Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions: Experimental and Numerical Aspects, Atmosphere-Ocean, vol.114, issue.20, pp.60-74, 2016. ,
DOI : 10.1007/BF02430334
Characterization and parameterization of Reynolds stress and turbulent heat flux in the stably-stratified lower Arctic troposphere using aircraft measurements, Bound.-Lay. Meteorol, 2016. ,
Correction to ???Quantitative sampling using an Aerodyne aerosol mass spectrometer: 2. Measurements of fine particulate chemical composition in two U.K. cities,???, Journal of Geophysical Research: Atmospheres, vol.108, issue.D9, p.409110, 1029. ,
DOI : 10.1029/2003JD001608
Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys, vol.155194, pp.5599-560910, 2015. ,
Molecular understanding of sulphuric acid???amine particle nucleation in the atmosphere, Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, pp.359-36310, 1038. ,
DOI : 10.1038/nature12663
Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens, Aerosol Science and Technology, vol.42, issue.6, pp.465-47110, 1080. ,
DOI : 10.1080/02786820252883856
Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean, Journal of Geophysical Research: Atmospheres, vol.11, issue.D9, pp.9859-986510, 1992. ,
DOI : 10.1029/92JD00411
Cloud-active particles over the central Arctic Ocean, Journal of Geophysical Research: Atmospheres, vol.106, issue.D23, pp.32155-3216610, 2001. ,
DOI : 10.1029/1999JD901152
Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean, Atmospheric Environment, vol.64, pp.251-262, 2013. ,
DOI : 10.1016/j.atmosenv.2012.09.071
Characterization of a Newly Developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and First Field Deployment in Urban Pollution Plumes over Paris During MEGAPOLI 2009, Aerosol Science and Technology, vol.43, issue.1, pp.46-64, 2009. ,
DOI : 10.1080/02786826.2010.517813
The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev, pp.1889-190410, 1889. ,
The complex response of Arctic aerosol to sea-ice retreat, Atmospheric Chemistry and Physics, vol.14, issue.14, pp.7543-755710, 2014. ,
DOI : 10.5194/acp-14-7543-2014
Molecular constraints on particle growth during new particle formation, Geophysical Research Letters, vol.13, issue.15, pp.6045-605410, 2014. ,
DOI : 10.5194/acp-13-7631-2013
Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800nm: Laboratory and field studies, Journal of Aerosol Science, vol.39, issue.9, pp.759-769, 2008. ,
DOI : 10.1016/j.jaerosci.2008.04.007
Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys, vol.155194, pp.253-27210, 2015. ,
Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I- SSMIS Passive Microwave Data, NASA National Snow and Ice Data Center Distributed Active Archive Center, pp.10-5067, 1996. ,
Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes, Geophysical Research Letters, vol.112, issue.39-40, pp.780410-1029, 2008. ,
DOI : 10.1029/2008GL033462
The hygroscopicity parameter (?) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation, Atmos. Chem. Phys, vol.105194, pp.5047-506410, 2010. ,
Aerosol composition and sources in the central Arctic Ocean during ASCOS, Atmos. Chem. Phys, vol.115194, pp.10619-1063610, 2011. ,
Relating atmospheric and oceanic DMS levels to particle nucleation events in the Canadian Arctic, Journal of Geophysical Research, vol.115, issue.4, pp.0-0310, 1029. ,
DOI : 10.1029/2011JD015926
Elemental composition and oxidation of chamber organic aerosol, Atmos. Chem. Phys, vol.115194, pp.8827-884510, 2011. ,
Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006???2007, Journal of Aerosol Science, vol.41, issue.1, pp.13-22, 2006. ,
DOI : 10.1016/j.jaerosci.2009.08.003
An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere, Journal of Geophysical Research, vol.106, issue.D23, pp.10-1029, 2006. ,
DOI : 10.1029/2005JD006565
Processes controlling the annual cycle of Arctic aerosol number and size distributions, Atmospheric Chemistry and Physics, vol.16, issue.6, pp.3665-368210, 2016. ,
DOI : 10.5194/acp-16-3665-2016
Interactions among aerosols, clouds, and climate of the Arctic Ocean, Science of The Total Environment, vol.160, issue.161, pp.777-791, 1995. ,
DOI : 10.1016/0048-9697(95)04411-S
Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth, J. Geophys. Res.-Atmos, vol.117, p.1231110, 1029. ,
Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Analytical Chemistry, vol.78, issue.24, pp.8281-8289, 2006. ,
DOI : 10.1021/ac061249n
Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign, Atmospheric Chemistry and Physics, vol.8, issue.14, pp.4027-404810, 2008. ,
DOI : 10.5194/acp-8-4027-2008-supplement
Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment, Journal of Geophysical Research: Atmospheres, vol.7, issue.7, p.10, 1029. ,
DOI : 10.1029/2011JD016204
A large source of low-volatility secondary organic aerosol, Nature, vol.214, issue.7489, pp.476-47910, 1038. ,
DOI : 10.5194/acp-10-2063-2010
Changes in aerosol properties during spring-summer period in the Arctic troposphere, Atmos. Chem. Phys, vol.85194, pp.445-46210, 2008. ,
URL : https://hal.archives-ouvertes.fr/hal-00302539
Important Source of Marine Secondary Organic Aerosol from Biogenic Amines, Environmental Science & Technology, vol.42, issue.24, pp.9116-9121, 2008. ,
DOI : 10.1021/es8018385
Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates, Geophysical Research Letters, vol.43, issue.17, p.1781410, 1029. ,
DOI : 10.1029/2008GL034210
MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Collection 5.1 IGBP Land Cover, p.31, 2010. ,
Sources and composition of submicron organic mass in marine aerosol particles, Journal of Geophysical Research: Atmospheres, vol.10, issue.6, pp.12977-13003, 2014. ,
DOI : 10.1016/0304-4203(81)90004-9
Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation, Biogeosciences, vol.105194, pp.653-66710, 2013. ,
Fluorescent water-soluble organic aerosols in the High Arctic atmosphere, Scientific Reports, vol.10, issue.1, p.9845, 2015. ,
DOI : 10.1007/s10021-007-9101-4
The physical and chemical characteristics of marine primary organic aerosol: a review, Atmospheric Chemistry and Physics, vol.13, issue.8, pp.3979-399610, 2013. ,
DOI : 10.5194/acp-13-3979-2013-supplement
A new physically-based quantification of marine isoprene and primary organic aerosol emissions, Atmospheric Chemistry and Physics, vol.9, issue.14, pp.4915-492710, 2009. ,
DOI : 10.5194/acp-9-4915-2009-supplement
A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer, A Novel Method for Estimating Light- Scattering Properties of Soot Aerosols Using a Modified Single- Particle Soot Photometer, pp.125-13510, 1080. ,
DOI : 10.1364/AO.42.003726
The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic, Geophysical Research Letters, vol.103, issue.D13, p.10, 1029. ,
DOI : 10.1029/2011GL048221
Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic, Journal of Geophysical Research: Atmospheres, vol.112, issue.2, pp.965-97510, 2016. ,
DOI : 10.1021/cr2001756
Phytoplankton dynamics at receding ice edges in the Canadian High Arctic, pp.16-17, 2015. ,
An overview of snow photochemistry: evidence , mechanisms and impacts, Atmos. Chem. Phys, vol.75194, pp.4329-437310, 2007. ,
URL : https://hal.archives-ouvertes.fr/hal-00328056
Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels, Atmos. Chem. Phys, vol.145194, pp.7807-782310, 2014. ,
Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met, Atmos. Chem. Phys, vol.115194, pp.10173-1019210, 2007. ,
Single-particle speciation of alkylamines in ambient aerosol at five European sites, Analytical and Bioanalytical Chemistry, vol.33, issue.18, pp.5899-5909, 2015. ,
DOI : 10.1007/s00216-014-8092-1
The summer aerosol in the central Arctic 1991???2008: did it change or not?, Atmospheric Chemistry and Physics, vol.12, issue.9, pp.3969-3983, 1991. ,
DOI : 10.5194/acp-12-3969-2012
Potential source regions and processes of aerosol in the summer Arctic, Atmospheric Chemistry and Physics, vol.15, issue.11, pp.6487-650210, 2015. ,
DOI : 10.5194/acp-15-6487-2015
POLAR 5 ? a new research aircraft for improved access to the Arctic, ISAR-1, Drastic Change under the Global Warming, Extended Abstract, pp.54-57, 2008. ,
Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles, Journal of the American Society for Mass Spectrometry, vol.41, issue.Suppl. 1, pp.648-66010, 1999. ,
DOI : 10.1016/S1044-0305(99)00028-8
An annual cycle of Arctic surface cloud forcing at SHEBA, Journal of Geophysical Research, vol.9, issue.C10, pp.803910-1029, 2002. ,
DOI : 10.1029/2000JC000439
The Arctic, in: State of the Climate in 2011, Am. Meteorol. Soc, vol.93, pp.127-147, 2012. ,
A study of new particle formation in the marine boundary layer over the central Arctic Ocean using a flexible multicomponent aerosol dynamic model, Tellus B: Chemical and Physical Meteorology, vol.304, issue.5, 2012. ,
DOI : 10.3402/tellusb.v64i0.17158
Marine nanogels as a source of atmospheric nanoparticles in the high Arctic, Geophysical Research Letters, vol.4, issue.15, pp.3738-3743, 2013. ,
DOI : 10.5194/acpd-13-13541-2013
Distributions of low molecular weight dicarboxylic acids, ketoacids and a-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer, Biogeosciences, vol.95194, pp.4725-473710, 2012. ,
Cloud influence on and response to seasonal Arctic sea ice loss, Journal of Geophysical Research, vol.43, issue.12, pp.10-1029, 2009. ,
DOI : 10.1029/2009JD011773
Influence of sea ice on Arctic precipitation, Proceedings of the National Academy of Sciences, vol.113, issue.1, pp.46-51, 2016. ,
DOI : 10.1073/pnas.1504633113
On the formation and growth of atmospheric nanoparticles, Atmospheric Research, vol.90, issue.2-4, pp.132-150, 2008. ,
DOI : 10.1016/j.atmosres.2008.01.005
Arctic Air Pollution: Origins and Impacts, Science, vol.315, issue.5818, pp.1537-1540, 2007. ,
DOI : 10.1126/science.1137695
URL : https://hal.archives-ouvertes.fr/hal-00145006
Composition of 15???85 nm particles in marine air, Atmospheric Chemistry and Physics, vol.14, issue.21, pp.11557-1156910, 2014. ,
DOI : 10.5194/acp-14-11557-2014-supplement
Effects of 20–100 nanometre particles on liquid clouds in the clean summertime Arctic, Atmospheric Chemistry and Physics Discussions, vol.5194, pp.10-2015, 2016. ,
DOI : 10.5194/acp-2015-999-AC2
Arctic Sea Ice Retreat in 2007 Follows Thinning Trend, Journal of Climate, vol.22, issue.1, pp.165-17610, 2009. ,
DOI : 10.1175/2008JCLI2521.1
A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, vol.62, issue.7075, pp.453-456, 2006. ,
DOI : 10.1038/nature04449
Evidence of reactive iodine chemistry in the Arctic boundary layer, Journal of Geophysical Research, vol.27, issue.10, p.10, 1029. ,
DOI : 10.1029/2009JD013665
An Arctic CCN-limited cloud-aerosol regime, Atmospheric Chemistry and Physics, vol.11, issue.1, pp.165-17310, 2011. ,
DOI : 10.5194/acp-11-165-2011
Evidence for the role of organics in aerosol particle formation under atmospheric conditions, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.6646-6651, 1080. ,
DOI : 10.1073/pnas.0911330107
Primary marine aerosol-cloud interactions off the coast of California, Journal of Geophysical Research: Atmospheres, vol.41, issue.22, pp.4282-430310, 1002. ,
DOI : 10.1002/2014GL061112
Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations, Atmospheric Chemistry and Physics, vol.16, issue.11, pp.6665-668010, 2016. ,
DOI : 10.5194/acp-16-6665-2016-supplement
URL : https://hal.archives-ouvertes.fr/insu-01325792
The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer, Aerosol Science and Technology, vol.50, issue.2, pp.118-125, 2015. ,
DOI : 10.1021/ac061184o
Bromine, iodine, and chlorine in single aerosol particles at Cape Grim, Geophysical Research Letters, vol.28, issue.24, pp.3197-3200, 1997. ,
DOI : 10.1029/97GL03195
C values from winter to spring, Journal of Geophysical Research, vol.105, issue.D5, pp.231210-1029, 2008. ,
DOI : 10.1029/2007JD008755
Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord, Atmos. Chem. Phys. Discuss, vol.5194, pp.10-2016, 2016. ,
Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea, Journal of Geophysical Research: Atmospheres, vol.106, issue.D23, pp.32139-32154, 2001. ,
DOI : 10.1029/2000JD900747
Marine aerosol production: a review of the current knowledge, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.112, issue.6598, pp.1753-1774, 2007. ,
DOI : 10.1038/383327a0
Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?, p.1488310, 1038. ,
Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity, Geophysical Research Letters, vol.8, issue.16, pp.2180610-1029, 2011. ,
DOI : 10.1029/2011GL048869
On the effect of wind speed on submicron sea salt mass concentrations and source fluxes, Journal of Geophysical Research: Atmospheres, vol.38, issue.6, pp.1620110-1029, 2012. ,
DOI : 10.1080/02786820490479833
A sea spray aerosol flux parameterization encapsulating wave state, Atmos. Chem. Phys, vol.145194, pp.1837-185210, 1837. ,
A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys, vol.7, 1961. ,
URL : https://hal.archives-ouvertes.fr/hal-00302098
Characterization of the aerosol over the sub-arctic north east Pacific Ocean, Deep Sea Research Part II: Topical Studies in Oceanography, vol.53, issue.20-22, pp.2410-2433, 2006. ,
DOI : 10.1016/j.dsr2.2006.05.044
Arctic haze: current trends and knowledge gaps, Tellus B: Chemical and Physical Meteorology, vol.9, issue.11, pp.99-114, 2007. ,
DOI : 10.1029/2005JD006888
Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol, Nature Geoscience, vol.40, issue.3, pp.228-23210, 1038. ,
DOI : 10.1038/ngeo2092
Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol, Chemical Reviews, vol.115, issue.10, pp.4383-439910, 2015. ,
DOI : 10.1021/cr500713g
Cloud and Fog Processing Enhanced Gas-to-Particle Partitioning of Trimethylamine, Environmental Science & Technology, vol.45, issue.10, pp.4346-435210, 2011. ,
DOI : 10.1021/es1042113
Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies, Advances in Meteorology, vol.8, issue.16, pp.31068210-1155310682, 2010. ,
DOI : 10.5194/acp-9-9299-2009
Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest, Atmos. Chem. Phys, vol.115194, pp.1039-105010, 1039. ,
Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010, Atmos. Chem. Phys, vol.165194, pp.505-52410, 2016. ,
Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.6652-6657, 2010. ,
DOI : 10.1073/pnas.0908905107
Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland, Polar Biology, vol.103, issue.5, pp.237-249, 2014. ,
DOI : 10.1007/s00300-013-1427-0
Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, Journal of Geophysical Research, vol.88, issue.D21, p.1620710, 1029. ,
DOI : 10.1029/2006JD007076
ToF-AMS analysis software, available at: http://cires.colorado, p.20, 2010. ,
16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition, Journal of Geophysical Research: Atmospheres, vol.114, issue.D10301, pp.943-964, 2013. ,
DOI : 10.1029/2008JD011239
Arctic organic aerosol measurements show particles from mixed combustion in spring haze and from frost flowers in winter, Geophysical Research Letters, vol.112, issue.D11, p.10, 1029. ,
DOI : 10.1029/2010GL042831
Production and Emissions of Marine Isoprene and Monoterpenes: A Review Advances in Meteorology, pp.10-1155, 2010. ,
Characteristics of atmospheric transport into the Arctic troposphere, Journal of Geophysical Research, vol.28, issue.D12, pp.10-1029, 2006. ,
DOI : 10.1029/2005JD006888
Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys, vol.55194, pp.2461-247410, 2005. ,
URL : https://hal.archives-ouvertes.fr/hal-00301615
Warm-air advection, air mass transformation and fog causes rapid ice melt, Geophysical Research Letters, vol.39, issue.C10, pp.5594-560210, 1002. ,
DOI : 10.1029/2012GL053545
The role of low-volatility organic compounds in initial particle growth in the atmosphere, The role of low-volatility organic compounds in initial particle growth in the atmosphere, pp.527-53110, 1038. ,
DOI : 10.1038/nature18271
Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Atmos. Chem. Phys, vol.135194, pp.3643-366010, 2013. ,
The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution, Atmos. Chem. Phys, vol.65194, pp.4601-461610, 2006. ,
URL : https://hal.archives-ouvertes.fr/hal-00301219
Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications, Atmos. Chem. Phys, vol.165194, pp.1937-195310, 1937. ,
URL : https://hal.archives-ouvertes.fr/insu-01226053
CCN activity of size-selected aerosol at a Pacific coastal location, Atmospheric Chemistry and Physics, vol.14, issue.22, pp.12307-1231710, 2014. ,
DOI : 10.5194/acp-14-12307-2014-supplement
Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer, Atmos. Chem. Phys, vol.85194, pp.4711-472810, 2008. ,
URL : https://hal.archives-ouvertes.fr/hal-00304023