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Abstract15

Aeromagnetic and gravity data have proven to be among the most effective methods for 16

mapping deeply buried basin/basement interfaces. However, the data interpretation 17

generally suffers from ambiguities, due to the non-uniqueness of the gravity and magnetic 18

signatures. Here, we tie the gravity and magnetic signatures with a petrophysical 19

characterization of the lithologies outcropping around the French Paris Basin. Our 20

methodology investigates the lithology and structure of its hidden Variscan substratum at 21

the junction between the Armorican Massif and Massif Central. Our approach is based on 22

the combination of potential field data, magnetic susceptibilities measured in the field, 23

density values of sample rocks and information documented in boreholes, in order to 24

propose a new interpretative geological map of the buried substratum of the Paris Basin.25

The petrophysical description is combined with geophysical patterns of the substratum,26

mapped through statistical unsupervised classification of suitably selected magnetic and 27

gravity maps. The first step of interpretation consists in extending the outcropping major 28

structures below the Meso-Cenozoic sedimentary cover of the Paris Basin. The litho-29

structural units, in between these major structures, are then interpreted separately. The 30

second step consists in assigning lithologies within each unit, with respect to its31

magnetization and density (as derived from the petrophysical compilation), and mapping its 32

extension under cover, integrating punctual borehole information. Overall, with a special 33

emphasis on relating geophysical signatures and petrophysical characteristics of litho-34

structural units, this methodology permits a precise structural and lithological cartography of 35

a segment of the buried Variscan substratum. In the southwestern part of the Paris Basin, 36

this approach reveals: i) the limited eastward extension of Central Brittany, ii) the eastward 37

extension of the major Cholet fault, iii) the emphasis on N150E-N160E striking fault and 38
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their N30E conjugates, controlling the opening of Permo-Carboniferous basins, and iv) the 39

eastward extension of the Eo-Variscan suture.40

Keywords: aeromagnetic, gravity, Paris Basin, Variscan substratum, petrophysical data, 41

undercover mapping42

1. Introduction43

The European Variscan belt belongs to a several thousand-km-long Late Paleozoic orogen44

extending from the Appalachians in the eastern North America, to Polish Sudetes, through 45

the Mauritanides in West Africa. This belt, formed by Proterozoic to Carboniferous rocks, 46

constitutes the Pre-Mesozoic basement of a large part of Western and Central Europe. In 47

France, the Variscan belt presently crops out in several massifs, namely: Massif Central, 48

Armorican, Ardennes, and Vosges Massifs and in the basement of the Cenozoic Alpine and 49

Pyrenean belts. The continuity between these massifs is hidden by several Mesozoic to 50

Cenozoic sedimentary basins, such as the Paris or Aquitaine Basin (Fig. 1)51

The Paris Basin is an intraplate sedimentary basin, set up on the Variscan substratum that 52

crops out in the above massifs (Pomerol, 1978; Mégnien; 1980, Perrodon and Zabek, 1990;53

Guillocheau et al., 2000; Chantraine et al., 2003) (Fig. 1). It is well known that lithologies54

and structures of the southern part of the Armorican Massif and the Massif Central are 55

closely related (Autran and Lameyre, 1980; Matte and Hirn, 1988; Virlogeux et al., 1999;56

Faure et al., 2005; Cartannaz et al., 2006; Gébelin et al., 2007; Ballèvre et al., 2009; Rolin 57

et al., 2009); however, their connection is still poorly known, as it hidden by the Meso-58

Cenozoic Paris Basin sedimentary cover. Both massifs are composed of several litho-59

tectonic units separated by crustal-scale shear zones, such as the North Armorican Shear 60

Zone (NASZ) and the South Armorican Shear Zone (SASZ), in the Armorican Massif or the61

Marche Fault in the Massif Central (Fig. 1). In addition, the Nort-sur-Erdre fault of the 62
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Armorican Massif (NSE F.; Fig. 1) is acknowledged as the Eo-Variscan suture (Fig. 1)63

(Matte, 1986; Le Corre et al., 1991; Ballèvre et al., 1992; Lardeux and Cavet, 1994; Faure 64

et al., 1997; Cartier et al., 2001; Bitri et al., 2003). The eastward extension of the Armorican 65

litho-structural units has already been integrated in large-scale geodynamic reconstructions 66

of the Variscan belt, either based on geological evidence (e.g. Matte, 1986; Faure et al., 67

2005; Ballèvre et al., 2009; Martínez-Catalán, 2012, Edel et al., 2015) or on low to medium-68

resolution regional geophysics (e.g. Edel, 2008). There is no agreement on the limits and 69

nature of the units, and geodynamic significance is still under debate. A way to ascertain 70

these models would be to fill the geological observation gap caused by the Meso-Cenozoic 71

sedimentary cover of the Paris Basin by new high resolution data.72

In the second half of the 20th century, the Paris Basin substratum started being investigated73

using gravity data (Goguel and Francia, 1954), deep boreholes (Lienhardt, 1961) or deep 74

seismic profiles (Matte and Hirn, 1988). A combination of gravity and intermediate to low 75

resolution aeromagnetic data was used in the southwestern part of the Paris Basin 76

(Weber, 1973). The extension of this last study to the entire Paris Basin led to the first 77

version of a pseudo-lithological and structural sketch of the pre-Mesozoic substratum of the 78

Paris Basin (Debeglia and Weber, 1980). More recently, on the basis of the combination of 79

new high resolution magnetic data and updated gravity data, Martelet et al., (2013)80

proposed a method to characterize the substratum geometry of the central-south part of the 81

Paris Basin, but no detailed lithological interpreted map was produced yet.82

In addition, a map of the buried substratum around the Poitou High was proposed on the 83

base of detailed structural analysis and drilling information (Rolin and Colchen, 2001).84

Because we now benefit from recent high resolution aeromagnetic data on the entire 85

southwestern part of the Paris Basin, we are now able to address the litho-structural pattern 86

of its buried substratum with an unprecedented resolution. Complemented by a 87
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characterization of the field petrophysical properties of the various litho-structural units, our 88

work ascertain cartographic interpretations of the geophysical signatures. Our methodology 89

emphasizes the processing of interpretation of potential field data to derive a high-90

resolution structural map. Combining the latter with field petrophysical properties, lithologies 91

were then interpreted in each litho-structural unit, leading to a new geological map of the 92

Paris Basin substratum.93

The extensions of the litho-structural units as well as the lithologies of the Variscan and 94

their regional geological implications are further discussed.95

96

2. Geological setting97

The Paris Basin is a low subsidence Meso-Cenozoic sedimentary basin. It is composed of 98

silico-clastic and calcareous rocks (Pomerol, 1978; Mégnien, 1980; Perrodon and Zabek, 99

1990; Guillocheau et al., 2000; Beccaletto et al., 2011). It is set up on a Variscan 100

substratum including Permo-Carboniferous basins. In the study area, the formations 101

constituting the Variscan substratum of the Paris Basin laterally outcrop in the Armorican 102

Massif to the west and the Massif Central, to the south, respectively (Fig. 2a).103

The Armorican Massif is composed of several litho-structural units separated by crustal-104

scale faults and characterized by distinct lithologies and tectonic evolutions (Fig. 2a). The 105

North Armorican Shear Zone (NASZ; Chauris, 1969; Watts and Williams, 1979), the 106

northern and the southern branches of the South Armorican Shear Zone (NBSASZ and 107

SBSASZ, respectively) (Jégouzo, 1980) and the Nort-sur-Erdre fault (NSE) are the main 108

Variscan structures of the central and southeastern part of the Armorican Massif (Fig. 2a). 109

The NASZ and the SBSASZ delimit the Central Brittany to the north and south, respectively110

(Fig. 2a). Central Brittany consists of folded and weakly metamorphosed Neoproterozoic 111
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sediments, unconformably overlain by weakly deformed Paleozoic sediments, intruded by 112

Carboniferous granites (Fig. 2b) (Vernhet et al., 2009). Located along the NASZ, the 113

southerly early Carboniferous Laval basin is superimposed on the Neoproterozoic to 114

Paleozoic series (Fig. 2b). It is composed of early Carboniferous sedimentary rocks 115

interbedded with acidic and basic volcanic rocks (Le Hérissé and Plaine, 1982). The Laval 116

basin was folded during the Late Carboniferous (Houlgatte et al., 1988).117

Between the NBSASZ and the NSE fault, the Paleozoic series of the St-Georges-sur-Loire 118

unit overthrusts to the NW the Lanvaux unit (Fig. 2a). The NW-SE striking Lanvaux unit is 119

composed of Neoproterozoic and early Cambrian metasediments overlain by Paleozoic 120

weakly metamorphosed sediments (Lardeux and Cavet, 1994), and intruded by an early 121

Ordovician granite deformed into an orthogneiss (Fig. 2b), called the St-Clément-de-la-122

Place (Vidal, 1980). This orthogneiss is intruded by two granitic plutons: i) the Bécon 123

granite (Chauris and Lucas, 1964; Cavet et al., 1970, 1976) and ii) the St-Lambert 124

granodiorite showing S/C structures, emplaced during to the Carboniferous dextral shearing 125

of the NBSASZ (Faure and Cartier, 1998). The Lanvaux unit experienced a polyphase 126

deformation (Faure and Cartier, 1998). The foliation attitude documents an antiform, the 127

core of which is constituted by the orthogneiss. Outcropping at the junction between the 128

Lanvaux and St-Georges-sur Loire unit, the Questembert leucogranite, emplaced during the 129

late Carboniferous (Tartèse et al., 2011a, 2011b) is a syn-tectonic granite related to the 130

SASZ shearing (Berthé et al., 1979; Bernard-Griffiths et al., 1985).131

To the south, the St-George-sur-Loire unit is divided into two sub-units (Fig. 2a): the blocky 132

sub-unit in the south overthrusts to the NW the northerly Sandstone-Pelite sub-unit (Cartier133

et al., 2001; Cartier and Faure, 2004).134

The south of Nort-sur-Erdre fault is a metamorphic nappe stack: described in the southern 135

part of the Armorican Massif (Burg, 1981; Matte, 1991; Bosse et al., 2000; Le Hébel et al., 136
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2002) and in the northern part of the Massif Central (Quenardel and Rolin, 1984; Faure et 137

al., 1990). The structure and the lithology of the metamorphic Champtoceaux Complex in 138

the Armorican Massif and of the Aigurande Plateau in the Massif Central are quite similar139

(Fig. 2b) (e.g. Faure et al., 2005; Ballèvre et al., 2009). However the Armorican Massif 140

exposes peculiar units absent in the Massif Central. The uppermost unit of the nappe stack, 141

called the Mauges nappe (Fig. 2a), consists of Neoproterozoic metagrauwackes 142

interbedded with meta-volcanics (Wyns and Le Métour, 1983; Cabanis and Wyns, 1986;143

Wyns et al., 1998), and unconformably overlain by Cambrian sedimentary rocks and felsic 144

volcanites, and Ordovician sandstones (Fig. 2b). This Paleozoic sedimentary and volcanic 145

series is widely exposed in the Choletais area (Cavet et al., 1966). The Cambrian Thouars 146

microgranitic massif associated with basic rocks (gabbros, quartz diorites) intrudes within 147

the Neoproterozoic micaschists, the volcanic series and the dyke complex (Fig. 2b; 148

Thiéblemont et al., 1987, 2001). To the north of the Mauges nappe, the Ancenis basin is 149

located along the NSE fault (Fig. 2a). It is made of Devonian to early Carboniferous 150

deposits (Fig. 2b) (Cavet et al., 1971; Ballèvre and Lardeux., 2005), superimposing the 151

Neoproterozoic micaschists (Fig. 2b).152

Another unit, exposed uniquely in the Armorican Massif is the "Drain Unit" consisting of153

serpentinite, gabbro, basalt and siliceous sedimentary rocks, interpreted as dismembered 154

ophiolites along the Eo-variscan suture (Marchand, 1981; Ballèvre et al., 1994; Faure et al., 155

2008). The underlying unit, called the Champtoceaux complex, is an imbrication of crustal-156

scale thrust sheets characterized by highly deformed and metamorphosed gneiss and 157

eclogites (Marchand, 1981; Ballèvre et al., 1989, 1994; Bosse et al., 2000). Lastly, the 158

lowermost unit exposed in this area consists of a micaschist and paragneiss suite, named 159

the Mauves-sur-Loire series (Fig. 2b). The entire stack of nappes from the Mauges nappe 160

to the Mauves-sur-Loire series is folded in a km-scale antiform with a steeply eastward 161



7

plunging axis probably related to the dextral shearing of the SASZ (Martelet et al., 2004).162

Carboniferous plutons occupy the core of this antiform (e.g. Wyns et al., 1998). 163

The Aigurande Plateau also consists of a stack of metamorphic nappes, refolded as 164

an ENE-SSW striking antiform, and intruded by several two-mica granitic plutons 165

(Quenardel and Rolin, 1984; Faure et al., 1990). From top to bottom, the litho-tectonic units 166

are characterized by: i) the Upper Gneiss Unit (UGU) composed of a bimodal magmatic 167

series, named leptynite-amphibolite complex with eclogites, and migmatites; ii) the Lower 168

Gneiss Unit (LGU) made of metagrauwackes, micaschists, metarhyolites and amphibolites 169

that never experienced a HP metamorphism; iii) the Para-autochthonous Unit composed of 170

low-grade micaschists (Fig. 2b). The left-lateral Marche fault, main Variscan structure of the 171

northern part of the Massif Central (e.g. Quenardel and Rolin, 1984), is the southern172

boundary of the Aigurande Plateau (Fig. 2a). A reasonable correlation between the 173

Champtoceaux Complex and the Mauves-sur-Loire Unit in the Armorican Massif and the 174

UGU and LGU in the Massif Central, respectively has been proposed (e.g. Faure et al., 175

2005).176

Previous structural and lithological analyses within the Poitou High (Rolin and 177

Colchen, 2001) documented the close connection between the Haut Bocage unit and the 178

Confolentais area. In the Poitou High, the substratum that crops out in rare valleys is made 179

of Carboniferous granite. Below the sedimentary cover of the Poitou High, the SBSASZ 180

eastward extension splits into several branches which separate structures and lithologies of 181

the Haut Bocage and Confolentais units (Fig. 2a) (Rolin and Colchen, 2001). The Haut 182

Bocage unit is composed of anatectic gneiss and Neoproterozoic micaschists (Fig. 2b). The 183

Confolentais unit is made of granites, metavolcanites and metasediments belonging to the 184

UGU (Fig. 2b). Both units are intruded by late Devonian gabbro, granodiorites and diorites 185

that also crop out along the left-lateral Marche fault (Peiffer, 1986; Cuney et al., 1993; Pin 186
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and Paquette, 2002). In the Confolentais area can be found the westernmost expression of 187

the Limousin tonalite belt (Bernard-Griffiths et al., 1985; Peiffer, 1986).188

189

3. Aeromagnetic and gravity data190

3.1. Processing of aeromagnetic data191

Magnetic measurements monitor the spatial variations of magnetic properties of the 192

underground, from the surface of the Earth down to several kilometers. The French 193

Geological Survey (BRGM) conducted a fixed-wing magnetic survey in 1998 over Brittany 194

(Bonijoly et al., 1999; Truffert et al., 2001) and from August 2008 to October 2010 over the 195

Pays de la Loire (PaL) and Région Centre (Martelet et al., 2013) covering the Armorican 196

Massif and the southwestern part of the Paris Basin (Fig. 3a). These surveys were flown at 197

an average 85 m and 120 m ground clearance for Région Centre, PaL and Brittany,198

respectively. For the three surveys, the flight path was oriented N-S, with a line-spacing of 199

500 m reduced to 250 m over key areas for the Brittany survey and 1 km reduced to 500 m200

for PaL and Région Centre surveys; perpendicular control tie lines were also flown every 201

10 km. The surveys overlap with each other on a 3 to 5 km band at their periphery. In order 202

to get rid of punctual artifacts related to human activities, the data were upward continued 203

to an elevation of 600 m. This removed the short wavelength cultural noise without 204

significantly smoothing the data, with regards to the aims and regional extent of the study. 205

Magnetic anomaly 250 m regular grids were produced using the minimum curvature 206

gridding method (Taylor and Mason, 1972), separately, for each survey.207

In addition three grid transforms were applied to emphasize various properties of the buried 208

substratum: 209

- The reduction to the pole (RTP; Fig. 3b): it contributes to simplify the magnetic signal 210

interpretation (Blakely, 1996). Taking into account the Earth field direction, this 211
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operator relocates the magnetic anomaly on top of its causative body. When induced 212

magnetization predominates, anomaly bipolarities are removed, so that RTP positive 213

anomalies indicate a local increase of magnetic susceptibility at depth. 214

- The vertical derivative (Fig. 3c): it enhances local signal gradients while regional 215

trends are removed. Magnetization in the Meso-Cenozoic Paris Basin is weak and 216

sedimentary cover thickness vary smoothly over large distances; therefore, they217

generate long wavelength components in the magnetic map, which are removed by 218

the vertical gradient operator. Consequently the map of the magnetic vertical 219

gradient highlights the magnetic contrasts within the underlying substratum220

(e.g. Weber, 1973; .Martelet et al., 2013).221

- The Tilt derivative (TILT) or Tilt angle processing (e.g. Miller and Singh, 1994;222

Verduzco et al., 2004) is powerful for structural interpretation as it depicts equally the 223

edge of deep and shallow magnetic sources (Miller and Singh, 1994). It is an 224

effective method for mapping contacts or faults, weakly contrasted magnetized 225

bodies, located under a sedimentary cover (Fairhead et al., 2011). The TILT map 226

was used to highlight the structures of the underlying substratum and the magnetic 227

body contours which are defined by the zero value in the TILT map (Fig. 3d).228

The vertical derivative and the tilt derivative operators were applied on the anomaly 229

reduced to the pole (RTP). In order to avoid artifacts at survey junctions, the magnetic 230

transforms were applied separately, survey by survey, before merging. The merge of the 231

three magnetic surveys was carefully achieved, using a standard grid stitching algorithm.232

233

3.2. Processing of gravity data234
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Gravity data derive from the compilation of ground gravity surveys conducted in France 235

since the middle of the 20th century and compiled in the Banque Gravimétrique de la 236

France (BGF) (Martelet, et al., 2009). In the study area, the average station coverage is 237

about 1 station/km². Data are tied to the CGF65 base station network. In order to derive the 238

Bouguer anomaly, all standard corrections are included, with a reference density of 239

2600 kg/m3, and terrain corrections computed to a distance of 167 km (Martelet et al.,240

2002). Taking into account the accuracy of 1) the network, 2) the gravity measurements 241

and their positioning and 3) the terrain corrections, the RMS error on the Bouguer anomaly 242

is 0.32 mGal in the study area. The Bouguer anomaly map presented in Fig. 4a locates the 243

main regional density contrasts, from the surface down to several kilometers at depth.244

A map of the vertical derivative of the Bouguer anomaly is presented in Fig. 4b. The first 245

order of the vertical gradient of the Bouguer anomaly has long been used for separating 246

close structures (Elkins, 1951; Gérard and Griveau, 1972; Goguel, 1972). Here, this 247

operator is used to highlight density contrasts within the Paris Basin substratum. As for the 248

magnetic map, the regional effect of the Meso-Cenozoic sedimentary pile results in smooth249

and long wavelength signals and is therefore strongly attenuated by this operator (see 250

Martelet et al., 2013 for more details). Positive and negative signals of the vertical gradient 251

feature relatively high and low density rocks at depth, respectively.252

253

4. Measurements of field rock properties254

Gravity and magnetic map usually display “averaged” geophysical signatures of geological 255

bodies as compared to the lithological variations at the outcrop scale; the discrimination of 256

the magnetic and gravity causative lithologies suffering from ambiguities. An extensive 257

campaign of petrophysical sampling and measurements was conducted in order to take into 258
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account this scale effect in our geophysical maps interpretation. It was designed to derive 259

reliable petrophysical “statistic signatures” for the main lithologies encountered in the study 260

area.261

262

4.1 Magnetic susceptibility263

The magnetic susceptibility of a rock refers to its ability to become magnetized by an 264

external magnetic field such as the Earth’s field (e.g. Dearing, 1999). Rocks have various 265

magnetic responses due to their magnetic properties, which to the first order, depend on 266

the volume content of magnetite (Clark and Emerson, 1991). Magnetic susceptibility field 267

measurements were carried out using a hand-held kappameter (KT-9, Exploranium, 268

Canada). The measuring range of KT-9 susceptibility meters is from -999 to 999 x 10–3 SI 269

units with a sensitivity of 1 x 10-5 SI. Because reproducibility of measures is influenced by270

the irregularity of the rock surface (Lecoanet et al., 1999), measures were achieved in the 271

“Pin-mode” of the kappameter which takes into account a geometric factor to reduce272

roughness effects.273

About 4050 magnetic susceptibility measurements were taken directly on 130 outcrops, all 274

along the southeastern border of the Armorican Massif and the northwestern border of the 275

Massif Central and Poitou High (Fig. 3a). Within each litho-structural unit, most of the 276

outcropping lithologies were sampled. The compilation of these measurements is presented 277

in Fig. 5. For each litho-structural unit, we numerated the magnetic susceptibility278

measurements within constant intervals of variation. In Fig. 5, the colored bars highlight the 279

most represented magnetic susceptibility ranges, whereas the grey intervals indicate 280

ranges with few randomly distributed data. 281
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As an aid for the interpretation, the magnetic susceptibility was subdivided into three 282

representative ranges, based on the classification of Clark and Emerson (1991) and the 283

separation range of Théveniaut and Clarke, (2013): i) from negative values to 4 x 10-4 SI, ii) 284

from 4 x 10-4 to 5 x 10-3 SI and iii) above 5 x 10-3 SI, designated as low, intermediate and 285

high magnetic susceptibility ranges, respectively. Fe-rich sandstones in Central Brittany286

exhibit the highest magnetic susceptibility of the study area (Fig. 5). Basic rocks (gabbro-287

diorite, granodiorite and amphibolite), and Cambrian felsic volcanites are also within the 288

high magnetic susceptibility range, due to their high amount of ferrimagnetic minerals, such 289

as magnetite, in their mineralogical composition (Thiéblemont et al., 2011). Granite, 290

leptynite, orthogneiss, migmatite, Neoproterozoic metasedimentary and Paleozoic 291

sedimentary rocks, micaschists and metasediments are within the low magnetic 292

susceptibility range, given that they are mainly composed of diamagnetic (quartz, 293

plagioclase) and paramagnetic minerals. Some Paleozoic sedimentary rocks, basalts, 294

metabasites, meta-gabbro, diorites and amphibolites are within the intermediate range,295

since they contain paramagnetic minerals, and a small amount of iron-bearing minerals 296

(amphibole, biotite or clay minerals).297

Induced magnetization is predominant in the area, but several bimodal anomalies in the 298

RTP map (Fig. 3b) indicate some remnantly magnetized rocks. To the north, the Fe-rich 299

Ordovician sandstones of Central Brittany, mainly composed of magnetite, have been 300

studied in detail (Corpel and Weber, 1970): their Koenigsberger ratio is around 6 but the 301

remnant component of magnetization is almost collinear to the ambient magnetic field and 302

therefore does not strongly affect the mapping of this unit. Also, the granodiorite within the 303

Choletais area and the diorite plutons within the Confolentais area are partly remnantly 304

magnetized, but their magnetic anomalies almost perfectly match their field cartographic 305

limits (Fig. 3b). This suggests that i) the effect of the remnant magnetization is weak, or ii) 306
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their direction of remnant magnetization is close to the induced magnetization. In these 307

three cases, the location of the magnetic causative bodies is only slightly affected by the 308

remnant magnetization and these lithologies also display a high magnetic susceptibility in 309

the field (Fig. 5). Consequently, we made the assumption that the interpretation of the 310

magnetic maps could be achieved considering the magnetic susceptibility only.311

Globally, there is a significant overlap between the magnetic susceptibility ranges of the 312

various lithologies; however, this overlap is rather limited between lithologies within each 313

litho-structural unit. This observation is crucial for the geophysical maps interpretation, as 314

described in the following paragraphs.315

4.2 Density316

Density is the petrophysical property influencing the gravity data. For this study, 54 317

unweathered rock samples from most of the lithologies were collected all along the 318

Armorican and Massif Central borders in 48 outcrops (Fig. 3a). The densities of these 319

samples were measured using the double weighting method, with a ca. 0.01 g/cm3 320

uncertainty. The density determination of some lithologies was not possible due to bad 321

outcropping conditions. In this case, a density value was affected with respect to the density 322

average of the same lithology in the other litho-structural units.323

As for the magnetic susceptibilities, the densities were subdivided into three representative 324

groups: i) from 2.55 to 2.65 g/cm3, ii) from 2.65 to 2.8 g/cm3, and iii) above 2.8 g/cm3 for 325

low, intermediate and high densities, respectively (e.g. Edel, 2008) (Fig. 5).326

327

5. Geophysical signatures of the Paris Basin substratum328
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The previous studies investigating the substratum of the Paris Basin using magnetic and 329

gravity data manually outlined the main geophysical anomalies. They were interpreted with 330

simplified lithological attributions, based on the substratum nature documented in some 331

boreholes as well as some rock property data (Weber, 1973; Debeglia and Weber, 1980). 332

More recently, Martelet et al., (2013) proposed a map of petrophysical signatures of the 333

substratum of the south-central part of the Paris Basin, based on a numerical classification 334

combining gravity and magnetic data. We used the same approach to achieve a simplified 335

magnetic-gravity signature of the substratum of the study area.336

We agree with previous studies that considered the magnetic effect of the Meso-Cenozoic 337

sedimentary cover of the Paris Basin, almost “transparent” for the magnetic field338

(Weber, 1973); therefore the magnetic map mostly features the buried substratum. 339

Nevertheless the Meso-Cenozoic sedimentary pile at least attenuates the intensity of the 340

magnetic response of the substratum and increases the wavelength of the substratum 341

anomalies, as the sedimentary cover gets thicker; from 0 to about 2000m in the study area.342

The gravity field contains both the effects of the substratum and of the sedimentary basin.343

The vertical gradient of the Bouguer anomaly used for our classification attenuates the long 344

wavelengths of the Meso-Cenozoic sedimentary pile (Debeglia and Weber 1985; Martelet 345

et al., 2013). Aiming at the same goals as Martelet et al., (2013), the map of the magnetic346

anomaly reduced to the pole that was introduced in our classification, followed two 347

considerations: 1) displaying information of the structure and magnetization of the 348

substratum as detailed as possible; 2) being physically as homogeneous as possible with 349

the gravity first vertical derivative. We added a third consideration: 3) reducing as much as 350

possible the variable smoothing and attenuating effect of the Meso-Cenozoic sedimentary 351

pile. Combining the characteristics of RTP and the TILT fulfils the three conditions. These 352

two magnetic maps were combined with the vertical gradient of the Bouguer anomaly to 353
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obtain synthetized signatures of magnetic and gravity data. The three layers were 354

combined into a ternary image, using a standard image fusion procedure. We then 355

performed a numerical classification of this ternary image using unsupervised isodata 356

clustering (e.g. Venkateswarlu and Raju, 1992). Based on their gravity and magnetic 357

signatures, all pixels of the map were statistically distributed among 6 classes (Fig. 6a)358

which well figure the geophysical signatures of the outcropping geology. This map displays 359

self-consistent cartographic bodies, which are compatible with known geological patterns. It 360

features 2 levels of magnetic intensity (from light to dark green) and an intermediate 361

average magnetic/gravity signature (in white) as well as 3 levels of gravity intensity (from 362

light to dark blue). These synthetized geophysical signatures can be related to the 363

simplified 3-levels categorization of the petrophysical magnetization/density parameters 364

(Fig. 5). This map combines magnetic and gravity signatures and it is used as a support for 365

the following structural and lithological interpretations.366

367

6. Geological map of the pre-Mesozoic substratum368

The first step of the interpretation consists in extending below the Paris Basin sedimentary 369

cover the major structures recognized in the field (Fig. 2a) in order to delineate the Variscan 370

litho-structural units under cover. The structural interpretation (Fig. 6b) uses all geophysical 371

enhanced maps presented in Section 3 supported by the synthetized geophysical 372

signatures map (Fig. 6a). The second step consists in interpreting the lithological nature of 373

the hidden substratum, using the combined petrophysical characteristics of rocks (Fig. 5), 374

the synthetized geophysical signatures of the substratum (Fig. 6a) and the structural sketch 375

map including available boreholes (Fig. 6b).376
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6.1 Undercover delineation of structural features 377

Manually interpreted geophysical trends deriving from the magnetic and gravity maps are378

outlined in red in Fig. 6a. They underline the N110E-N120E and N90E striking structural 379

directions of the Armorican Massif and the Massif Central, respectively, known in the field. 380

In addition to these trends, main geophysical structures and discontinuities were 381

interpreted. The interpretative structural map (Fig. 6b) showing the extension of the 382

structural units below the Paris Basin cover is discussed from north to south.383

Central Brittany is limited to the north by the NASZ. Its extension constitutes the northern 384

limit of the study area; it is defined regionally by a major N110°E-oriented disharmony385

between the strong magnetic signals of Central Brittany to the south, and the northern weak 386

magnetic signals (Fig. 3b). It also outlined by a successive E-W striking chaplet of magnetic 387

anomalies bounded the NASZ to the north, which can be outlined from the field to the 388

easternmost part of the studied area (Baptiste et al., 2015) (Fig. 3c, Fig. 3d). The Lanvaux 389

unit is marked by a well-defined NW-SE striking elongated low density anomaly, known as 390

Lanvaux orthogneiss (Fig. 4b); it is bounded to the north by the NBSASZ. Following the 391

magnetic and gravity trends under cover (Fig. 6a), the strike of the NBSASZ changes 392

eastwards from NW-SE to NE-SW and joins the NASZ, limiting Central Brittany to the east393

(Fig. 6b). The southern border of the noticeable Lanvaux low gravity anomaly defines the 394

limit between the Lanvaux unit and the northern part of St-Georges-sur-Loire unit (Fig. 6b).395

In the field, the St-Georges-sur-Loire unit is characterized by low magnetic (Fig. 3b) and 396

gravity signal (Fig. 4b), and by scattered moderate intensity magnetic anomalies (Fig. 3c) 397

and a high intensity gravity anomaly, to the north and south, respectively. Predominant NW-398

SE/E-W striking geophysical trends are also observed (Fig. 6b). Under the Paris Basin 399

sedimentary cover, the northern and southern part cannot be separated by geophysical 400

data. The southern border of the high intensity gravity anomaly defines the southern limit of 401
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the St-Georges-sur-Loire unit (Fig. 4b); it defines the cartographic trace of the NSE 402

Eo-Variscan suture (Fig. 6b).403

The Choletais area, marked by an E-W striking high gravity elongated anomaly, extending404

150km eastwards below the Paris Basin sedimentary cover (Fig. 4b), is bounded to the 405

south, by the northern branch of the Cholet fault (Fig. 6b). This noticeable anomaly defines 406

the southward boundary of the Mauges nappe. Along this fault, the magnetic and gravity 407

trends strike E-W in continuity along more than 150 km (Fig. 6a). Northwards, the 408

geophysical trends become less and less continuous (Fig. 6a), suggesting the decreasing 409

gradient of deformation away from the fault, as observed in the Armorican Massif 410

(Thiéblemont et al., 2011). To the east (around 2°E), the E-W striking Cholet fault marks the 411

northern limit of NW-SE geophysical trends of the Aigurande Plateau. Altogether, these 412

features suggest that the Cholet fault can be considered as a major shear zone.413

In the east of the study area (around 2°E), the NSE fault and the northern branch of the 414

Cholet fault almost meet, closing the Mauges nappe and the Choletais area, to the east 415

(Fig. 6a). To the south of the Cholet fault, low gravity anomalies (Fig. 4b) and signatures 416

(Fig. 6a) and NW-SE striking geophysical trends (Fig. 6a) are predominant; this refers to 417

the Haut Bocage unit and Confolentais area connection. To the east of the Haut Bocage 418

unit, the direction of geophysical trends progressively changes from NW-SE to E-W, 419

featuring the connection between the Haut Bocage unit and Aigurande Plateau.420

In the easternmost part of the studied area, all these units are interrupted by NE-SW 421

striking structures bounding the Permo-Carboniferous Contres basin, well characterized on422

seismic profiles and in deep boreholes (Fig. 6b; Beccaletto et al., 2015).423

At the regional scale, all structures are offset by N150E-N160E-striking faults and, to a 424

lesser extent, by their conjugate N20E-N30E striking faults (Fig. 6b). In agreement with 425

Martelet et al., (2013), two kinematics are interpreted along the N150E-N160E faults: i) a 426
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dextral motion highlighted by the offset of preexisting structures and lithological markers, 427

and ii) a vertical movement documented by the attenuation and the spreading of the 428

magnetic signal from west to east. In the southeastern part of the Armorican Massif, the 429

N150E striking Partenay fault is described as a middle to upper Visean dextral shear zone 430

(Rolin et al., 2009). The seismic information confirms the role of these faults during the 431

opening of Carboniferous or Permian Arpheuilles and Contres basins (Fig. 6b; Beccaletto et 432

al., 2015). Moreover, they were interpreted as Permian or Triassic fracture zones 433

reactivated during the opening of the North Atlantic Ocean and Gulf of Biscaye (Vigneresse, 434

1988). They are also known throughout the Armorican Massif, where they bound small 435

Tertiary basins. Based on these information, the N150E-N160E striking faults can be 436

interpreted as Variscan faults, reactivated during the tectonic evolution of the Paris Basin,437

strongly affecting present-day geometry in the southwestern part of the basin.438

The N30E striking normal faults, mainly located in the Mauges nappe (Fig. 6b), are also 439

interpreted as Variscan structures reactivated during the Permo-Carboniferous, controlling 440

the geometry of the Arpheuilles basin (Fig. 6b; Beccaletto et al., 2015).441

6.2 Interpretation of the undercover lithologies442

Based on the geophysical signatures and the structural information, we propose a 443

geological map displaying the interpreted lithologies assigned to the dominant geophysical 444

signatures (Fig.7a) and an interpretative cross section based on geological information 445

observed in the field (Fig. 7b). This geological map as well as its tectonic implications are446

discussed in each litho-structural unit. 447

6.2.1 Central Brittany448

Central Brittany is mainly composed of Neoproterozoic metasedimentary rocks and 449

Paleozoic sedimentary rocks intruded by Carboniferous granites (Fig. 2). In this 450
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litho-structural unit, high magnetization and density signatures (Fig. 6a) unambiguously 451

refer to the Fe-rich Ordovician sandstone (up to 0.8 SI and 3.11 g/cm3; Fig. 5). This marker 452

extends eastwards, bounding the NBSASZ (Fig. 8a); its presence is confirmed at 300m 453

depth under cover by a borehole (Fig. 6b).454

Contrary to previous models (Weber, 1971, 1973; Debeglia and Weber, 1980), the 455

Paleozoic rocks can be discriminated from the Neoproterozoic ones using the petrophysical 456

information. Paleozoic rocks including Fe-rich sandstones displaying low magnetization and 457

density (from 1.5 to 5 x 10-4 SI and 2.71 g/cm3; Fig. 5) can be traced eastwards (Fig. 7a). In 458

the field, geophysical signatures of the Neoproterozoic metasedimentary rocks are 459

heterogeneous, with intermediate magnetic susceptibility and low density (from 10-4 to 460

3 x 10-4 SI and 2.55 g/cm3; Fig. 5). They are also intruded by moderately magnetic and 461

dense (3.11 g/cm3) gabbroic dykes (Verhnet et al., 2009). Thus the map exhibits a 462

succession of thin E-W trends with intermediate to high magnetic and intermediate gravity 463

signatures that can be identified under the sedimentary cover and grouped with the 464

Neoproterozoic metasedimentary rocks (Fig. 6a). The Laval basin has intermediate to low 465

magnetic and gravity signatures as well as peculiar E-W trending texture (Fig. 6a) well 466

visible in the magnetic vertical gradient (Fig. 3c). This E-W trending signature is likely 467

related to interbedded basalts with intermediate magnetization and density (up to 10-2 SI 468

and 2.85 g/cm3; Fig. 5) as observed in the field (Fig. 8b). This feature allows delimiting the 469

southern extension of the Laval basin under the Paris Basin cover (Fig. 8b). Furthermore,470

the low magnetic and gravity signatures (Fig. 6a) are related to Carboniferous granite 471

intrusions (less than 5 x 10-4 SI and 2.65 g/cm3; Fig. 5). Witnesses of these granitic plutons 472

are mapped in the field, bounded and affected by the dextral shearing of the NASZ: the 473

Pertre granite emplaced at 343 ± 3Ma (Verhnet et al., 2009) and the Craon granite (e.g. Le 474
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Gall et al., 2011; Trautmann et al., 2011). The location and the shape of the undercover 475

granites suggest that they probably are affected by the NASZ shearing (Fig. 8c).476

Overall, the Central Brittany litho-structural unit, delimited to the south by clear markers of 477

Fe-rich Ordovician sandstones, appears also limited to the east, at the junction between the 478

NASZ and the NBSASZ (Fig. 6b). In the southwestern part of the Paris Basin, these479

interpretations are consistent with the tectonic sketch of major Armorican shear zones 480

proposed by Martinez Catalàn et al., (2012). The southern part of Central Brittany is 481

structured by patterns of Neoproterozoic and Paleozoic sedimentary rocks. In its 482

northwestern part, the early-Carboniferous Laval basin is developed along the NASZ; it is 483

delimited by low magnetic and gravity signatures (Fig. 6b) related to granitic bodies (Fig. 484

7a), to the south.485

486

6.2.2 The Lanvaux unit487

In agreement with previous works, the eastern extension of the Lanvaux negative gravity 488

anomaly (Fig. 4b) is well documented along more than 200 km (Weber, 1973; Debeglia and 489

Weber, 1980; Autran et al., 1994; Martelet et al., 2013). This anomaly is interpreted as 490

deriving from the low magnetization and low density signatures of the Lanvaux orthogneiss, 491

confirmed by the petrophysical measurements (from 10-5 to 0.7 x 10-4 SI and 2.55 g/cm3; 492

Fig. 5). In the field, the Carboniferous Bécon and the St-Lambert granites display low 493

magnetic susceptibilities and densities comparable to those of the orthogneiss (from 2 x 494

10-5 to 10-4 SI; Fig. 5); it is therefore not possible to discriminate the older Lanvaux 495

orthogneiss (477 ± 18 Ma; Guerrot et al., in Janjou et al., 1998) from the Carboniferous 496

granites. The Carboniferous granites being mainly located along the SBSASZ (Fig. 8c), we 497

consider that the low magnetic and gravity signatures are related to the Lanvaux 498
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orthogneiss (Fig. 8c). Eastwards, under cover, the strike of the NW-SE Lanvaux 499

orthogneiss evolves to an E-W and progressively NE-SW direction, parallel to the NBSASZ 500

(Fig. 8c). Lanvaux unit is an antiform (Faure and Cartier, 1998), with Neoproterozoic 501

metasedimentary and Paleozoic sedimentary rocks similar to those of the Central Brittany 502

and with comparable petrophysical characteristics (Fig. 5). The succession of geophysical 503

signatures of metasedimentary and sedimentary rocks as well as the orthogneiss observed 504

in the field extends eastwards under the Paris Basin sedimentary cover. This suggests that 505

the unit has the same antiformal structure, throughout its eastward extension (Fig. 7b). At 506

the southern border of the Lanvaux unit, the magnetic signature of the Paleozoic rocks507

highlights the tectonic limit with the St-Georges-sur-Loire unit (Fig. 6b).508

509

6.2.3 The St-Georges-sur-Loire unit510

Whereas cartographically well marked under cover, the eastern extension of the St-511

Georges-sur-Loire unit has various geophysical signatures (Fig. 6a), rather magnetic and 512

dense. Cartographically, these signatures cannot be formally related to the 513

northern/southern parts of the unit, as observed in the field (Fig. 2a). The northern part of 514

the unit is marked by low magnetic and gravity signatures (Fig. 6a) related to a granitic 515

pluton (up to 10-4 SI and 2.65 g/cm3; Fig. 5), located at the junction between the Lanvaux 516

and the St-Georges-sur-Loire units, mostly hidden below the Paleozoic series (up to 5 x 10-517

4 SI and 2.68 g/cm3). Granites located along the SBSASZ (Fig. 8c) belong to a leucogranite 518

belt displaying dextral shearing, associated with the emplacement of the leucogranite 519

plutons (Berthé et al., 1979; Jégouzo, 1980; Vigneresse and Brun, 1983; Gapais et al., 520

1993; Turillot et al., 2009). Among them, Questembert and Lizio leucogranites (Fig. 8c) 521

emplaced at 316 ± 3 Ma and 316 ± 6 Ma (Tartèse et al., 2011b, 2011a), in agreement with 522



22

the St-Lambert granite located to the Lanvaux unit, which displays S/C structures 523

suggesting an emplacement during the dextral shearing of the NBSASZ at 312 ± 3 Ma 524

(Faure and Cartier, 1998). Under cover, these low magnetic and gravity signatures are not 525

observed (Fig. 6a), thus these granites cannot be extended eastward, suggesting a limited 526

eastward extension of the leucogranitic belt.527

The southern part of the unit, the blocky sub-unit is characterized by scattered high 528

magnetic and various low to high gravity signatures (Fig. 6a). Below the Paris Basin 529

sedimentary cover, the high magnetic and gravity signatures elongated eastwards 530

throughout the map, likely correspond to basic rocks, as interpreted by Martelet et al., 531

(2013). These basic rocks can be variously interpreted in terms of lithology: i) basaltic or 532

gabbroic olistostoliths as described in this unit in the Armorican Massif (Cartier and Faure, 533

2004), ii) interbedded basalts related to the opening of a back-arc basin (Ducassou et al., 534

2011) or iii) mafic rocks such as the ophiolites which sporadically crop out along the NSE535

fault (Marchand, 1981; Faure et al., 2008; Ballèvre et al., 2009). In the eastern part of the 536

St-Georges-sur-Loire unit, the depth of the contact between the substratum and the 537

sedimentary cover is defined at about 500 m, and the bodies responsible for the magnetic 538

signal are located at more than 1500 m depth (Martelet et al., 2013). Consequently the 539

magnetic susceptibility of the magnetic source has to be strong enough to produce such a 540

magnetic signature. According to the magnetic susceptibility measured in the field in St-541

Georges-sur-Loire unit, we cannot interpret the source as basalts since they do not yield a 542

high magnetic susceptibility (from 6 to 8 x 10-4 SI; Fig. 5). The third hypothesis better 543

complies with the petrophysical signatures and with other evidence reported in the 544

literature. Indeed, the interpretation of the Armor2 seismic profile, located in the southern545

part of the Armorican Massif (Bitri et al., 2003), suggested the presence of the northern part546

of the Champtoceaux complex beneath St-Georges-sur-Loire unit. The northern part of this 547
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complex crops out as ophiolitic series along the NSE fault; it is made of high magnetic 548

susceptibility and high density rocks, such as amphibolite, and micaschists (from 1.1 to 1.5549

x 10-2 SI, 3.02 g/cm3 and up to 0.3 SI, 2.79 g/cm3, respectively; Fig. 5). Therefore, contrary 550

to previous sketch (Weber, 1973; Debeglia and Weber, 1980), our results reveal the 551

eastward extension of ophiolitic series marking the NSE Eo-Variscan suture (Fig. 8d); it is552

supported by high magnetic and gravity signatures which extend up to the eastern part of 553

the study area limiting St-Georges-sur-Loire unit to the south. 554

555

6.2.4 The Mauges nappe and the Champtoceaux Complex556

The Mauges nappe, mainly composed of Neoproterozoic micaschists (Fig. 2), exhibits both 557

low magnetic and gravity signatures (Fig. 6a) that may account for hidden granitic plutons. 558

Granitic rocks crop out locally, as for instance the Chemillé pluton intruding the Mauges 559

micaschists, displaying low magnetic susceptibility and density (up to 8 x 10-4 SI and 560

2.55 g/cm3; Fig. 5). Similar low geophysical signatures depicted in the undercover 561

extension of the Mauges nappes (Fig. 6a) suggest the presence of punctual granitic 562

plutons, probably similar to the Chemillé granite (Fig. 8c). Also, metabasites interbedded in 563

the micaschists yield higher magnetic susceptibility and density ranges (from 5 to 7 x 10-4564

SI and 2.82 g/cm3; Fig. 5) than the surrounding micaschists. These signatures trace the 565

eastward extension of the Mauges nappe under the sedimentary cover of the southern part 566

of the Paris Basin (Fig. 7a).567

The Choletais area is composed of Cambrian acidic volcanites, intruded by microgranite, 568

granodiorite and gabbro-diorite, unconformably covering the Neoproterozoic rocks (Fig. 2).569

Among them, the Vézins granodiorite (Fig. 8c) emplaced at 345 ± 5 Ma (Thiéblemont et al., 570

2011) is supposed to be a syn-kinematics intrusion related to the dextral shearing of the 571
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Cholet fault (Rolin et al., 2009). In the Choletais area, the magnetic susceptibilities and 572

density measurements do not discriminate the gabbro-diorite suites from the granodioritic 573

plutons (from 4 to 7 x 10-2 SI, 2.83 g/cm3 and from 2 to 5 x 10-2 SI, 2.73 g/cm3, respectively; 574

Fig. 5). For this reason, these lithologies are grouped together as "basic rocks" in the 575

interpretative geological map (Fig. 7a). The Cambrian volcanics are discrimated by a lower 576

density compared to basic rocks (2.65 g/cm3 and from 2.73 to 2.83 g/cm3, respectively; Fig. 577

5). As previously described (Weber, 1971), in the southern part of the Mauges nappe, the 578

northern branch of the Cholet fault is bounded to the north by an unexpected E-W striking 579

high density elongated anomaly, which extends 200 km eastwards (Fig. 4b). It is580

superimposed, in the Armorican Massif, to the low magnetization and low density Thouars 581

microgranite (from 1 to 7 x 10-4 SI and 2.65 g/cm3; Fig. 5). The high intensity anomaly can 582

however be explained by the close association of acidic and basic magmatism composing583

the Thouars massif (Mathieu, 1943, 1958; Weber, 1971) emplaced at 519 ± 10 Ma584

(Thiéblemont, et al., 2011). The high resolution geophysical data enhance this dual 585

anomaly: it highlights punctual high magnetization signatures associated with high density 586

anomaly (Fig. 6a) related to basics rocks (from 3 to 6 x 10-2 SI and up to 2.83 g/cm3; Fig. 5) 587

and the presence of high density intrusive dolerite (2.97 g/cm3; Fig. 5) located along the 588

Cholet fault, at the junction between the Mauges nappe and the Haut Bocage unit.589

The early Carboniferous Ancenis basin is marked by a low gravity anomaly (Fig. 4b) likely 590

related to a hidden granitic pluton (Fig. 8c) as previously described by Martelet et al., (2013) 591

as well as E-W striking high magnetic trends well defined in the vertical gradient of the 592

magnetic anomaly. This contrast can reasonably be related to the northern extension of the 593

Champtoceaux complex, corresponding to the ophiolitic nappe, buried below the Ancenis 594

basin, along the NSE fault, also interpreted in Armor2 seismic profile (Bitri et al., 2003).595
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Following the NSE fault to the east, the Permo-Carboniferous Arpheuilles basin, recognized 596

by seismic profiles under cover (Beccaletto et al., 2015) and two boreholes (Fig. 6b), 597

exhibits a peculiar texture in the magnetic first vertical derivative (Fig. 3c) and tilt (Fig. 3d) 598

maps. This texture allows delimiting the extension of the Arpheuilles basin (Fig. 8b). 599

Superimposed on the magnetic texture, high intensity magnetic anomalies are interpreted 600

as the presence of Cambrian volcanic rocks (Fig. 7a) underlying Arpheuilles basin, 601

accompanied by granitic plutons highlighted by their low gravity signatures (Fig. 6a). Our 602

results show that, to the north, Arpheuilles basin is bounded by the NSE fault and controlled 603

by N150E striking faults as well as their N30E-N40E conjugates (Fig. 8b). This suggests 604

that the Arpheuilles basin may be the lateral equivalent of the early Carboniferous Ancenis 605

basin. 606

607

6.2.5 The Aigurande Plateau and its connection with the Haut Bocage unit608

This area consists in a stack of metamorphic nappes intruded by granitic plutons (Fig. 2). 609

Under cover, the Cholet fault delimits the northern contact of the high grade metamorphic 610

nappes with the Mauges nappe, composed of low grade micaschists (Fig. 8d).611

In the northern part of the Aigurande Plateau, the Lower Gneiss Unit (LGU), is mainly 612

composed of low magnetic susceptibility and density micaschists and metagrauwackes (up 613

to 4 x 10-4 SI and 2.8 g/cm3; Fig. 5), and intermediate magnetic and high density 614

amphibolite (from 5 to 9 x 10-4 SI, 3.01 g/cm3). The Upper Gneiss Unit (UGU) was 615

discriminated from the LGU by both the high magnetic and density signatures (Fig. 6a) 616

deriving from the amphibolites within the leptynite-amphibolite complex (from 1.5 x 10-2 to 5 617

x 10-2 SI and 2.98 g/cm3; Fig. 5). Consequently, the LGU/UGU contact can be mapped 618

under the Paris Basin sedimentary cover, bounded to the north by the northern branch of 619
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the Cholet fault (Fig. 7a). The LGU micaschists are associated with the Haut Bocage unit 620

described in the field (Fig. 6b; Fig. 7a), which consist of a stack of metamorphic nappes, 621

refolded in an ENE-SSW striking antiform/synform succession, intruded by Carboniferous 622

granites (Fig. 7b).623

The micaschists of the Para-autochtonous unit displaying low to intermediate magnetic 624

susceptibility and density (up to 4 x 10-4 SI and 2.68 g/cm3), related to low to intermediate 625

magnetic and gravity signatures (Fig. 6a), has no characteristic signature that can be 626

mapped under the Paris Basin sedimentary cover.627

In this area, granitic plutons belong to the Hercynian Mortagne – Marche leucogranites belt 628

(Vigneresse, 1988; Gapais et al., 1993; Vigneresse, 1999; Rolin and Colchen, 2001; Rolin 629

et al., 2009; Edel et al., 2015; Gapais et al., 2015). These granites are largely represented630

in the Haut Bocage unit and Massif connection (Fig. 7a).631

632

6.2.6 The Poitou High: the Haut Bocage unit and the Confolentais area junction633

Largely represented in the field, in the Haut Bocage unit and the Confolentais area 634

(Fig. 6b), the low magnetic and gravity signatures (Fig. 6a) are related to granitic plutons635

(from 0.8 x 10-5 to 10-4 SI and 2.65 g/cm3; Fig. 5). Under cover, equivalent magnetic and 636

gravity signatures related to granitic plutons described in the Poitou High (from 2.5 to 637

4 x 10-5 SI and 2.62 g/cm3; Fig. 5), mark the connection between the southern part of the 638

Haut Bocage unit and Confolentais area (Fig. 7a). As largely recovered in boreholes (Fig. 639

6b), granitic plutons represent the main rocks of the substratum in this area (Fig. 7a). These 640

granitic plutons consist in leucomonzogranites, leucogranites, granodiorites and calk-641

alkaline diorites. They belong to a granitic belt emplaced from late Devonian to early-642

Carboniferous and are associated with the shearing of the various branches of the SASZ 643
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(see Rolin et al., 2009 for more information). Using the geophysical signatures of the 644

substratum (Fig. 6a), it is not possible to discriminate the various leucomonzogranites, 645

leucogranites and granodiorites. 646

Under the sedimentary cover, the southern part of the Poitou High is marked by punctual 647

high magnetic and gravity signatures (Fig. 6a) related to the calk-alkaline diorite plutons 648

exposed in the field, both in Confolentais area and Haut Bocage unit (Fig. 6b). These diorite649

plutons emplaced at 373 ± 10 Ma (Cuney et al., 1993) and from 360 ± 3 Ma to 349 ± 5 Ma 650

(Bertrand et al., 2001; Alexandre et al., 2002) for the Montcoutant and various Poitou High 651

diorite plutons, respectively, are associated with the dextral shearing of the SBSASZ (Fig. 652

8c) (see Rolin et al., 2009 for more information). In the southern Aigurande Plateau, Huriel 653

diorite intrusion (Fig. 8c) emplaced at 361 ± 1 Ma (Pin and Paquette, 2002) and post-date 654

the dextral shearing of the Marche fault (Rolin et al., 2009). Diorite plutons have consistent 655

high magnetic susceptibility and density (up to 1.5 x 10-2 SI and 2.80 g/cm3 and from 3 to 6 656

x 10-3 SI, and 2.80 g/cm3, respectively; Fig. 5). These basic rocks are discriminated i) from 657

the intermediate magnetic and low density signatures corresponding to the LGU host 658

micaschists, in the Haut Bocage unit, and ii) from the high magnetic and intermediate 659

signatures related to the metavolcanites belonging to the UGU (up to 0.3 SI; Fig. 5), in the 660

Confolentais area (Fig. 7a).661

662

7. Summary and Conclusion663

Our paper outlines the benefit of a joint interpretation of potential fields (high-resolution 664

aeromagnetic and gravity data) and petrophysical characterization (magnetic susceptibility 665

and density measurements on rock samples), in order to derive reliable lithological and 666

structural mapping of a buried substratum.667
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In order to propose a geological map of the hidden substratum of the southwestern part of 668

the Paris Basin, our methodology, is divided into five successive stages: i) the potential field 669

data were processed, with the aim to get specific information (geophysical contrasts, 670

structural features…), ii) magnetic susceptibilities and densities were measured on field 671

rock samples along the eastern border of the Armorican Massif and the northern border of 672

the Massif Central, leading to a petrophysical library of lithologies, iii) using selected 673

magnetic and gravity maps, a map of geophysical signatures was synthetized using an 674

unsupervised classification, featuring 6-levels of magnetic/gravity intensities, iv) the 675

combined analysis and interpretation of magnetic and gravity trends with the synthetized676

geophysical signatures, allowed extending the Variscan litho-structural units below the 677

Paris Basin sedimentary pile, v) relating the geophysical signatures to the petrophysical 678

characteristics (density and magnetization) within each litho-structural unit, allowed 679

interpreting a geological map of the substratum. This updated study reveals new geological 680

information: i) the limited eastward extension of Central Brittany, bordered to the east by the 681

NE-SW striking NBSASZ; ii) the eastward extension, along ca. 150 km, of the Cholet fault,682

interpreted as a major fault, delineating the northern limit of the Aigurande Plateau; iii) the683

emphasis on a series of N150E-N160E and N30E striking normal Variscan fault, reactivated 684

during the tectonic history of the Paris Basin, especially controlling the opening of Permo-685

Carboniferous basins; iv) the extension of the Nort-sur-Erdre fault considered as an 686

ophiolitic suture, documented by the presence of high magnetic and density rocks along the 687

southern part of the St-Georges-sur-Loire unit.688

Overall, our methodology provides keys for extensive mapping of buried basement using 689

magnetic, gravity and petrophysical data. In the near future, this study will be extended to 690

the entire Paris Basin in order to propose a complete geological map of the pre-Mesozoic 691

substratum of the Paris Basin.692
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Fig. 8: Decomposition of the geological map into its main lithological ensemble: a) Sedimentary rocks 
and volcanites; b) Permo-Carboniferous basins, using geophysical and seismic data (modified from 
Beccaletto et al., 2015); c) magmatic intrusions; d) metamorphic nappes. Blue lines : massif 
boundaries (modified from Chantraine et al., 2003)


