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ABSTRACT
The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the noise
present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic
to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example.
Extrinsic sources of noise include contributions from physical processes which are
not sufficiently well modelled, for example, dispersion and scattering effects, analysis
errors and instrumental instabilities. We present the results from a noise analysis
for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array.
For characterising the low-frequency, stochastic and achromatic noise component, or
“timing noise”, we employ two methods, based on Bayesian and frequentist statistics.
For 25 MSPs, we achieve statistically significant measurements of their timing noise
parameters and find that the two methods give consistent results. For the remaining
17 MSPs, we place upper limits on the timing noise amplitude at the 95% confidence
level. We additionally place an upper limit on the contribution to the pulsar noise
budget from errors in the reference terrestrial time standards (below 1%), and we find
evidence for a noise component which is present only in the data of one of the four
used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces
the sensitivity of this data set to an isotropic, stochastic GW background by a factor
of > 9.1 and by a factor of > 2.3 for continuous GWs from resolvable, inspiralling
supermassive black-hole binaries with circular orbits.
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1 INTRODUCTION

Over the past decades, pulsar astronomy has been instru-
mental in the experimental tests of general relativity (GR)
and alternative theories of gravity. Some of the most notable
highlights from this research field include the first evidence
of the existence of gravitational waves (GWs) (Taylor &
Weisberg 1989), the most precise tests of GR (Kramer et al.
2006b), as well as tests of alternative theories of gravity, such
as tensor-scalar gravity, in the quasi-stationary, strong-field
regime (see e.g. Freire et al. 2012; Shao et al. 2013). These
results rely on the pulsar timing technique (e.g. Lorimer &
Kramer 2005), which fits the precisely recorded times-of-
arrival (TOAs) of the pulses with a model of the pulsar’s
rotational, astrometric and orbital parameters, as well as
signal propagation delays induced by the ionised interstellar
medium between the pulsar and Earth. The differences be-
tween the observed TOAs and those predicted by the model
are called the timing residuals and contain the effects of any
unmodelled physical or instrumental processes.

One of the applications of pulsar timing is the possi-
bility of direct detection of GWs via the precise timing of
an ensemble of pulsars, commonly referred to as a Pulsar
Timing Array (PTA; Foster & Backer 1990). The expected
effects of GW propagation on the TOAs were first examined
by Sazhin (1978). Later, the idea of using a PTA for unam-
biguous direct detection of low-frequency (nHz regime) GWs
based on the predicted cross-correlation of the residuals of
pulsars in various sky positions was proposed by Hellings &
Downs (1983). Subsequent work has identified the potential
of modern timing data for detecting nHz GWs and formu-
lated the detection methodologies (e.g. Jenet et al. 2004,
2005; Sanidas et al. 2012).

PTAs are sensitive to the stochastic GW background
(GWB) resulting from the incoherent superposition of the
GW signals from the cosmic population of unresolved in-
spiralling supermassive black-hole binaries (SMBHBs) (e.g.
Rajagopal & Romani 1995), continuous GWs (CGWs) from
individual, resolvable SMBHB systems (e.g. Estabrook &
Wahlquist 1975), the GWB created from the decaying loops
of a cosmic string network that may have formed in the
early Universe (e.g. Kibble 1976), a cosmological relic GWB
from the Universe’s inflationary era (e.g. Grishchuk 2005)
and the memory term (long-term change in the GW’s am-
plitude) from GW bursts from SMBHB mergers (e.g. Favata
2009). Prior to the detection, upper limits on the GW am-
plitudes can impose limits on the properties of the cosmic
SMBHB population (e.g Shannon et al. 2015), and rule out
the presence of nearby SMBHBs proposed by independent
observations (Jenet et al. 2004). In the era of GW astron-
omy, PTAs using future, hyper-sensitive telescopes will also
be able to test theories of gravity in the radiative regime.
The GW polarisation modes predicted by GR or alternative
theories result in different spatial cross-correlations of the
pulsar timing residuals (e.g. Chamberlin & Siemens 2012).
These cross-correlations can be further modified if the gravi-
ton is not massless as predicted by GR (e.g. Lee 2013).

The pursuit of GW detection using pulsar timing is co-
ordinated by three consortia; the European Pulsar Timing
Array (EPTA; Kramer & Champion 2013) in Europe, the
North-American Nanohertz Observatory for Gravitational
Waves (NANOGrav; McLaughlin 2013) in North America

and the Parkes Pulsar Timing Array (PPTA; Hobbs 2013)
in Australia. The PTAs employ in total eight large single-
dish radio telescopes. The EPTA uses five telescopes, namely
the Effelsberg Radio Telescope, the Nançay Radio Telescope,
the Lovell Telescope, the Westerbork Radio Synthesis Tele-
scope and the Sardinia Radio Telescope. NANOGrav uses
two telescopes, the Green Bank Telescope and the Arecibo
Radio Telescope, while the PPTA uses the Parkes Radio
Telescope. The three consortia co-operate under the Interna-
tional Pulsar Timing Array (IPTA) consortium, maximising
the observing efficiency and data set sensitivity.

The sensitivity of a given PTA is mainly limited by
the uncertainties of the TOA measurements, the number
of observations and the data time-span, the number of pul-
sars, their sky distribution and the presence of low-frequency
noise in the data (see e.g. Lee et al. 2012; Siemens et al.
2013). While improvements in the instrumentation, increase
of the allocated telescope time to PTAs and discoveries of
new pulsars can address the first three factors, low-frequency
noise needs to be characterised and understood on a pulsar-
by-pulsar basis.

A number of methods have been developed to mitigate
the dominant sources of noise in pulsar timing. Temporal
variations in the dispersion measure (DM; integrated free
electron density of the interstellar medium) along the line
of sight to the pulsar is a primary source of low-frequency
stochastic noise. DM time delays, however, depend on the
observing frequency, ν, as tDM ∝ DMν−2, and therefore
DM variations can be, to a large degree, corrected using
multi-frequency data, (e.g. Keith et al. 2013; Lee et al. 2014).
Improper calibration of the gain of the two receiver feeds or
cross-coupling between the two feeds can potentially lead to
distortions of the total intensity profiles. These instrumental
artefacts will introduce additional non-stationary noise com-
ponents in the timing residuals (van Straten & Bailes 2003;
van Straten 2006). By performing standard calibration ob-
servations during every observing run, we can minimise the
presence of such noise in the data (e.g. Britton 2000). By
comparing the noise properties of the same pulsars using
overlapping data from from different telescopes, uncorrected
noise from instrumental instabilities can potentially be iden-
tified (Lentati et al., submitted).

Unfortunately, pulsar timing data also exhibit some lev-
els of “timing noise” (TN), low-frequency, stochastic, achro-
matic noise, the physical origin of which is unknown and,
as such, cannot be mitigated. TN is primarily thought to be
caused by pulsar rotational instabilities from various mech-
anisms. One approach is to consider simultaneous random
walks and discrete jumps (caused, e.g., by micro-glitches)
in the pulsar’s spin frequency and the spin-down rate (e.g.
Cordes & Downs 1985; D’Alessandro et al. 1995; Shannon
& Cordes 2010). Based on observational evidence, it is also
suggested that TN can result from accumulated periodic and
quasi-periodic changes in the spin-down rates due to magne-
tospheric state switching (Kramer et al. 2006a; Lyne et al.
2010). In addition, intrinsic noise has also been proposed
to be the result of undetected (and therefore unmodelled)
bodies in orbit, such as asteroid belts (Shannon et al. 2013)
or planetary-mass objects in long, decadal orbits (Thorsett
et al. 1999). Clearly, the measured TN in pulsar timing data
can be a superposition of noise intrinsic to the pulsar, and
any of the above non-intrinsic noise which is not properly
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mitigated, e.g. noise by DM variations not properly cor-
rected due to the lack of sufficient multi-frequency data.

While young pulsars show large amounts of low-
frequency noise, millisecond pulsars (MSPs), typically show
very low levels of such noise (Verbiest et al. 2009). It is the-
orised that MSPs have spun-up to the observed ms-order
rotational periods via mass transfer from their companions
during the system’s evolution (Alpar et al. 1982). Their
highly stable rotations, short periods and absence of sig-
nificant temporal changes in their pulse profile shapes (see
e.g. Shao et al. 2013) make them excellent celestial clocks
which can be timed to sub-100 ns precision over decades.
MSPs are therefore the observed sources for GW-detection
experiments, and indeed for all high-precision pulsar timing
applications.

Despite their demonstrated rotational stability, some
MSPs show significant amounts of TN. While their TN is
considerably weaker than that of non-recycled pulsars, it
can be significant enough to hinder GW detection. PSR
B1937+21 (J1939+2134), the first ever discovered MSP, is
a notable example of an MSP with strong TN (Kaspi et al.
1994; Shannon et al. 2013). Other MSPs show more moder-
ate noise levels, comparable to the predicted strength of the
targeted GWs signals (e.g. PSR J1713+0747; see Zhu et al.
2015). The characterisation of TN is therefore of central im-
portance in high-precision pulsar timing applications.

The measured TN will also contain signals from spa-
tially correlated low-frequency noise (e.g. Tiburzi et al.
2016). Primary examples are the long sought-after stochastic
GWB, the signal caused by errors in the reference terrestrial
time standards (see e.g. Hobbs et al. 2012) and errors in the
solar system ephemeris (see Champion et al. 2010). These
signals can be distinguished by the spatial cross-correlations
they induce on the timing residuals. The GWB induces a
quadrupole signature (see Section 7.1). Errors in the ter-
restrial time standards produce a fully correlated signal in
all pulsars (see Section 6) while errors in the solar system
ephemeris can potentially produce a superposition of dipo-
lar correlations between pulsars, each produced by the error
in the predicted location of a solar system body. PTAs allow
such correlated signals to be recovered or put upper limits
on their power.

Different methods have been proposed and employed to
characterise the statistical properties of TN in pulsar data
and to perform pulsar timing analysis in the presence of
correlated noise. These cover techniques based on frequentist
(Matsakis et al. 1997; Coles et al. 2011) and Bayesian statis-
tics (e.g. van Haasteren et al. 2009; Lentati et al. 2014), both
in the time- and frequency-domain. As part of the efforts to
detect GWs, an increasing number of algorithms are being
used by the various PTAs to determine the TN properties of
MSPs, motivating work to examine the possible biases inher-
ent to different methods. In this context, we perform char-
acterisation of the TN using two established methods based
on different statistical analyses, Bayesian and frequentist,
and make a comparison of their performance and results.
We subsequently use the measured TN properties to search
for the presence of TN unique to specific observing systems,
place an upper limit on the contribution of clock errors to
the measured noise and investigate the impact of the TN on
the data set’s sensitivity to GWs.

This paper is organised as follows. In Section 2, we de-

scribe the data we use. In Section 3, we present the meth-
ods used to calculate the noise parameters. The results from
both methods are presented in Section 4. In Section 5, we
check for TN present only in individual data subsets and
continue to investigate systematics by making a search for
a correlated clock error signal in Section 6. In Section 7, we
evaluate the effects of the TN present in our data on their
sensitivity to GWBs and CGWs and finally discuss our con-
clusions in Section 8.

2 THE EPTA LEGACY TIMING DATASET

We use the EPTA Legacy data set that is presented in
Desvignes et al., (submitted; henceforth D15). The data set
is composed of data recorded with four EPTA radio tele-
scopes: The Effelsberg Radio Telescope (EFF) in Germany,
the Nançay Radio Telescope (NRT) in France, the Wester-
bork Synthesis Radio Telescope (WSRT) in the Netherlands
and the Lovell Telescope (JBO) in the United Kingdom. The
data-recording systems (backends) used are the Effelsberg-
Berkeley Pulsar Processor (EBPP), the Berkeley-Orléans-
Nançay (BON), the Pulsar Machine I (PuMaI) and the Dig-
ital Filterbank (DFB) respectively. A more detailed descrip-
tion of the instruments and data reduction techniques can
be found in D15, where the timing solutions of the pulsars
are also presented.

The data set includes TOAs from 42 MSPs. Their key
properties are summarised in Table 1. We identify observing
systems as unique combinations of telescope, backend and
central observing frequency (receiver). In total, the data set
has 18 distinct systems. The EBPP L-band1 data have the
longest time-span, with a maximum of 18 years, starting
from October 1996, divided into two observing systems, due
to a change in the receiver in 2009. For most of the sources
with EBPP data, all other instruments started recording
from 2007 onwards, dividing our longest pulsar data sets into
two subsets: the first, with single-telescope, single-frequency
data and the second, with multi-telescope, multi-frequency
data. The lack of multi-frequency data in the first half of
the data set makes direct measurements and corrections of
the DM variations impossible. It is however possible to ex-
trapolate the signal measured in the second epoch to the
first, under the assumption that the DM variations signal is
stationary (see Lee et al. 2014). This is performed using the
Bayesian analysis methods described in Section 3.2. For a
number of MSPs (e.g. PSR J1713+0747, PSR J1012+5307),
multi-telescope coverage begins in 1999 with PuMaI data,
which contain good quality low-frequency data, allowing di-
rect measurements of the DM variations almost throughout
the data set. We note that four MSPs (see Table 1) suf-
fer from a gap in the Effelsberg L-band data for the period
between April 1999 and October 2005. The gap is due to
changes in the observing priorities.

1 1 to 2 GHz range in centre frequency

MNRAS 000, 1–?? (2016)



4 R. N. Caballero et al.

Table 1. General characteristics of the EPTA Legacy data set.
For each pulsar we note the total time-span, T, the ranges of the

observing frequencies, ν, the number of observing systems and

the number of TOAs. Sources marked with a star suffer from a
gap of ∼6 years (1999-2005) in the Effelsberg 1410 MHz data.

PSR T ν range number of number of
J-Name (yrs) (MHz) systems TOAs

J0030+0451? 15.1 1345-2678 7 907
J0034−0534 13.5 323-1628 6 276

J0218+4232 17.6 323-2683 13 1196

J0610−2100 6.9 1365-1632 3 1034
J0613−0200 16.1 323-2636 14 1369

J0621+1002 11.8 323-2635 10 673
J0751+1807 17.6 1352-2695 9 796

J0900−3144 6.9 1365-2303 5 875

J1012+5307 16.8 323-2636 15 1459
J1022+1001 17.5 323-2634 10 908

J1024−0719? 17.3 1346-2628 9 561

J1455−3330 9.2 1367-1698 3 524
J1600−3053 7.6 1366-2298 4 531

J1640+2224 17.3 1335-2636 8 595

J1643−1224 17.3 1353-2639 11 759
J1713+0747 17.7 820-2637 14 1188

J1721−2457 12.7 1335-1698 4 150

J1730−2304? 16.7 1352-2629 8 268
J1738+0333 7.3 1366-1630 3 318

J1744−1134 17.3 323-2634 9 536

J1751−2857 8.3 1397-1631 3 144
J1801−1417 7.1 1395-1697 3 126

J1802−2124 7.2 1366-2048 4 522
J1804−2717 8.1 1374-1698 3 116

J1843−1113 10.1 1335-1629 5 224

J1853+1303 8.4 1397-1698 3 101
J1857+0943 17.3 1335-2632 9 444

J1909−3744 9.4 1367-2681 3 425

J1910+1256 8.5 1366-1630 3 112
J1911−1114 8.8 1397-1630 4 130

J1911+1347 7.5 1365-1698 3 140

J1918−0642 12.8 1372-1630 6 278
J1939+2134 24.1 820-2278 12 3172

J1955+2908 8.1 1395-1629 4 157

J2010−1323 7.4 1381-2298 5 390
J2019+2425 9.1 1365-1629 3 130

J2033+1734 7.9 1367-1631 4 194
J2124−3358 9.4 1365-2298 5 544

J2145−0750 17.5 323-2683 12 800

J2229+2643 8.2 1355-2637 6 316
J2317+1439? 17.3 1352-2637 8 555

J2322+2057 7.9 1395-1698 4 229

3 METHODS FOR ESTIMATING NOISE
PROPERTIES

For the estimation of the noise properties, we use two differ-
ent methods. The first method follows a Bayesian approach,
in the time-frequency domain and is described in Lentati
et al. (2014). The second method uses frequentist statis-
tics based on power-spectral estimation of the residuals and
using algorithms described in Section 3.3, which are an ex-
tension of those introduced in Coles et al. (2011). We first
discuss the noise model components, which we use for both
approaches, and then present the details of each method
used.

3.1 Noise Modelling

We form the timing residuals using the pulsar timing anal-
ysis package Tempo2 (Hobbs et al. 2006), which iteratively
performs a weighted least-squares (wLS) fit of the model
to the TOAs until the reduced chi-squared of the residuals
is minimised. Timing models are gradually improved over
many years by incorporating more data. These solutions will
often result in timing residuals scattered beyond what would
be expected based on their formal uncertainties, due to the
absence, at this point, of the stochastic signals in the model.
These signals are in general divided into the time-correlated
and uncorrelated components.

The uncorrelated (white-noise) components correct the
uncertainties of the timing residuals. The formal uncertain-
ties of the TOAs are derived by the cross-correlation of the
recorded integrated pulse profile with a reference template,
which is constructed using the best available observations.
These uncertainties are correct if the recorded profiles are
characterised solely by (white) radiometer noise and the pro-
file template precisely represents the intrinsic shape of the
integrated profile. However, possible presence of un-excised
radio frequency interference (RFI), temporal variations in
the pulse profile, artefacts in the profiles from instrumental
instabilities or imperfect profile templates can lead to errors
in the uncertainty estimations (e.g. Liu et al. 2011). It is
therefore common practice to include a multiplicative cor-
rection factor called EFAC. We also add a correction term
quadratically to the formal uncertainty to account for ad-
ditional scatter in the TOAs caused by statistically inde-
pendent physical processes, such as pulse phase jitter noise
(e.g. Shannon et al. 2014). This term is commonly referred
to as EQUAD. We do not investigate the physical origin of
the noise included in the EQUADs. This requires a more
detailed analysis of the white noise; for example, jitter noise
is dependent on the integration time of the observation and
this needs to be properly taken into consideration if one
wants the EQUAD number to describe an underlying phys-
ical process.

We include one EFAC and one EQUAD term per ob-
serving system to mathematically model the uncorrelated
noise from all possible processes. The white-noise correc-
tion factors should be such that the data satisfy the central
assumption of pulsar timing, that they are drawn from a
random Gaussian process. In other words, when subtracting
the waveforms (induced residuals) of all calculated stochastic
signals from the residuals, their uncertainties should be such
that the residuals are white and the timing solution has a
reduced chi-squared of unity. The original TOA uncertainty,
σ, EFAC (f), EQUAD (q) and corrected uncertainy, σ̂, are
related2 as:

σ̂2 = (σ · f)2 + q2 (1)

We include two stationary time-correlated noise compo-
nents, namely the chromatic low-frequency noise from DM
variations and the achromatic TN. Previous studies (e.g.
Shannon & Cordes 2010; Coles et al. 2011) have shown that

2 This definition is not unique. Tempo2 by default defines the

correction as σ̂2 = f2 · (σ2 + q2)
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the low-frequency power spectra of pulsar timing residuals
can be adequately modelled with single power-laws for the
majority of MSPs. This does not mean that the TN is nec-
essarily a pure power-law, but rather that this functional
form is sufficient to describe the data, given the measure-
ment precision. We examined whether deviations from the
single power-law model are supported by the data using the
Bayesian analysis method. In particular, we performed the
noise analysis with two additional models for the TN spec-
trum: (i) a model that allows the power of individual fre-
quency bins to vary independently from the power law model
and (ii) a model that includes the power-law and an addi-
tional sinusoid signal of varying frequency, amplitude and
phase. We evaluated the results using the Bayes factor, i.e.
the ratio of the Bayesian evidence of two competing mod-
els (see also Section 3.2). A common interpretation of the
Bayes factor is given by Kass & Raftery (1995), based on
which we required a value equal or greater than 3 to justify
the addition of any extra model parameter. This was not the
case for any of the models we compared to the simple single
power-law model.

In this work, we have followed the single power-law for-
malism for both analysis methods in order to facilitate their
comparison and the comparison of the measured TN param-
eters with those usually used as GW stochastic parameters
in the PTA literature. For isotropic GW signals (see Sec-
tion 7) one of the most important properties is the charac-
teristic strain spectrum, hc(f), of the GWB on the one-sided
power spectrum of the induced timing residuals. For most
models of interest, this can be written as a power-law func-
tion of the GW frequency (e.g. Jenet et al. 2005), f as:

hc(f) = A
( f
fr

)α
(2)

where A is the (dimensionless) amplitude of the wave, α is
the spectral index3 and fr is the reference frequency, typi-
cally set to 1 yr−1. The one-sided power spectral density of
the signal is then given by:

S(f) =
A2

12π2

( f
fr

)−γ
(3)

where the power spectrum and strain spectral indices are
related as γ ≡ 3 − 2α. This is the functional form we use
to model the TN. We set a cut-off at frequency 1/T, where
T is the time-span of the data. The cut-off arises naturally
due to the absorption of the lowest frequencies by the fitting
of the pulsar’s spin and spin-down in the timing model. It
has been shown (Lee et al. 2012; van Haasteren & Levin
2013) that if the spectral index is γ . 7 (which is the case
for all MSPs in this paper), the cut-off at frequency 1/T is
sufficient.

The DM variations have been mitigated using first- and
second-order DM derivatives in the timing model (which
are first- and second-order polynomials) and additionally a
power law equivalent to Eq. (3). The DM derivatives absorb
any DM variation signal with frequencies below the cut-off

3 We define the index positive, but note that in the literature it

is sometimes defined as a negative number

frequency, in the same way the spin and spin-down do for the
achromatic TN (Lee et al. 2014). The observing frequency
dependence of the DM variations signal is measured in the
time-domain via the (multi-frequency) timing residuals, as
we show in Section 3.2. The choice of a power-law spectrum
for the DM variations is motivated by the fact that, across
a wide spatial frequency range, the electron density fluctua-
tion spectrum usually follows a power-law (Armstrong et al.
1995).

3.2 Noise Parameter Estimation Using Bayesian
Inference

The first Bayesian investigation of the GWB detectability
with PTAs was performed by van Haasteren et al. (2009).
The algorithms were later applied on EPTA data to derive
the EPTA GWB upper limit (van Haasteren et al. 2011).
In that analysis, the timing noise parameters of the MSPs
were simultaneously estimated with the GWB parameters.
Further work on Bayesian analysis methods for pulsar timing
provided more algorithms, both in time- and time-frequency-
domains, to characterise the properties of timing noise and
DM variations and to perform robust pulsar timing analysis
in the presence of correlated noise (e.g. van Haasteren et al.
2011; Lentati et al. 2013; Lee et al. 2014).

Bayes’ theorem, which is the central equation for these
analysis methods, states that:

Pr(Θ) =
L(Θ)π(Θ)

Z
, (4)

where Θ is the model’s parameters, Pr(Θ) is the posterior
probability distribution (PPD) of the parameters (proba-
bility distribution of the parameters given the model and
the data), π(Θ) is the prior probability distribution (pPD)
of the parameters (the initial hypothesis of the probability
distribution of the parameters for a given model), L(Θ) is
the likelihood function (which gives the probability that the
data are described by a given model) and Z is the Bayesian
evidence. Z is only a normalising factor independent of Θ
and can therefore be ignored when one is interested only
in parameter estimation, such that Pr(Θ) ∝ L(Θ)π(Θ). On
the other hand, when one is interested in model selection,
the ratio of the evidence between two different models, R,
known as the Bayes factor, is used. The probability, P, of
a model compared to another, can the expressed (Kass &
Raftery 1995) as:

P =
R

1 +R (5)

The various Bayesian analysis algorithms are distinguished
by the mathematical description of the model parameters
and the computational methods used to sample the unnor-
malised PPD.

Lentati et al. (2014) introduced TempoNest, a Bayesian
software package for the analysis of pulsar timing data,
available to use as a Tempo2 plug-in. The timing solution
and the additional stochastic parameters such as EFACs,
EQUADs, DM variations and the TN (referred to as “excess
red noise”) can be determined simultaneously. TempoNest
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uses the Bayesian inference tool MultiNest (Feroz & Hob-
son 2008) to explore this joint parameter space, whilst using
Tempo2 as an established means of evaluating the timing
model at each point in that space. For the PPD sampling,
TempoNest uses the nested sampling Monte-Carlo method
(Skilling 2004).

We perform a joint analysis for the timing model and
the stochastic parameters. Both the TN and the DM vari-
ations are modelled as Gaussian stochastic signals with
power-law spectra as described by Eq. (3). TempoNest em-
ploys the time-frequency analysis described in Lentati et al.
(2013). The TN waveform is expressed as tTN = FTNa,
where FTN is the Fourier transform with components F =
sin(2πf)+cos(2πf) and corresponding coefficients, a, which
are free parameters. Here, and henceforth, we use boldface
characters in equations to denote matrices. The Fourier fre-
quencies take values f = n/T, with n integers ranging from
1 up to the value necessary to sample frequencies as high as
1/14 days−1. The covariance matrix of the TN is then de-
scribed by the following equation (see Lentati et al. 2015):

CTN = C−1
w −C−1

w FTN

[
(FTN)TC−1

w FTN + (ΨSN)−1
]−1

(FTN)TC−1
w . (6)

Here, Ψ = 〈aiaj〉, is the covariance matrix of the Fourier co-
efficients and Cw is the covariance matrix of the white noise
component, a diagonal matrix with the main diagonal popu-
lated by the residual uncertainties squared, σ̂2 (as in Eq. 1).
The superscript T denotes the transpose of the matrix.

The covariance matrix for the DM variations, CDM, is
equivalent to Eq. (6), but including an observing frequency
dependence. This is achieved by replacing F components
with FDMij = FijDiDj , where the i,j indices denote the resid-
ual numbers, Di = 1

Kνi
, νi is the observing frequency of the

TOA, typically set as the central frequency of the observing
band, and K=2.41×10−16 Hz−2cm−3pc s−1, is the disper-
sion constant.

The likelihood function is the probability that the data
(TOAs), noted as t, are fully described by the timing model
signal, τ(ε), with parameters ε and the stochastic noise. The
latter is encoded in the residuals’ total covariance matrix,

C = Cw + CDM + CTN. (7)

Following van Haasteren et al. (2009), and noting that
the difference t− τ(ε) gives the timing residuals vector, we
can write the likelihood function as:

L =
1√

(2π)n|C|
e−

1
2
(t−τ(ε))TC−1(t−τ(ε)). (8)

After the noise properties are estimated, we produce the
TN waveforms, which can be estimated from the data using
the maximum likelihood (ML) value of its statistical model
parameters, A and γ. As shown in Lee et al. (2014), the
ML waveform, tTN, and its uncertainties, σTN, are optimally
estimated as

tTN = CTNC
−1t , (9)

with uncertainties estimated as:

σTN = CTN −CTNC
−1CTN. (10)

The uncertainties are estimated as the standard deviation
of the estimator. However, as noted in Lee et al. (2014),
since the components of TN waveforms are correlated, their
interpretation in terms of uncertainties is meaningless, since
this is only valid under the assumption that the noise is
uncorrelated. The uncertainties can therefore only be used
as an indication of the variance of each point.

We have performed the Bayesian inference analysis
twice using different combination of pPDs. The pPDs on the
timing parameters are always uniform, centred around the
value from the wLS fit of the timing model by Tempo2 with
a range of 10 to 20 times their 1-σ Tempo2 uncertainties.
This range was chosen after testing verified that is sufficient
for all timing parameters PPDs to converge. For the noise
parameters, the ranges are from 0 to 7 for spectral indices,
−20 to 8 for the logarithm of the amplitudes, −10 to −3
for the logarithm of the EQUADs and 0.3 to 30 for the
EFACs. For EQUADs, TN and DM variations amplitudes
we used two different types of pPDs. The first is a uniform
distribution in log space (log-uniform) and the second is a
uniform distribution in linear space (uniform). Log-uniform
pPDs assume that all orders of magnitude are equally likely
for the parameter value while for uniform pPDs, we assign
the same probability for all values. The uninformative
log-uniform pPDs will result in PPDs for the parameters
that are the least affected by the pPD and therefore are
what we consider as the parameter measurement. If no
significant noise can be detected in the data, the PPDs
are unconstrained and the distribution’s upper limit is
dependent on the lower limit of the pPD. Therefore, a
separate analysis is required using uniform pPDs in order
to obtain robust upper limits. If the signal is strong and the
result from a log-uniform-pPD analysis is a well-constrained
PPD, then the change of the pPD should not affect the
result significantly and the PPDs should be almost identical.
As a result, we performed the analysis with the following
combination of pPDs:
a) Uniform EQUAD pPDs and log-uniform pPDs for TN
and DM variation amplitudes. This set of pPDs results in
upper limits for EQUADs. As such, the solutions have the
highest possible timing residuals uncertainties, resulting in
weaker TN and DM variations detections. The TN and the
DM variations are treated in the same way, giving no prior
information that can favour the one over the other when
multi-frequency data are not sufficient to de-couple them.
In the absence of multi-frequency data one can therefore
expect that their PPDs will not be well-constrained.
b) Uniform TN amplitude and log-uniform pPDs for
EQUADs and DM variation amplitudes: The total white
noise levels of these solutions are lower, since EQUAD
PPDs can be flat if the data do not support them to be
measurable. The use of uniform pPDs for the TN amplitude
and log-uniform for the DM variations results in solutions in
favour of the TN against the DM variations in the absence
of multi-frequency data. This set of pPDs will provide the
strictest upper limits on the TN amplitudes. We used the
PPDs from this analysis to calculate the amplitude upper
limits at the 95% confidence level (C.L.).
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Table 2. Timing-noise characteristics of EPTA MSPs based on Bayesian inference for a single power-law model as described by Equa-
tion (3). The results are divided based on the quality of the posterior probability distributions (PPDs) as described in Section 4.1. We

tabulate the maximum likelihood (ML) and median (med) values of the dimensionless amplitude, A, at reference frequency of 1 yr−1

and the the spectral index, γ. For A, we also tabulate the 95% confidence upper limits. The 1-σ uncertainties are calculated such that
the 68% of the area under the 1-dimensional marginalised PPS of the parameter is symmetrically distributed around the median. As

described in Section 4.1, for unconstrained PPDs we only consider the upper-limits analysis results.

PSR log(AML) log(Amed) log(A95%
UL ) γML γmed

J-Name

Well-constrained PPDs

J0621+1002 −12.029 −12.07+0.06
−0.06 −11.9 2.5 2.4+0.3

−0.2

J1012+5307 −13.20 −13.09+0.07
−0.07 −12.94 1.7 1.7+0.3

−0.2

J1022+1001 −13.2 −13.0+0.1
−0.2 −12.8 2.2 1.6+0.4

−0.4

J1600−3053 −13.35 −13.28+0.06
−0.06 −13.11 1.2 1.7+0.3

−0.2

J1713+0747 −14.7 −15.2+0.5
−0.5 −13.8 4.8 5.4+0.9

−1.0

J1744−1134 −13.7 −13.8+0.2
−0.3 −13.3 2.2 2.7+0.7

−0.6

J1857+0943 −13.3 −13.3+0.2
−0.3 −12.9 2.6 2.4+0.7

−0.6

J1939+2134 −14.2 −14.5+0.3
−0.3 −13.7 5.9 6.2+0.5

−0.6

Semi-constrained PPDs

J0030+0451 −14.9 −14.9+0.8
−2.1 −13.0 6.3 5.2+1.2

−2.1

J0218+4232 −13.1 −14.1+1.0
−1.7 −12.4 2.7 3.9+1.7

−1.6

J0610−2100 −18.7 −16.0+2.9
−2.7 −12.4 1.4 2.7+2.8

−2.1

J0613−0200 −13.7 −14.4+0.7
−0.9 −13.0 2.8 4.1+1.6

−1.5

J0751+1807 −18.8 −15.9+2.6
−2.7 −12.9 6.5 3.0+2.0

−1.4

J1024−0719 −14.0 −16.3+2.1
−2.4 −13.1 5.3 3.9+2.0

−2.5

J1455−3330 −19.8 −14.2+1.0
−3.7 −12.7 0.8 3.6+1.9

−1.6

J1640+2224 −13.2 −13.1+0.2
−3.4 −12.8 0.01 0.4+1.7

−0.3

J1643−1224 −17.7 −13.3+0.6
−2.4 −12.5 1.8 1.7+0.9

−0.6

J1721−2457 −11.7 −13.5+1.7
−4.5 −11.5 1.1 1.9+2.7

−1.0

J1730−2304 −12.8 −14.7+1.7
−3.6 −12.6 1.8 2.9+1.9

−1.3

J1801−1417 −14.4 −15.1+2.5
−3.4 −12.2 6.3 3.3+2.2

−1.8

J1802−2124 −17.0 −15.6+3.2
−3.0 −12.2 4.5 2.3+2.9

−0.8

J1843−1113 −13.0 −12.9+0.2
−3.3 −12.5 0.6 1.5+3.1

−0.5

J1909−3744 −14.1 −14.1+0.2
−1.9 −13.8 2.4 2.3+1.0

−0.6

J1918−0642 −16.9 −14.5+0.7
−0.5 −12.6 1.7 5.4+1.1

−1.6

J2145−0750 −14.4 −14.0+0.6
−0.8 −12.9 5.2 4.1+1.6

−1.3

Unconstrained PPDs

J0034−0534 - - −12.3 - -

J0900−3144 - - −12.7 - -

J1738+0333 - - −12.7 - -
J1751−2857 - - −12.4 - -

J1804−2717 - - −12.3 - -

J1853+1303 - - −12.4 - -
J1910+1256 - - −12.1 - -

J1911−1114 - - −12.1 - -
J1911+1347 - - −12.9 - -

J1955+2908 - - −12.1 - -

J2010−1323 - - −12.8 - -
J2019+2425 - - −11.9 - -
J2033+1734 - - −12.0 - -

J2124−3358 - - −12.8 - -
J2229+2643 - - −12.7 - -

J2317+1439 - - −13.1 - -

J2322+2057 - - −12.3 - -
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Table 3. Timing-noise characteristics of EPTA MSPs based on power-spectral analysis for a single power-law model as described by
Equation (3). We tabulate the dimensionless amplitude, A, at reference frequency of 1yr−1, the spectral index, γ, and the white-noise

power level, SW, and their respective 1-σ uncertainties. We also tabulate the pre-whitening level used (levelpw). For the pulsars where

the measurement of timing noise was not possible, we quote the 95% confidence upper limits for the amplitude. The table is divided as
Table 2 for easier comparison.

Measured

PSR log(A) γ log(SW(yr3)) levelpw
J-Name

J0621+1002 −12.3±0.1 2.8±0.6 −26.94±0.04 1
J1012+5307 −13.01±0.07 1.7±0.3 −28.60±0.02 1

J1022+1001 −13.2±0.2 2.0±0.6 −27.97±0.03 0
J1600−3053 −13.6±0.1 1.3±0.5 −29.36±0.05 0

J1713+0747 −14.2±0.2 4.9±0.6 −30.146±0.02 2

J1744−1134 −13.6±0.2 3.0±0.6 −28.90±0.03 1
J1857+0943 −13.2±0.2 2.3±0.7 −27.97±0.04 1

J1939+2134 −14.3±0.1 6.7±0.5 −30.27 ± 0.02 2

J0030+0451 −13.2 ± 0.4 4.5 ± 1.0 −27.78±0.03 2

J0218+4232 −12.6±0.2 2.3±0.6 −26.69±0.03 0

J0610−2100 -13.6±0.1 2.1±0.6 −29.62±0.03 0
J0613−0200 -14.9±0.9 5.2±1.8 −28.45±0.03 0

J0751+1807 -14.3±0.7 5.2±1.6 −27.86±0.03 1

J1024-0719 −13.0±0.1 4.1±0.5 −28.15±0.03 2
J1455−3330 −13.4±0.4 3.5±1.2 −27.59±0.03 0

J1640+2224 −13.0±0.1 1.4±0.4 −27.96±0.05 0

J1643−1224 −13.2±0.1 3.5±0.4 −28.25±0.03 0
J1721−2457 −12.3±0.3 2.7±0.8 −26.01±0.09 0

J1730−2304 −12.8±0.2 1.7±0.5 −27.31±0.06 0
J1801−1417 −13.3±0.3 2.4±1.1 −28.41±0.10 0

J1802−2124 −12.8±0.2 2.9±0.7 −27.93±0.04 0

J1843−1113 −12.8±0.1 3.0±0.6 −27.93±0.05 1
J1909−3744 −14.5±0.7 1.6±1.7 −30.05±0.04 0

J1918−0642 −13.0±0.2 2.8±0.8 −27.72±0.05 1

J2145-0750 −13.7±0.3 3.5±0.7 −28.36 ± 0.03 0

Upper Limits

PSR log(A95%
UL ) log(SW(yr3)) levelpw

J-Name

J0034−0534 −12.4 - −27.02 ± 0.05 0

J0900−3144 −12.8 - −28.0 ± 0.1 0
J1738+0333 −12.6 - −27.36 ± 0.04 0

J1751−2857 −12.1 - −27.3 ± 0.6 0
J1804−2717 −12.2 - −26.57 ± 0.09 0

J1853+1303 −12.7 - −27.7 ± 0.1 0

J1910+1256 −12.6 - −27.38 ± 0.06 0
J1911−1114 −12.2 - −26.7 ± 0.1 0

J1911+1347 −12.8 - −27.88±0.1 0

J1955+2908 −12.1 - −26.46 ± 0.06 0
J2010−1323 −12.9 - −27.95 ± 0.04 0

J2019+2425 −12.0 - −26.14 ± 0.08 0
J2033+1734 −12.0 - −26.15 ± 0.06 0
J2124−3358 −12.8 - −27.69 ± 0.04 0

J2229+2643 −12.7 - −27.66 ± 0.05 1

J2317+1439 −12.8 - −27.678 ± 0.03 0
J2322+2057 −12.3 - −26.78 ± 0.05 0

3.3 Noise Parameter Estimation Using
Power-Spectral Analysis

Power-spectral analysis of pulsar timing data using stan-
dard discrete Fourier transforms is complicated by highly
variable error bars, irregular sampling, data gaps (due to
difficulties in being granted telescope time at exact regular

intervals but also due to loss of data from technical diffi-
culties, weather conditions, telescope maintenance or from
weak pulses on particular days due to unfavourable interstel-
lar scintillation) and the presence of TN which has a steep
red spectrum. Fourier transforms require equispaced data
points. Interpolation of data points on regular grids intro-
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duces time-correlations in data points and the presence of
strong TN introduces spectral leakage. In order to bypass
such problems, Coles et al. (2011) introduced an algorithm
for pulsar-timing analysis in the presence of correlated noise
which employs the use of generalised least-squares (GLS)
analysis of the timing data using the covariance matrix of
the residuals (as described in Section 3.2). In brief, the co-
variance matrix of the residuals is used to perform a lin-
ear transformation that whitens both the residuals and the
timing model. The transformation is based on the Cholesky
decomposition of the covariance matrix.

For this algorithm, initial estimates of the residuals co-
variance matrix are necessary, and are obtained using the
Lomb-Scargle periodogram (LSP), which can calculate the
power spectrum of irregularly sampled data. Spectral leak-
age in the presence of strong TN with steep power-law spec-
tra is mitigated with pre-whitening using the difference fil-
ter. The difference pre-whitening filter of any order, k, can
be described by yw,k = yw,k−1(ti) − yw,k−1(ti−1), where ti
is the i-th sampling time and yw,k is the whitened resid-
ual of difference order k (k = 0 corresponds to the original
residuals). It was suggested to use the lowest order neces-
sary to whiten the data enough to mitigate spectral leakage.
Effectively, this filter is equivalent to multiplying the power
spectrum by a filter (e.g. for first order difference, the filter
is the square of the transfer function). After the spectrum
is estimated using the pre-whitened data, one corrects the
power spectrum by dividing it with the same filter, a process
known as post-darkening. The low-frequency spectrum can
be fitted with a power-law model leading to the first estima-
tion of the covariance matrix. Through an iterative process,
new estimates of the spectrum can be achieved by using LSP
after whitening the data using the Cholesky decomposition
of the covariance matrix.

Coles et al. (2011) have demonstrated that the imple-
mentation of this method allows better timing solutions with
more robust timing parameters and uncertainty calculations.
In particular the measured spin and spin-down of the pul-
sar show the largest improvements, since they have low-
frequency signatures in the Fourier domain and correlate
with TN. However, this method is not optimised to accu-
rately estimate the TN properties through detailed fitting
of a noise model to the power-spectrum. The algorithm de-
scribed in Coles et al. (2011) focuses on obtaining a lin-
ear, unbiased estimator of the timing parameters. For this
purpose, they demonstrate that using the GLS timing solu-
tions using the covariance matrices of any TN models which
whiten the data sufficiently to remove spectral leakage, are
statistically consistent. In this work, we extend the algo-
rithms of Coles et al. (2011), focusing on the precise evalua-
tion of the power spectra and the power-law model parame-
ters. To this end, we have developed an independent power
spectral analysis and model fitting code.

A fully frequentist analysis should include a white-noise
and DM-correction analysis. However, in order to focus on
comparing the methods with regards to the estimation of the
TN properties, we use the ML EFAC and EQUAD values
and subtract the ML DM variations waveforms derived from
the Bayesian analysis.

Our spectral analysis code calculates a generalised LSP,
i.e. it performs a wLS fit of sine and cosine pairs at each
frequency. We follow an iterative procedure as follows: (1)

We first use Tempo2 to obtain the wLS post-fit residuals,
while subtracting the ML DM variations signal estimated
with the Bayesian methods described in Section 3.2. (2) We
calculate the spectrum of these residuals using a chi-squared
minimisation fit on all frequency points. (3) Tempo2 is re-
run using the covariance matrix of the initial noise model
to perform a GLS fit. (4) Finally, we re-run the spectral
analysis code on the residuals from the GLS timing solution
to update the TN model and repeat steps 3 and 4 until the
solution converges. Typically, this required no more than one
iteration.

Our code implements a generalised LSP to account for
the timing residual uncertainties. Denoting each pair of time
and residual as (ti, yi), the LSP is formed by fitting sine-
cosine pairs of the form ŷ(ωk, ti) = ak cos(ωkti)+bk sin(ωktj)
at all angular frequencies, ωk = 2πfk, with fk the frequency.
The solution is obtained by minimising the chi-squared for
each ωk, weighted by the summed uncertainties of the timing
residuals as:

χ2
k =

∑
i

(
yi − asin(ωti)− bcos(ωti)

σ̂i

)2

. (11)

Once the LSP is calculated, noting the number of timing
residuals as N , the spectral density is finally computed as:

S(f) =
2|ŷ|2T
N2

. (12)

We examine whether spectral leakage is present follow-
ing the same routine as in Coles et al. (2011). Visual inspec-
tion of the original spectrum allows to approximately define
the frequency where the red component of the spectrum in-
tersects the flat, white component. We apply a low-pass fil-
ter in time-domain to separate the high-frequency from the
low-frequency residuals and calculate their individual spec-
tra. The high-frequency spectrum should be consistent with
the high-frequency part of the spectrum of the original data.
If that is not the case, and instead the high-frequency spec-
trum is significantly weaker, then leakage is important and
we need to apply the pre-whitening filter. The code allows
for any order of difference whitening. For this data set, we
required only up to second order. We then proceed with
calculating the LSP as before and finally post-darken the
spectrum before calculating the final spectral density.

We fit the power spectrum with the following function:

S(f) = S0

( f
fr

)−γ
+ SW, S0 =

A2

12π2
. (13)

Here, SW is the spectral density of the high-frequency
(white) component. The power-law description of the low-
frequency component is equivalent to Eq. (3), with S0 the
spectral density at reference frequency, fr, which is set to
1yr−1. A fit of only the low-frequency component is proven
difficult; due to the steepness of the spectrum at low fre-
quencies and moderate power of the TN in many MSPs,
only about five frequency points would be included in a pure
power-law fit of only the red part of the spectrum. This leads
to unstable fits without meaningful error estimations.
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The fit minimises the chi-squared, χ2
S . Chi-squared min-

imisation assumes that the spectrum is normally distributed.
In principle, the power spectrum is a chi-squared distribu-
tion. However, in logarithmic space, the distribution is ap-
proximately Gaussian with variance of order unity. There-
fore this is a good approximation if we fit the power-law
model to the spectrum in logarithmic space. By doing so,
we minimise the chi-squared defined as:

χ2
S =

N∑
i=1

{
logSi − log

(
S0

(
fi
fr

)−γ
+ SW

)}2

, (14)

where Si and fi define the points of the spectrum for each
frequency bin, i, while simultaneously fitting for S0, γ, and
SW. We first fit the spectrum while setting the uncertainties
of the LSP points to one and then scale the uncertainties to
achieve a reduced chi-squared of unity.

Once we obtain the values for the noise parameters,
we construct the covariance matrix of the TN, CTN. The
Fourier transform of the TN power-law model gives the co-
variance function, cTN(τ) = 〈tTN,itTN,j〉. The i and j indices
refer to the time epoch of the observation and τ = i − j.
The TN covariance matrix is then formed by the elements
CTN,ij = c(τTN,ij), where τij = |i−j|. Using the total covari-
ance matrix (Eq. 7), we then perform a Tempo2 GLS fit on
the TOAs, repeat the power-spectrum analysis and power-
law fit to update the model parameter values and iterate
these steps until we converge to a stable solution.

For the cases where the spectra are white-noise dom-
inated and no measurement of the TN parameters can be
achieved on a 3-σ level, we derived upper limits for the TN
amplitude. The limits are at the 95% C.L. and are calcu-
lated as the 2-σ upper limit of the white-noise level (SW in
Eq. (13) and Table 3).

4 RESULTS

Table 2 summarises the results of the noise properties de-
termined using TempoNest, while Table 3, summarises the
results from the power spectral analysis. The reader can find
online4 the PPDs of the TN properties from the Bayesian
analysis, the power spectra and the TN waveforms from
both methods. In the rest of this Section, we first discuss
the framework under which we compare the results from the
two methods and then proceed with the comparison of the
results in more detail. We conclude this Section by present-
ing and discussing the results on the white noise parameters
from the Bayesian analysis.

4.1 Comparing Bayesian and Frequentists Results

Bayesian analysis is based on the principle that we test a
hypothesis (model) given the data and a pPD. The latter is
essential in Bayesian inference and states our prior degree of
confidence on what the PD of the parameter is. The infer-
ence results in the PPD, which is the updated probability
distribution for the unknown parameter, based on the infor-
mation provided by the data. Bayesian inference also assigns

4 http://www.epta.eu.org/aom/DR1noise.html

the likelihood value for each model (i.e. for each set of val-
ues for all unknown parameters), providing a measure of how
well the model describes the data. To evaluate the TempoN-

est results, we report in Table 2 the ML values of the TN
parameters and the median value and 1-σ uncertainties of
the one dimensional marginalised PPDs. The uncertainties
are calculated such that 68% of the area under the distri-
bution is symmetrically distributed around the median. The
asymmetry of many PPDs will result in asymmetric error
bars.

We sort the PPDs in three categories, and show rep-
resentative examples in Figure 1. We name the first cate-
gory of distributions“well-constrained”; this represents cases
where the data were sufficient to obtain good measurements
of the noise parameters. As seen in Figure 1 for the case
of PSR J1012+5307, the PPDs are well defined and very
close to symmetric. As a result, the median values of the 1-
dimensional PPDs coincide well with the ML solution. There
are cases where the PPD of at least one of the TN parame-
ters suffers from long tails due to strong covariances between
unknown parameters (e.g. amplitude of TN and amplitude
of DM variation noise in the absence of sufficient multi-
frequency data). We refer to these distributions as “semi-
constrained”. As seen for the case of PSR J0751+1807 in Fig-
ure 1, the two-dimensional distribution shows a main area
of high probability as well as many smaller regions of local
maxima. The tails in the one dimensional distribution of am-
plitude (which in general extend to ±∞), causes the median
value to vary significantly from the ML model. Moreover, the
large amount of area under the curve, along the tail, causes
the uncertainties around the median to have large and very
asymmetric values. Finally, when the data do not support
any evidence of TN, the PPDs are flat. We refer to these as
“unconstrained”. As seen for the case of PSR J2229+2643 in
Figure 1, the reported median and ML values do not hold a
strong significance. The only meaningful result to report in
such cases is the upper limits for the amplitude, as seen in
the bottom right panel of Figure 1.

Power-spectral analysis provides single-value results-
from the power-law model fit to the power spectrum. This fit
is performed under the assumption of Gaussian statistics. As
discussed above, in the case of power spectra, this is only an
approximation. Finally, the fit is dependent on the estima-
tion of the uncertainties of the power spectrum points, which
was ensured to be properly calculated by pre-whitening the
data when TN caused spectral leakage. The comparison of
the results derived with these two methods should also con-
sider the effects of the Bayesian ML DM variations waveform
subtraction from the residuals before performing the power-
spectral analysis. In the case of semi-constrained PPDs, the
amplitude parameters for the two TN and DM variations
are naturally highly correlated. When this is the case, the
ML parameter estimates are not as reliable, as the particu-
lar ML solution might correspond to either significant DM
variations and no TN, or significant TN and no DM vari-
ations. This can lead to over- or under-estimations of the
DM variations which will lead to either part of the TN be-
ing subtracted as well or part of the DM signal leaking into
the TN.

As an example, we show in the left panel of Figure 2
the two- and one-dimensional marginalised PPDs for the
amplitudes of the timing noise and DM variations for PSR
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Figure 1. Two- and one-dimensional marginalised PPDs for the timing noise parameters of three pulsars: J1012+5307, J0751+1807,

and J2229+2643. In the two-dimensional distributions, the solid, dashed and dotted contours represent the 68%, 95% and 99.7% (1-, 2-
and 3-σ) confidence intervals and the red star marks the maximum likelihood solution. The 1-dimensional distributions have the median

and 1-σ uncertainties marked as dashed and solid lines respectively. For J2229+2643, the right figure shows the distribution of the noise
parameters from the upper limits analysis. Note the different ranges on the amplitude axes. See text in Section 4.1 for discussion.

J0751+1807 (semi-constrained PPDs case). One can see the
strong covariance between the two parameters. The data
support that the TN amplitude is more likely to be very
low (the TN tail has more probability than the DM tail),
however, there is still a non-zero probability that the DM
variations signal is weaker than the ML model suggests.
For well-constrained PPDs, DM variations and TN are de-
coupled, as seen in the right panel of Figure 2 for the case
of J1012+5307, and the DM ML waveform subtraction is
more reliable. If the statistical assumptions of the Bayesian
and frequentist analysis are valid, the results for the TN
of pulsars with well-constrained PPDs should be consistent
between the two methods.

4.2 Timing-Noise Parameters

Out of the 42 sources, the Bayesian analysis resulted in
well-constrained PPDs for both the amplitude and the spec-
tral index of the TN power-law model for eight sources. For
these, the Bayesian ML and median values are always consis-
tent at the 1-σ level. The two methods are always consistent
at the 1-σ level for the spectral index, while for the am-
plitude, three sources show deviations, though consistency
remains at the 2-σ level. (Figure 3, top row).

For 17 MSPs, the PPDs of at least one of the timing
noise parameters is semi-constrained. The Bayesian ML and
median values show inconsistencies at the 1-σ level in four
pulsars (Figure 3, middle row). The power-spectral analysis
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Figure 2. Two- and one-dimensional marginalised PPDs for the timing noise and DM variations amplitudes for J0751+1807 and

J1012+5307. In the two-dimensional distributions, the solid, dashed and dotted contours represent the 68%, 95% and 99.7% (1-, 2- and

3-σ) confidence intervals and the red star marks the maximum likelihood solution. The 1-dimensional distributions have the median and
1-σ uncertainties marked as dashed and solid lines respectively. Note the different ranges on the amplitude axes. See text in Section 4.1

for discussion.

results are in agreement with the Bayesian median values.
All Bayesian upper limits are in agreement with the rest
of the results. We note that for PSR J1909−3744, we did
not achieve a 3-σ measurement for spectral index with the
power-spectral analysis.

The rest of the sources, 17 in total, show flat, uncon-
strained PPDs. The bottom row of Figure 3 shows the 95%
C.L. upper limits from the two methods. Given the low sig-
nificance of the TN measurement in these cases, inconsisten-
cies in the amplitudes do not have statistically significant ef-
fects on the timing solutions when using the total covariance
matrix to perform GLS timing solutions.

The agreement between the two methods for the sources
with statistically significant TN measurements, supports the
confidence in the methods and the results. When covariances
between noise properties cannot be decoupled by the data,
the interpretation of the results requires more attention. For
this reason, we propose that cross-checks of the results with
various methods should become common practice.

4.3 White-Noise Parameters

Radiometer noise estimation is typically robust when the
pulse has a medium to high signal-to-noise ratio (S/N) (Tay-
lor 1992), so EFACs are expected to be close to unity for
most observing systems. The EQUADs results indicate for
which observing systems there may be additional scatter in
the residuals from physical processes related to the pulsars
(e.g. pulse phase jitter) or RFI.

Figure 4 shows the distribution of the ML EFAC val-
ues. As expected, the distribution strongly peaks around
unity. A few systems show EFAC values up to ∼5. These
are typically high-frequency observations with very weakly
detected pulses. The cases where EFACs take values signifi-

cantly lower than one are either due to strong overestimation
of the uncertainties or when a system’s EFAC and EQUAD
are highly correlated.

We examine in a similar way the distribution of EQUAD
values. Figure 5 shows the distribution of the measured ML
EQUAD values from the analysis using log-uniform EQUAD
pPDs, and the distribution of their upper limits. As ex-
pected, in the vast majority of cases, the EQUADs are much
below the TOA precision, which typically ranges from 0.5-
10µs (D15).

We have examined the EQUAD PPDs from the anal-
ysis with log-uniform pPDs to determine the cases where
EQUADs have well-constrained PPDs and therefore show
measurable EQUADs. For some of these cases, this could
reflect signs of jitter noise present in the data. We list these
pulsars and observing systems in Table 4. We note that there
are 49 cases where the EQUAD PPDs are semi-constrained
and significantly covariant with EFACs, and therefore can-
not be considered as significant EQUAD measurements.
From Table 4 we can see that the vast majority of EQUADs
come from L-band systems, which typically have the most
sensitive data. For each pulsar there are usually only one or
two systems with clear EQUAD measurement with the ex-
ception of PSR J1022+1001. This source is known to require
a high level of polarimetric calibration (van Straten 2013)
and to show phase jitter noise (Liu et al. 2015). Only part of
the NRT data were calibrated and this may explain the high
levels of EQUADs in this source. We stress once again, that
more detail investigation is required to comment on the ori-
gin of the EQUAD measurements. It is likely that EQUADs
could reflect additional scatter in the residuals from instru-
mental instabilities or analysis systematics, which could ex-
plain the EQUAD measurements in systems where the TOA
precision is too low to expect any measurements of pulse
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Figure 3. Comparison of the timing noise parameters estimated with the Bayesian (blue, filled diamonds for the maximum likelihood
values, black, filled circles for the median values with 1-σ error bars and blue, filled triangle for upper limits) and frequentist method

(red, filled squares and red, open triangles for upper limits). Top Row: Results for the cases where the Bayesian analysis resulted in

well-constrained posterior probability distributions for both parameters. Middle Row: Results for the cases where the Bayesian analysis
resulted in semi-constrained posterior probability distributions for at least one of the parameters. Bottom Row: Results for the cases

where the Bayesian code resulted in unconstrained posterior probability distributions for at least one of the parameters.
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Figure 5. Distribution of EQUAD values for all MSPs and ob-

serving systems. The solid line refers to the results of the Bayesian

analysis for which the EQUAD priors are set to uniform to get
their upper limit values, while the dashed line is for the analysis

were EQUAD priors are uninformative log-uniform.

jitter noise (as in the case e.g. of PSR J2033+1734, see Ta-
ble 4.)

5 TIMING NOISE FROM INDIVIDUAL
OBSERVING SYSTEMS

For MSPs which have large enough data span with over-
lapping data from various observing systems we examine

Table 4. List of the pulsars and observing systems for which we
have well-constrained posterior probability distributions for the

EQUADs. The last column shows the EQUADs maximum likeli-

hood values from a Bayesian analysis with log-uniform EQUAD
prior distribution. The telescope and backend acronyms are as

introduced in Section 2.

PSR Telesc. Backend Freq. EQUADML

J-Name (MHz) (µs)

J0751+1807 EFF EBPP 1360 5.0

J1012+5307 EFF EBPP 1360 3.4

J1022+1001 JBO DFB 1520 1.4

NRT BON 1400 1.3

EFF EBPP 1410 3.9

J1643−1224 JBO DFB 1520 2.5

J1744−1134 JBO DFB 1520 1.0

J1857+0943 NRT BON 1400 0.9

J1939+2134 NRT DDS 1400 0.3

EFF EBPP 1410 0.3

J2033+1734 NRT BON 1400 25

J2145−0750 NRT BON 2000 0.3

JBO DFB 1520 0.9

whether part of the measured TN is present only in spe-
cific observing systems. We perform the noise analysis on
selected pulsars with data from one telescope removed at a
time. For the Effelsberg data, this is more complicated for
many MSPs where it is the only telescope with data in the
first half of the data set, so removing its data automatically
means a loss of about half the data span. We note that this
test may not be feasible in some cases with this data set, e.g.
when a significant fraction of the residuals sensitivity to the
TN is lost when removing a set of dominant, very precise
data points. When the TN was absent after removing data
from one telescope, we confirmed that the rest of the data
would be sufficient to detect the noise by simulating reali-
sations of the new data and performing the noise analysis
after injecting TN with the measured properties.

Our analysis shows evidence for TN specific to the
NRT data. Figure 6 shows the PPDs for the TN parame-
ters when using the full data set and when excluding the
NRT data, and the respective ML TN waveforms. For PSR
J1022+1001 the PPDs become significantly broader when
excluding the NRT data. The mean value of the amplitude
reduces by two orders of magnitude and the TN waveform
becomes smoother, although the waveform has almost un-
changed peak-to-peak variations. The TN parameters PPDs
of PSR J2145−0750 show a bimodality, which is not present
when removing the NRT data. The two TN waveforms are
almost identical, apart from the fact that the waveform of
the full data set shows a bump around MJD 56000, which is
not present when removing the NRT data. These effects are
most likely caused either by additional noise in the NRT data
from instrumental instabilities or by some additional non-
instrumental noise component that only the NRT data are
sensitive to, having indeed the highest precision TOAs. We
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stress that since we have assumed the TN to be stationary,
the properties of instrumental noise during a specific time-
interval can leak into the estimated TN waveform through-
out the pulsar data set. We note that there were known
instrumental instabilities at the NRT during the period be-
tween MJD 54300-54500 (July 2007 to February 2008).

This analysis can be better performed using the Inter-
national Pulsar Timing Array (IPTA) data set (Verbiest et
al., submitted) where data from another 3 telescopes are
included, offering a larger amount of multi-telescope over-
lapping data. The presence of observing system-dependent
noise is more extensively investigated in the paper examin-
ing the noise properties of the IPTA data set (Lentati et al.,
submitted.).

6 TIMING NOISE FROM ERRORS IN
TERRESTRIAL TIME STANDARDS

During pulsar timing observations, the TOAs are referenced
against the local atomic clock (e.g. Hydrogen maser clock)
or a Global Positioning System (GPS) clock5. These clocks
are stable on timescales of weeks, allowing good phase keep-
ing (1-pulse-per-second signal) during observations. These
clocks, however, show instabilities on timescales of months
to years and the TOAs recorded using them, are therefore
not suitable for high-precision pulsar timing projects. This
problem can be mitigated through the application of a series
of corrections based on monitoring the offsets between pairs
of clocks (see e.g. Hobbs et al. 2006, 2012).

Cross-correlating the pulse profiles with the template
profile references all arrival times to the same (arbitrary)
phase, forming the topocentric TOAs. Unless the time-
stamping was performed using a GPS clock, the TOAs are
then converted to GPS-based Universal Coordinated Time
(UTC) time, using clock correction files, created by calcu-
lating the difference between the local atomic clock and the
GPS times. This is then converted to UTC and subsequently
to the International Atomic Time (TAI) standard. TAI is
formed by the weighted average of the time-scales of sev-
eral hundred atomic clocks around the world and subsequent
frequency adjustments using primary frequency standards.
These adjustments are made over timescales of years, a pro-
cess known as “steering”. As a result, TAI can have errors
during the steering periods which are never retroactively cor-
rected. For these reasons, for pulsar timing we use the correc-
tions on TAI provided by the Bureau International des Poids
et Mesures (BIPM)6. These corrections are made through
measuring offsets between various clock pairs to achieve the
best possible precision and are regularly updated.

Any possible remaining errors in the BIMP terrestrial
time standard or error propagated to the TOAs by system-
atics when referencing the TOAs to the various time stan-
dards, will lead to a “clock error” signal, a monopolar corre-
lated signal in the PTA sources, i.e. a signal with the same
waveform in all pulsars and observing systems. As discussed
in Tiburzi et al. (2016), the mitigation of the clock error sig-
nal is of central importance in PTA efforts for GW detection.

5 This is the case for the NRT data
6 http://www.bipm.org/

In this section, we search for a terrestrial clock error in the
data set to determine how much of the measured noise can
be attributed to clock error noise. Previously, Hobbs et al.
(2012) presented their measurement of the clock error using
data from the PPTA and discussed how pulsars can serve as
an independent, non-terrestrial time standard.

6.1 Methodology and results

We use a maximum likelihood estimator to infer the clock
error signal. The clock-error noise is modelled as a red-noise
process power-law with power spectral density described by
Eq. (3), with amplitude Aclk and spectral index γclk. Using
the results on these parameters, we subsequently construct
the ML signal waveform.

For this analysis, we set the TN parameters of the MSPs
to the ML values from the Bayesian analysis with uniform
pPDs on the TN amplitude (as described in Section 3.2).
In this way, we derive the ML solution for the clock-error
noise with the higher possible amplitude, given our TN re-
sults. We use the residuals after subtracting the ML DM
variations signal as in Section 3.3, to focus on the TN only.
The likelihood function is similar to Eq. (8) but with the
extension to multiple pulsars to investigate the clock signal,
which is identical among all pulsars, as:

L ∝ 1√
|C|

e−
1
2

∑
i,j,I,J (tI,i−τI,i)C

−1
I,J,i,j

(tJ,j−τJ,j) , (15)

where the index I, J are for pulsars, and index i, j are for
the time epoch. The total covariance matrix now includes
the covariance matrix of the clock error signal, Cclk, while
not including the matrix of the DM variations such that,
C = Cw + CTN + Cclk. The intrinsic noise of pulsars is
not correlated between pulsar pairs, so Cw I,J = 0 and
CTN I,J = 0 for I 6= J . The clock error waveform is identical
in all pulsars, therefore its covariance matrix components
can be expressed as Cclk I,J,i,j = Cclk(ti − tj)Cclk I,J , with
Cclk I,J = 1 for all I,J pairs. The likelihood function shows
that for the estimation of the clock noise parameters we con-
sider both the the clock error signal on the residuals of each
pulsar (autocorrelation effect) and the cross-correlation of
the residuals between pulsar pairs.

We make the linear approximation of the timing model
as described in van Haasteren et al. (2009), i.e. consider-
ing linear deviations of the true timing parameter values,
ε, from the least-square-fit timing model values, ε0, via
the linear relation δ(ε) = ε - ε0. We therefore substitute
the expression for the residuals in Eq. (15), t − τ(ε), with
δt = δtpost −Mδ(ε); δtpost are the post-fit timing residuals
and M is the design matrix of the timing parameters. We
marginalise analytically over all timing parameters and get
the reduced likelihood function:

L ∝ 1√
|C|

e−
1
2

∑
i,j,I,J (δtI,i)C

′−1
I,J,i,j

(δtJ,j) , (16)

with C′ = C−1−C−1M(MTC−1M)−1MTC−1. Going one
step further, we split the deterministic signal between that
of parameters for which we want to marginalise over (usually
the timing model parameters), δt′ and the signal of parame-
ters we assume unknowns of the likelihood function (see e.g.
Section 7.2). We note the latter parameters with the vector
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Figure 6. Top panel: Comparison of the 1-dimensional marginalised posterior probability distributions of the timing noise parameters

when using the full EPTA data set (solid, black lines ) and the data subset which does not include any NRT-BON data (blue, dashed

lines). Bottom panel: Comparison of the timing noise waveforms (tTN) when performing the noise analysis on the full EPTA data set
(filled black diamonds) and the data subset which excludes the NRT-BON data (open blue circles). See Section 5 for a discussion.

lambda, and assume their waveforms to be described by the
S(λ). The likelihood function is then re-written as:

L ∝ 1√
|C|

e−
1
2

∑
i,j,I,J (δt′I,i−S(λ)I,i)C′

−1
I,J,i,j

(δt′J,j−S(λ)J,j) ,

(17)

We sample Aclk and γclk over a uniform grid of values and
search for the model that maximises the likelihood. The am-
plitude is sampled with values of log(Aclk) ranging from
−17.0 to −14.0 with a step of 0.1, while the spectral in-
dex values range from 0.5 to 5 with a step of 0.1. Due to
the large condition number of the clock error’s covariance
matrix, the individual likelihood computations are unsta-
ble. As such, the direct search for the ML solution with
uniform grids produces non-desirable artefact (non-physical
likelihood maxima). To avoid these effects, we performed a
large number of trials by dithering noise parameters with

randomised offset values within each search grid. The like-
lihood value of the grid is taken to be the maximum of all
trials.

To reduce the computational cost of the analysis we use
the “restricted data set” proposed in Babak et al. (2016).
This consists of six MSPs from the full data set, which give
90 % of the sensitivity to CGWs. This “restricted data set”
has also been used in the derivation of upper limits to the
amplitude of GWs with the EPTA Legacy data set (Lentati
et al. 2015; Taylor et al. 2015; Babak et al. 2016). The “re-
stricted data set” contains the pulsars PSRs J0613−0200,
J1012+5307, J1600−3053, J1713+0747, J1744−1134, and
J1909−3744.

We find a ML solution at Aclk = −15.2 and γclk = 4.8.
We use these values to calculate the ML waveform of the
signal, shown in Fig. 7. The clock signal waveform can be
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Figure 7. The estimated waveform of the clock-error noise. The
filled circles is the maximum likelihood waveform (tclk). The

dashed lines indicate the 68% confidence intervals. For the es-

timation of the waveform, we used the upper limits for the values
of the individual pulsar timing noise parameters providing upper

limits for the clock error noise parameters.

estimated in the same way we did for TN:

tclk = CclkC
−1t . (18)

with uncertainties estimated as:

σclk = Cclk −CclkC
−1Cclk (19)

The upper limit clock error waveform has an rms value of
0.17µs. By integrating Eq. (3) from the lowest to the highest
spectral frequency for the clock error noise we derive the
average power of the signal. We can compare this to the
average power of the noise for each MSP, which is calculated
by adding the TN average power and the white noise average
power (SW, as in Eq. 13). We find that the contribution of
the clock error noise to the total noise levels of the individual
pulsars is less than 1%.

7 EFFECTS OF TIMING NOISE ON
PROSPECTS FOR GW DETECTION

Various studies have examined the sensitivity of PTAs to
GWB signals (e.g. Jenet et al. 2005; Lee et al. 2012; Siemens
et al. 2013). These studies focus on making detection signif-
icance estimations and projections based on analytic formu-
lae or scaling laws, which are derived assuming a given de-
tection technique. These estimates are usually made based
on specific assumptions, such as: the TOAs are regularly
sampled and simultaneous across pulsars, that the measure-
ment precision is constant and identical for all pulsars and
the absence of low frequency noise. The detection signifi-
cance is usually expressed as the precision by which the di-
mensionless amplitude can be measured for a given spectral
index.

In this paper we make use of the Crámer-Rao lower
bound (CRLB) to investigate the limitations of using the

present data set in detecting GWs, both for stochastic
isotropic GWBs and CGWs from SMBHBs. The advantage
of this method is that it takes into account all the obser-
vational properties of the data, such as cadence, white and
TN levels, while still using analytic calculations that demand
very few computational resources and does not require data
simulations. The impact of the TN present in the data on
the PTA’s sensitivity to GWs can then be estimated by com-
paring the CRLB when using the full covariance matrix and
when omitting the TN component.

The CRLB states that, for any unbiased estimator, the
variance is equal to or higher than the inverse of the Fisher
information matrix, I. When the equality is valid the esti-
mator is also“fully efficient”(Fisz 1963). As discussed in Val-
lisneri (2008), the ML estimator (which we use in this anal-
ysis for the GW amplitude as described below) can achieve
the bound in the high S/N regime. For the amplitude of GW
signals, the CRLB represents the lowest uncertainties (in
case of detection) or upper limits (in case on non-detection)
any unbiased estimator can achieve. We note, that although
the CRLB is underperformed by all unbiased estimator, in
principle it can be outperformed by a biased estimator (Val-
lisneri 2008). The interpretation of the bound as the ampli-
tudes upper limit in the non-detection case warrants more
caution, since by default it assumes we are outside the high
S/N regime. Nevertheless, it is unlikely that other estima-
tors can provide lower upper limits than the CRLB under
the same assumptions. For the purpose of evaluating the
role of TN on the data’s sensitivity to GWs, we are primar-
ily interested in the ratio of the CRLB when assuming only
white noise in the data and when the TN is taken into ac-
count. Therefore, even if the individual CRLB results are
not optimal, their ratio should be representative of the ef-
fects of TN. The CRLB calculated in the presence of TN
are in fact comparable7 to the amplitude limits derived in
Lentati et al. (2015) and Babak et al. (2016) using more
rigorous algorithms.

In its general form, the CRLB is formulated as follows.
Given a likelihood function, f(λ,x), where x is the data and
λ are the model parameters, the CRLB is:

Cov(λ) = 〈σλiσλj 〉 ≥ I−1
ij , (20)

where the indices i and j denote the different parameters and
Iij is:

Iij =

〈
∂ ln f(x,λ)

∂λi

∂ ln f(x,λ)

∂λj

〉
≡ −

〈
∂2 ln f(x,λ)

∂λi∂λj

〉
(21)

It is well-known that I can be analytically calculated for
Gaussian likelihood functions (as is Eq. 8), and results in
the so-called Slepian-Bangs formula (Slepian 1954; Bangs
1971):

Iij =
1

2

{
tr
[
C−1 ∂C

∂βi
C−1 ∂C

∂βj

]
+
∂S(λ)

∂λi
C−1 ∂S(λ)

∂λj

}
. (22)

7 Note that the CRLB refers to the equivalent of a 68% C.L.
Typically, the 95% C.L. is reported in the PTA literature for the

amplitude of GWs.
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Here, βi are the model parameters describing the covari-
ance matrix, λi, are the parameters describing the unknown
waveform S and tr is the matrix trace.

We make use of the same maximum likelihood estimator
as in Section 6 (Eq. 17), but we replace the stochastic clock
error signal with that of a stochastic and isotropic GWB and
we set S(λ) to be the CGW signal from a single SMBHB,
as detailed in Section 7.2. The likelihood function (Eq. 17)
uses a total covariance matrix which includes the covariance
matrix of the GWB, such that C = Cw +CTN +Cgwb. The
GWB’s covariance matrix, is dictated by the expected cor-
relation coefficient in the residuals of every pulsar pair, de-
scribed by the overlap reduction function (Finn et al. 2009),
Γ(ζ), defined as:

Γ(ζ) =
3

8

[
1 +

cosζIJ
3

+ 4(1− cosζIJ)ln
(

sin
ζIJ
2

)]
(1 + δIJ).

(23)

Here, ζIJ is the angular separation between the I-th and
the J-th pulsar, and δIJ is the Kronecker delta. In principle,
both an Earth and a pulsar term contribute to the correla-
tion and δIJ accounts for the latter. In the short-wavelength
approximation, i.e. when the pulsars are separated from the
Earth and from each other by many GW wavelengths, the
overlap reduction function is also known as the Hellings-
Downs curve (Hellings & Downs 1983). The components of
the covariance matrix of the GWB are then expressed as
CgwbI,J,i,j = Cgwb(ti− tj)Γ(ζIJ). As in the case of the clock
error covariance matrix (Section 6.1), the form of the covari-
ance matrix allows the calculation of the CRLB to include
both the autocorrelation and cross-correlation effects of the
GW.

For this analysis, we use the same six MSPs that we
used to estimate the clock error noise parameters in Sec-
tion 6.1 and we set the TN properties to their ML values as
estimated with the Bayesian pulsar noise analysis described
in Section 3.2 and presented in Table 2. As discussed in
Section 6.1, the estimation that the sensitivity loss to GWs
when using this data subset is below 10 % was made for the
case of CGWs. For low-frequency stochastic signals such as
the GWB or the clock error signal, the sensitivity loss should
be less. For CGWs, adding a pulsar with precise data only
in part of its data span can increase the S/N of a detection
significantly if the SMBHB orbit is fully sampled. In the case
of the GWB, however, the targeted correlated signal must
be found in cross-correlations of TOAs across a long time-
span of order equal to the inverse of the GW frequency, with
sufficient precision. We have verified this by calculating the
CRLB for the GWB using 40 MSPs and noting an improve-
ment in the amplitude limit of order 2 %. The scaling of
the sensitivity to GWs with the number of MSPs, the S/N
regime of the targeted signal and other factors have been
studied elsewhere (e.g. Babak & Sesana 2012; Siemens et al.
2013) and is outside the scope of this work.

In order to focus on the impact of TN only, we mitigate
the DM variations beforehand by subtracting the ML DM
variations waveforms from the residuals. For detailed deriva-
tions and astrophysical interpretations on GW limits using
the EPTA Legacy data set, we refer the reader to Lentati
et al. (2015), Taylor et al. (2015) and Babak et al. (2016) for
the cases of a stochastic and isotropic GWB, the anisotropy

in the GWB and the CGW from individual SMBHBs re-
spectively.

7.1 Stochastic Gravitational-Wave Background

When estimating the CRLB for the GWB amplitude, the
terms with partial derivatives of S are zero and Eq. (22)
reduces to

Iij =
1

2
tr
[
C−1 ∂C

∂βi
C−1 ∂C

∂βj

]
. (24)

We calculate the CRLB for the GWB amplitude, keeping
each time the GWB spectral index fixed. We do so for a
range of spectral indices, from −2 to 1, which covers GWB
signals often discussed in PTAs literature, e.g. from SMB-
HBs, cosmic strings and the relic GWB from the inflationary
era.

This simplified approach intends to provide an under-
standing of the difficulties the TN imposes on the detection
of the various GWBs probed by PTAs. It is not exhaus-
tive, since each of these GWBs can in general have a range
of possible spectral index values. In the case of SMBHBs,
this depends on the orbital eccentricities and whether the
SMBHBs are coupled to their stellar and gaseous environ-
ment or they are driven by GW emission only (Sesana 2013).
The often used power-law index of −2/3 refers to circular,
GW-driven SMBHBs (Rajagopal & Romani 1995; Jaffe &
Backer 2003). Strong environment coupling and high orbital
eccentricities can cause a turnover of the spectrum at low-
frequencies (e.g. Fig. 2 in Sesana 2013). The value -7/6 we
have used for the spectral index of the cosmic string GWB
has been analytically derived using a simplified approxima-
tion of the loop number density and assuming cusp emis-
sion (e.g. Damour & Vilenkin 2005). However, especially in
the frequencies probed by PTAs, a wide range of spectral
indices is possible, depending on some characteristic param-
eters used to describe the evolution of the network and the
details of the dominant GW emission mechanism, and one
typically sets limits on the amplitude for a range of these
parameters (Sanidas et al. 2012) For the cosmological relic
GWB, a spectral index of −1 is often cited (Grishchuk 2005).
For more details on the sources of the various GWBs and de-
tails on the derivation of amplitude limits as function of the
spectral index and other physical parameters, we refer the
reader to Lentati et al. (2015); Arzoumanian et al. (2015)

The CRLBs are calculated using the TN parameters
from the two Bayesian analyses, using different types of
pPDs on the TN noise amplitude. For each set of TN results,
we calculate the CRLB for two cases, namely assuming the
presence of the measured white and TN, or assuming only
the measured white noise levels, and finally, calculate their
ratios. Figure 8 shows the results for both cases. The results
for the spectral indices representative of GWBs from SMB-
HBs, cosmic strings and relic GWs are presented in Table 5.
The improvement factor on the lower bound when assuming
no TN in the data is always more than an order of magni-
tude, ranging from 9.1 to 11.4. These results demonstrate
how strongly TN can reduce the data’s sensitivity to GWs.
To stress this even further, we note that the upper limits
on the GWB amplitude by SMBHBs (spectral index −2/3)
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Table 5. Results for the Crámer-Rao bound (CRLB) on a GWB

for the expected signals from SMBHBs (α = −2/3), cosmic

strings (α = −7/6) and cosmological relic GWs (α = −1) (see
Section 7.1 for a discussion on the noted spectral indices). We tab-

ulate the CRLB assuming both the measured white- and timing-

noise levels, (AGWBwr ) for measured and upper limit values and
white-noise levels only (AGWBw ).

Max. likelihood TN

αGWB AGWBwr AGWBw

AGWBwr
AGWBw

-2/3 8.3×10−16 9.1×10−17 9.1
-7/6 4.6×10−17 4.4×10−18 10.3

-1 3.5×10−16 3.5 × 10−18 10.0

Red noise upper limits

-2/3 9.2×10−16 8.5×10−17 10.7
-7/6 4.7×10−17 4.1×10−18 11.4

-1 3.7×10−16 3.3×10−17 11.1

by PTAs have improved by a factor of ten over the past ten
years.

7.2 Gravitational Waves from single SMBHBs

Here we focus on CGWs from resolvable, GW-driven SMB-
HBs with circular orbits and without measurable frequency
evolution of the signal over the observing interval due to en-
ergy loss from the binary by GW emission (an effect known
as frequency chirping, see e.g. Hughes (2009)). The wave-
form (S) of CGWs has been calculated by many indepen-
dent studies (e.g. Wahlquist 1987; Blanchet 2006; Hughes
2009). For each SMBHB, the waveform is characterised by
seven parameters, namely the GW amplitude, frequency and
phase, the SMBHB’s sky co-ordinates (right ascension and
declination), orbital inclination, and direction of the binary’s
ascending node on the sky. Clearly, the terms with partial
derivatives of C are zero for the single SMBHB signal and
Eq. (22) reduces to

Iij =
1

2

∂S

∂λi
C−1 ∂S

∂λj
. (25)

Due to the seven parameters, the covariance matrix for the
single GW source is a 7× 7 matrix. The CRLB of the single
source amplitude depends on the GW frequency, source po-
sition, orbital inclination and orientation. It has been shown
(Lee 2013) that the precision estimation of the GW source
position using CRLB would be poor, due to the lack of a
unique un-biased estimator for the single source problem.
The statistics of the amplitude estimator, on the other hand,
can be well described by the CRLB, which determines the
sensitivity of a PTA as function of frequency. The sensitivity
depends on the GW source position. We estimate the CRLB
for three scenarios: placing the SMBHB at the sky position
where the PTA has the minimum and maximum sensitivity
as well as the average of all positions on the sky. Our results
are given in Fig. 9. The low-frequency sensitivity extends
to values lower than the frequency resolution (1/T) because
the GW low frequency signal still leaks power into the ob-
serving window after the pulsars’ spin and spin-down fitting.

Table 6. Results for the Crámer-Rao lower bound (CRLB) on

the strain amplitude of continuous GWs from resolvable SMBHBs

with circular orbits and without measurable frequency chirping.
We quote the limits for the cases when the SMBHB is at the sky

location where the PTA has the maximum (max) and minimum
(min) sensitivity, and the average of all sky positions (avg) at

GW frequencies of 5 and 7 nHz. For each case we quote the limits

when accounting for the white and the TN of the data, ACGWwr

and for the white noise only, ACGWw . The last column shows the

ratio of the limits for these two cases.

GW freq. ACGWwr ACGWw

ACGWwr
ACGWw

(nHz)

Max PTA sensitivity

5 1.2×10−14 2.1×10−15 5.6

7 9.1×10−15 3.8×10−15 2.4

Avg PTA sensitivity

5 4.0×10−15 8.1×10−16 5.0

7 2.7×10−15 1.1×10−15 2.4

Min PTA sensitivity

5 1.3×10−15 2.4 × 10−16 5.3
7 1.0×10−15 4.4 × 10−16 2.3

This causes the curve to rise below the frequency resolution.
The rise of the curve at high GW frequencies is due to the
PTA frequency response, as the GW induced timing resid-
uals are the time integral of the GW strain. The peak at
1 yr−1 (3.17×10−8 Hz) is caused by the pulsar sky position
fitting.

The improvement in the PTA sensitivity at low fre-
quencies is obvious from Fig. 9. One can clearly notice how
the presence of TN flattens the sensitivity below ∼10 nHz,
which, in contrast, keeps improving in the case of timing
data free of TN. In the absence of TN, the sensitivity at
low GW frequencies is only limited by the PTA’s frequency
resolution. Table 6 summarises the CRLBs for the CGWs
amplitude at frequencies of 5 and 7 nHz and the improve-
ment factors to the sensitivity when the data do not have
TN, which range from 2.3 to 5.6.

8 CONCLUSIONS

In this paper, we have characterised the noise properties for
42 MSPs, using the EPTA Legacy data set. While the cen-
tral focus is on the timing noise properties, we have also
characterised the white noise properties of the data. The
long time-spans of the pulsar data sets (the shortest be-
ing 6.9 years and the longest 24.1 years long) of high-quality
timing data, are especially valuable for determining the tim-
ing noise. In order to increase our confidence in the results,
we have employed two established methods, one based on
Bayesian and the other one on power-spectral analysis. We
used the Bayesian pulsar timing analysis package TempoN-

est to simultaneously determine the time-correlated timing
noise, DM variations and uncorrelated noise (white-noise)
properties. In order to focus the comparison between the
methods on the timing noise characterisation, we used the
maximum likelihood TempoNest results on DM variations
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Figure 8. Crámer-Rao lower bounds (CRLBs) for the strain amplitude of GWBs, AGWB for a range of spectral indices, αGWB . Squares

denote the values shown in Table 5. Left panel: CRLBs calculated bounds using the TN maximum likelihood parameters from the

Bayesian analysis using log-uniform priors on the TN amplitude (solid lines and filled squares) and using uniform priors on the TN
amplitude (upper limits on TN; dashed lined with open squares). Blue symbols are for limits calculated assuming timing and white noise,

while black symbols when only the white noise levels are taken into account. Right panel: The ratio of the CRLBs for when assuming

timing and white-noise and white noise only in the data. The blue solid line is when using the timing noise properties the analysis with
log-uniform priors and the while the black dashed line is for the analysis with uniform priors.
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Figure 9. Results for the Crámer-Rao lower bound (CRLB) on the strain amplitude of continuous GWs, ACGW , against the CGW

frequency, fCGW, from resolvable SMBHBs with circular orbits and without measurable frequency chirping. The different curves are for

the cases where the SMBHB is at the sky location where the PTA has the maximum (cyan, dot-dashed lines) and minimum (black,
dotted lines) sensitivity, and the average of all positions on the sky (red, solid lines). The vertical line show the frequency resolution of

the PTA, 1/T, where T is time-span of the pulsar with the longest data set. Left panel: Sensitivity curves when accounting for the white

and the timing noise of the data. Right panel: Sensitivity curves when only accounting the white noise of the data. The additional blue,
thick double dot-dashed line is the case for mean PTA sensitivity when including the timing noise as in the left panel (red, solid line)

for better comparison.

and white-noise parameters as a priori known information
when performing the frequentist analysis, based on a devel-
oped power-spectral analysis code described in this paper.
For pulsars with statistically significant timing noise mea-
surements, the two methods give statistically consistent re-
sults.

The lack of sufficient multi-frequency data in 17 pulsars
where timing noise is detected leads to strong covariances
between the timing noise and DM variations, causing the
posterior distributions of the noise parameters derived from
the Bayesian analysis to have probability tails extending to
±∞. These reflect the small probabilities of the noise ampli-
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tude to be zero, causing some deviations between the max-
imum likelihood and mean values of the parameters. The
values of the ML and mean parameters as well as the pa-
rameter values estimated with the power-spectral analysis,
are still however statistically consistent. Upper limit analy-
sis is performed in these cases to set robust upper limits on
the timing noise amplitude.

Our analysis shows evidence of timing noise specific to
the NRT data, which are likely linked to improper polar-
isation calibration in a roughly six-month-long epoch. We
have also placed an upper limit on clock-error timing noise
and find that it contributes at most 1% to the total noise in
the MSPs under examination. Finally, we assessed the role
of timing noise in the efforts for GW detection using PTAs.
We did so by estimating the Crámer-Rao lower bound on
the strain amplitude of a stochastic GWB and CGWs from
resolvable SMBHBs, accounting only for the measured white
noise first and then adding the measured timing noise prop-
erties. We find that, for GWBs, the timing noise in this data
set reduces the sensitivity of this data set by a factor of 9.1
to 11.4, depending on the GWB spectral index. For CGWs,
the sensitivity reduces by a factor of 2.3 to 5.6, depending on
the GW frequency and the sky position of the SMBHB with
respect to the sky position where the PTA is most sensitive.

The results of this paper stress in a clear way the imper-
ative need of PTAs to improve the noise characterisation and
mitigation techniques and the development of good observ-
ing and data reduction practices to avoid introducing timing
noise due to systematics. It also demonstrates the demand
for new discoveries of MSPs that are not only bright, but
also exhibit stable rotation. The rotational stability of pul-
sars can only be evaluated via timing-noise characterisation
on data sets that are at least five years long, making the
long-term follow-up timing observations of newly discovered
MSPs essential for PTA observing campaigns.
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