 6.37 31 11.19 CaO 10.92 5.44 4.27 8.29 10.12 10.77 11.13 10.08	8 10.97 11.85 CaO 10.44 10.70
K ₂ O 0.91 1.24 1.55 1.56 1.35 0.28 0.30 0.55 0.45 0.20 K2O P2O ₅ 0.90 0.76 0.87 1.00 0.86 0.19 0.13 0.39 0.10 0.04 P2O	0 0.30 0.99 0.95 0.62 1.22 1.40 1.36 1.21 1.60 1.06 K2O 15 0.21 0.54 0.24 0.24 0.89 0.96 0.54 0.40 0.70 0.55 P2O5	1.12 1.14 1.04 1.09 0.90 0.83 1.15 1.21 1.00 1. 0.52 0.44 0.43 0.60 0.47 0.56 0.94 0.64 0.36 0.	12 K2O 0.97 0.90 0.69 0.97 1.02 0.50 0.97 0.96 1.4 46 P2OS 0.41 0.41 0.44 1.14 1.05 0.17 0.44 0.07 1.3	85 1.49 K2O 1.15 3.55 4.00 2.00 3.16 2.50 2.70 2.51 25 0.06 P2O5 1.12 0.57 0.56 0.06 0.00 0.06 0.06 0.08	2.68 1.97 K2O 2.82 2.90 0.07 0.32 P2O5 0.34 0.57
LOI 1.75 2.51 1.15 1.03 1.36 2.55 2.64 2.90 1.88 2.97 LOI Total 101.45 100.38 100.12 99.14 99.88 100.29 100.21 100.58 100.97 100.43 Total	1.65 1.11 1.14 1.54 0.51 0.98 2.45 1.22 1.00 0.94 LOI	2.16 0.31 0.52 0.98 1.24 2.94 2.40 4.29 2.07 1. 101.07 99.66 100.61 98.87 100.53 100.15 102.69 101.09 100.96 100	71 LOI 2.42 1.77 2.37 2.00 2.12 4.02 3.19 3.46 2.3 1.45 Total 100.69 101.36 99.74 99.61 100.10 101.30 99.88 101.66 99.	80 3.01 LOI 2.84 2.75 2.73 1.15 0.19 1.56 0.67 0.77 10 99.76 Total 99.03 99.89 100.76 100.18 100.36 100.17 99.86 99.09	9 100.19 99.44 Total 101.41 99.27
Rb 21 31 35 43 30 8 Rb Sr 733 1178 1152 1107 890 255 Sr Y 35 30 32 37 34 27 Y	25 27 16 30 36 50 46 50 Rb 532 254 247 1050 702 725 772 770 Sr 31 31 36 28 30 30 Y	28 26 62 35 509 495 902 720 24 22 29 30	Rb 32 32 33 56 44 Sr 682 1620 1650 1904 144 Y 25 30 28 34 3i	00 Sr 1890 940	Rb 89 80 Sr 887 873 Y 30 28
Zr 198 252 224 243 235 101 Zr Nb 99 120 125 170 137 21 Nb	162 210 282 165 143 145 Zr 62 109 67 88 93 90 Nb	116 104 172 157 65 62 101 95	Zr 166 192 199 260 27 Nb 74 129 120 174 19	73 Zr 265 297 10 Nb 237 124	Zr 305 278 Nb 131 100
Hf 4.1 5.5 4.3 4.9 4.9 2.5 Hf	3.7 3.0 2.7 4.2 5.8 3.6 3.0 3.1 Hf	2.5 2.1 3.7 3.1 3.5 4.9 4.0	Hf 3.6 3.2 3.5 4.2 4. Ta 4.0 6.9 7.6	4 Hf 4.0 6.9	Hf 6.3 6.0 Ta 6.1
	45.5 27.5 20.3 81.2 45.4 70.8 72.3 72 La	9.8 9.8 14 12 48.1 45.6 81.1 62.2 78.0 74.1 130 119	La 51 135 129 137 14	I La 132 87.8	La 70.3 66.8
La 75.1 92.2 94.6 111 79.2 17.5 La Ce 132 169 178 197 152 32.2 Ce Pr 12.8 17.5 3.9 Pr Nd 40.2 58.9 65.0 67.2 60.9 15.5 Nd	87 12.6 12.5 Pr	9.1 14.2 12.6 25.8 24.9 46.5 40.2	Pr 9.8 27.3 30.2 Nd 29.0 92.1 91.3 102.0 84	Pr 16.6 2 Nd 93.0 54.5	Ce 147.2 138.0 Pr 14.7 Nd 52.9 56.4
La 75.1 92.2 94.6 111 79.2 175.5 La Ce 7 12.2 175.0	25.1 18.1 17.2 59.1 46.8 40.1 40.6 40.2 Nd 6.4 4.53 4.11 9.64 10.20 7.2 7.39 7.3 Sm 2.1 1.48 1.46 2.89 3.27 2.0 2.10 2.1 Eu 6.2 5.4 5.4 Gd	4.6 4.43 7.3 7.0 1.5 1.45 2.2 2.1 5.2 6.3 5.5	Sm 5.9 12.90 12.7 13.5 11. En 1.8 3.77 3.6 3.9 3.3 Gd 5.4 8.0 8.7		Pr 14.7 Nd 52.9 56.4 Sm 10.0 9.47 Eu 3.1 2.72 Gd 8.4 Tb 1.1 0.95 Dy 5.9 Yb 2.3 2.22
Tb 1.1 1.1 1.11 1.21 1.20 0.8 Tb Dy 6.3 6.2 45 Dy 75 2.7 2.4 2.4 2.78 2.81 2.1 Yb	0.95 0.79 0.75 1.05 1.35 0.87 0.88 0.87 Tb 5.9 4.8 4.9 Dy 2.55 2.20 2.09 2.40 2.85 2.4 2.50 2.4 Yb	0.7 0.62 1.1 0.9 3.8 6.1 4.8 2.2 2.00 2.7 2.4	Tb 0.84 1.07 1.1 1.8 1.0 Dy 4.0 5.6 5.7 Yb 22 2.02 2.0 2.8 3.0	S Tb 1.00 1.2 Dv 6.1	Tb 1.1 0.95 Dy 5.9 Yb 2.3 2.22
Lu 0.37 0.44 0.40 Lu	0.35 0.35 0.38 0.40 0.40 Lu	031	Lu 0.31 0.4	14 Lu 0.41	Lu 0.34
			<u> </u>		
			/		
	,				

Table 2	Whole rock K-Ar age dating
---------	----------------------------

Location	Sample #	Rock type	Fused mass (g)	K ₂ O (wt%)	40 Ar* (10^{-7} cc/g)	40 Ar*/ 40 Ar _t	Age (Ma) ± 1 σ
North-Idjwi	BK8	Nephelinite	0.7137	1.46	9.82	42.6	20.74 ± 0.56
			0.7094	1.46	10.04	57.9	21.21 ± 0.52
						Mean age	20.97 ± 0.56
North-Idjwi	LKA4	Nephelinite	1.0160	1.27	8.23	50.7	19.98 ± 1.00
Bitare	RW87	Tholeiite	1.0108	0.55	2.03	27.0	11.42 ± 0.57
Bugarama	RW88	Basanite	1.0023	1.25	4.29	52.7	10.63 ± 0.53
South-Idjwi	BK14	Tholeiite	0.7007	0.43	1.43	28.4	10.30 ± 0.35
South-Idjwi	BK19	Tholeiite	1.0049	0.68	2.10	27.8	9.56 ± 0.48
Bitare	RW86	Tholeiite	1.0009	0.90	2.61	37.3	8.97 ± 0.45
South-Idjwi	BK15	Tholeiite	1.0145	0.66	1.87	19.3	8.76 ± 0.44
Kahuzi	MM2	Alkaline basalt	1.0171	0.87	2.23	41.1	7.92 ± 0.21
			0.7039	0.87	2.38	38.6	8.47 ± 0.24
						Mean age	8.19 ± 0.40
Upper Ruzizi	RW90	Olivine basalt	1.0130	0.76	1.99	26.6	8.10 ± 0.40
Bugarama	RW83	Basanite	1.0115	1.15	2.88	39.8	7.75 ± 0.39
South-Idjwi	BK36	Tholeiite	0.7154	0.38	0.95	16.5	7.73 ± 0.30
Upper Ruzizi	RW89	Alkaline basalt	1.0022	1.20	2.98	32.7	7.68 ± 0.38
Bukavu	RW82	Basanite	1.0072	1.56	3.62	44.3	7.18 ± 0.36
South-Idjwi	BK18	Alkaline basalt	0.7101	1.00	2.28	10.8	7.07 ± 0.51
South-Idjwi	BK7	Tholeiite	0.7007	0.43	0.92	9.7	6.62 ± 0.66
Bukavu	RW81	Basanite	1.0086	1.45	2.96	43.0	6.33 ± 0.32

 Table 3
 Trace element composition of the South-Kivu magma sources

	C1	C2
Sr	51	45
Y	7.5	7.2
Zr	19	25
Nb	3.3	3.3
Ba	38	26
Hf	0.48	0.62
Th	0.52	0.26
La	3.80	2.33
Ce	7.10	5.05
Nd	3.10	2.90
Sm	0.84	0.80
Eu	0.30	0.30
Tb	0.16	0.16
Yb	0.67	0.66

 Table 4
 K-Ar geochronological data for the Lake Kivu area lavas

Location	Sample #	Rock type	Age	Ref.	Location	Sample #	Rock type	Age	Ref.
North-Idjwi	BK8	Nephelinite	20.97 ± 0.56	7	Burundi	19	Tholeiite	7.6 ± 0.5	5
North-Idjwi	LKA4	Nephelinite	19.98 ± 1.00	7	South-Idjwi	18	Tholeiite	7.6 ± 0.3	5
Bishusha	N373	Hawaiite	12.6 ± 0.7	3	West-Bukavu	2	Basanite	7.3 ± 0.3	5
Tongo	TRK4	Benmoreite	11.8 ± 0.8	6	Upper-Rusizi	RW82	Basanite	7.18 ± 0.36	7
Bitare	RW87	Tholeiite	11.42 ± 0.57	7	South-Idjwi	BK18	Alk-Basalt	7.07 ± 0.51	7
Bishusha	TR44	Ol-Tholeiite	11.0 ± 0.5	6	Bukavu	BK24	Basanite	7.00 ± 0.35	3
Bishusha	TR50	Ol-Tholeiite	10.8 ± 1.7	6	Kahuzi	AK486	Ol-Tholeiite	6.90 ± 0.35	6
Bishusha	TR5	Ol-Basalt	10.7 ± 0.7	6	Upper-Rusizi	-11	Alk-Basalt	6.7 ± 0.5	5
Bugarama	RW88	Basanite	10.63 ± 0.53	7	South-Idjwi	BK7	Tholeiite	6.62 ± 0.66	7
South-Idjwi	BK14	Tholeiite	10.30 ± 0.35	7	Upper-Rusizi	12	Hawaiite	6.45 ± 0.90	5
Tongo	TRK2a	Benmoreite	10.2 ± 0.7	6	Upper-Rusizi	RW81	Basanite	6.33 ± 0.32	7
Lower-Rusizi	27	Tholeiite	10.0 ± 2.0	5	Upper-Rusizi	10	Hawaiite	6.2 ± 0.3	5
Bugarama	17	Tholeiite	10.0 ± 0.6	5	Upper-Rusizi	22	Benmoreite	6.14 ± 0.30	5
Bishusha	TR1b	Hawaiite	9.9 ± 1.2	6	West-Bugarama	9	Hawaiite	6.06 ± 0.27	5
Bishusha	TR12	Basanite	9.7 ± 1.3	6	Bugarama	13	Hawaiite	5.9 ± 0.5	5
South-Idjwi	BK19	Tholeiite	9.56 ± 0.48	7	Upper-Rusizi	5	Basanite	5.9 ± 0.4	5
Bishusha	TR24	Mugearite	9.2 ± 1.0	6	Kahuzi	RTL180	Ol-Tholeiite	5.9 ± 0.3	6
East-Cyangugu	14	Ol-Tholeiite	9.0 ± 0.6	5	Mwenga	K157	Ol-Basalt	5.8 ± 1.1	6
Bitare	RW86	Tholeiite	8.97 ± 0.45	7	Upper-Rusizi	25	Trachyte	5.74 ± 0.23	5
Tongo	N378	Basanite	8.9 ± 0.5	3	Upper-Rusizi	23	Trachyte	5.74 ± 0.09	5
South-Idjwi	BK15	Tholeiite	8.76 ± 0.44	7	Upper-Rusizi	4	Basanite	5.7 ± 0.4	5
W-Bukavu	1	Alk-Basalt	8.5 ± 0.5	5	Upper-Rusizi	21	Phonolite	5.7 ± 0.3	5
East-Cyangugu	20	Tholeiite	8.4 ± 0.3	5	North-Mushaka	7	Hawaiite	5.65 ± 0.23	5
Upper-Rusizi		Ol-Basalt	8.3 ± 1.1	1	Bugarama	15	Hawaiite	5.6 ± 0.3	5
Kahuzi	AK256	Alk-Basalt	8.2 ± 0.4	6	Upper-Rusizi	24	Trachyte	5.05 ± 0.4	5
Kahuzi	MM2	Alk-Basalt	8.19 ± 0.40	7	Mwenga	K40	Alk-Basalt	4.2 ± 1.1	6
Upper-Rusizi	RW90	Ol-basalt	8.10 ± 0.40	7	South-Idjwi	I-84-30	Ol-Basalt	4.1 ± 1	4
Upper-Rusizi	26	Tholeiite	8.0 ± 1.0	5	NW-Bukavu	6	Basanite	4.06 ± 0.21	5
Mushaka	3	Basanite	7.99 ± 0.24	5	Mwenga	K58	Basanite	2.6 ± 1.6	6
Bugarama	RW83	Basanite	7.75 ± 0.39	7	Mikeno		Trachyte	2.6 ± 0.4	2
South-Idjwi	BK36	Tholeiite	7.73 ± 0.30	7	Tshibinda	TB4	Basanite	1.9 ± 0.1	3
Upper-Rusizi	RW89	Alk-Basalt	7.68 ± 0.38	7	Tshibinda	MM1	Basanite	1.7 ± 0.2	3
Burundi	28	Tholeiite	7.6 ± 1.4	5	Tshibinda	KT1	Ol-Basalt	1.6 ± 0.3	3
Upper-Rusizi		Ol-Basalt	7.6 ± 0.5	1					

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 8

Nb

Fig. 12

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Highlights

The pre-rift doming stage of the Kivu rift (East African Rift system) is dated at 21 Ma by nephelinites.

Tholeiite lavas initiate the extensional stage between 11 and 9 Ma.

In the Pliocene, alkali basalts indicate decreasing of the extensional process and cooling of the mantle.

Quaternary renewal of the activity in the Virunga is linked to a tension gash with an ENE-WSW extension.