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Abstract Earth, as a whole, can be considered as a living organism emitting gases and particles into its
atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change
by emitting particles that ultimately will influence cloud coverage. At the global scale, a large fraction of the
aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been
directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence
that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We
identify iodine-containing species as major precursors for new particle clusters’ formation, while questioning
the role of the commonly accepted dimethyl sulfide oxidation products, in forming new particle clusters in
the region investigated and within a time scale on the order of an hour. We further show that amines would
sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest
that iodine-containing species and amines are correlated to different biological tracers. These observations, if
generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions.

1. Introduction

The CLAW (Charlson, Lovelock, Andreae, Warren) hypothesis [Charlson et al., 1987] proposes a biological reg-
ulation of climate described by the following feedback loop: in response to an increase of temperature, sea-
water phytoplankton emit dimethyl sulfide (DMS) which oxidizes to form particles that serve as cloud
condensation nuclei (CCN), thus modifying the cloud reflectivity and albedo, and finally resulting in a
decrease of the Earth’s global temperature. The past three decades of field, laboratory, and modeling studies
have failed to provide evidence of the CLAW hypothesis [Quinn and Bates, 2011]. One possible reason,
among several others, is that DMS oxidation products are not the species determining the formation of
new particle clusters. New particle formation, initiated from the nucleation of aerosol clusters from gaseous
precursors, is an important and complex atmospheric process that generates a large number of aerosols
[Merikanto et al., 2009]. New particle formation (NPF) has been widely observed in many environments. In
particular, marine coastal areas display the highest NPF rates [Kulmala et al., 2004] as a result of daytime
low tide macroalgae exposure to ambient air [O’Dowd et al., 2002a]. However, over open oceans, which
represent 71% of the Earth’s surface, nucleation has not been directly evidenced, although it is commonly
integrated into global modeling exercises. The only experimental evidence of the occurrence of NPF over
open oceans was recently presented from ambient measurements performed at the Mace Head station
(Ireland), from the detection of aerosol already grown to 20 nm [O’Dowd et al., 2010]. While iodine-
containing species released by macroalgae were identified to form the main precursor to new particles
over tidal coastal zones [O’Dowd et al., 2002a; O’Dowd et al., 2002b; McFiggans et al., 2004], dimethyl sul-
fide (DMS) oxidation products are commonly proposed as the main species driving secondary aerosol number
production and influencing the number of cloud condensation nuclei (CCN) over open oceans [Charlson
et al., 1987; Fitzgerald, 1991]. Thus, DMS is the only biologically driven species included in global

SELLEGRI ET AL. NUCLEATION FROM MARINE MICROORGANISMS 6596

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2016GL069389

Key Points:
• Atmospheric particle clusters are
formed at the air-sea interface above
non-tidal seawaters

• Clusters are correlated to iodine
emissions but not to DMS oxidation
products, while amines contribute to
the cluster growth

• Iodine is correlated to biological
seawater tracers other than Chl a
while amines are linked to Chl a

Supporting Information:
• Figure S1
• Figure S2
• Figure S3
• Figure S4
• Figure S5
• Supporting Information S1

Correspondence to:
K. Sellegri,
K.Sellegri@opgc.cnrs.fr

Citation:
Sellegri, K., et al. (2016), Evidence of
atmospheric nanoparticle formation
from emissions of marine microorgan-
isms, Geophys. Res. Lett., 43, 6596–6603,
doi:10.1002/2016GL069389.

Received 29 APR 2016
Accepted 28 MAY 2016
Accepted article online 1 JUN 2016
Published online 20 JUN 2016

©2016. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
http://dx.doi.org/10.1002/2016GL069389
mailto:K.Sellegri@opgc.cnrs.fr


modeling exercises [Boucher et al., 2003; Bopp et al., 2003], even though it is recognized that other CCN
sources are necessary to explain observations [Ayers and Gras, 1991; Sorooshian et al., 2009]. One hypoth-
esis, proposed by Leck and Bigg [2005], was that the CCN concentration over oceans is primarily deter-
mined by the concentration of particles made of surface microlayer microcolloidal aggregates that
collapse upon condensation of acidic gases. The chemical analysis of open ocean new particle formation
events, similar to the ones reported by O’Dowd et al. [2010] in the 15–85 nm size range, revealed a cor-
relation between organic species (benzoic acid, in particular) and the increase of the particle number
concentration in the 10–60 nm size range [Lawler et al., 2014a]. The nature and origins of the organic
compounds of the Aitken mode particles in the clean marine atmosphere remain largely unknown. Here
we address three key issues related to the role of marine emissions on climate by isolating the air-seawater
interface from the ambient atmosphere and simultaneously analyzing the atmospheric and seawater com-
position. First, we address the question of the occurrence of nucleation over nontidal marine zones.
Second, we screen for the chemical precursors responsible for the new cluster formation and their early
growth to larger sizes. Third, we investigate the potential biological origin of these natural marine emissions.

2. Materials and Methods

From 5 to 23May 2013, threemooredmesocosms (A, B, and C) enclosed a large volume of oligotrophic seawater
sampled in the Bay of Calvi (Corsica, France). They were simultaneously filled with 2.26m3 of filtered (<1000μm)
subsurface (1m) sampled several meters above the sea bottom and thus exclude the presence of any large
planktonic organisms. These three mesocosms (1.2m diameter and 3m height) were made of two transparent,
UV-stabilized, 200μm thick vinylacetate mixed polyethylene films separated by a reinforcing nylon mesh. The
1.9m3 headspace of themesocosmswas closed using 56%UV transparent ETFE domes and continuously flushed
with filtered air, while letting in an additional flow of nonfiltered ambient air (Figure S1). The residence time
distribution of particles entering or formed in the mesocosm headspace shows an average 20min and a 10ile
of 70min. The seawater in two mesocosms (B and C) was enriched with different levels of nutrients (see support-
ing information for more information), whereas mesocosm A remained unperturbed and was used as the control
mesocosm. Seawater biogeochemical properties weremonitored over the course of the experiments. Chlorophyll
a (Chl a) concentrations increased significantly in the enriched mesocosms compared to the control (Figure 1e)
and allowed for the study of marine emissions under different levels of phytoplankton biomass, although it has
to be emphasized here that the increase of Chl a levels in mesocosms B and C is not the result of a natural
phytoplanktonic bloom. The atmospheric composition of the headspace of the mesocosms was characterized
for its gas-phase chemical composition using a Ionicon High Resolution Proton Transfer Time of Flight Mass
Spectrometer, its particulate-phase chemical composition using an Aerodyne High Resolution Time of Flight
Aerosol Mass Spectrometer for particles larger than 70nm and the aerosol number size distribution using a TSI
Scanning Mobility Particle Sizer (SMPS). During a 7day subperiod, the concentration of particles with a diameter
larger than 1nmwasmonitored using an Airmodus Particle SizeMagnifier (PSM) coupledwith a TSI Condensation
Particle Counter (CPC 3010). The particle cluster and sub-10nm particle (1–10nm) concentrations were deduced
from the combination of the SMPS and PSM-CPC. We use the term “particle clusters” hereafter as a definition of
convenience for the concentration of clusters and nanoparticles comprising the 1–10nm size range. Details on
the instrumental setup and data analysis can be found in the supporting information.

3. Results
3.1. Evidence of Nucleation of New Particle Clusters From Nontidal Seawater Emissions

Results showed that enhanced number concentrations of total particles and 1–10 nm particle clusters, in par-
ticular (72 ± 19% of the total particle number concentration), were detected in the mesocosm’s headspace
compared to ambient air (Figure 1a), indicating that nucleation occurred from seawater emissions. The main
reasons explaining larger particle clusters’ concentrations in the mesocosm’s headspace than in ambient air
are likely due to (1) the lower aerosol condensational sink in the mesocosm headspace due to constant
flushing with particle-filtered air and (2) because the sea-to-air emissions of particle cluster precursors are
confined within the mesocosm headspace while they are immediately diluted when emitted to the ambient
air. Particle clusters’ formation was detected every day in the control mesocosm (A), while they were formed
only on 1 day in each enriched mesocosm (on 19 May in B and on 17 May in C). This last observation implies
that particle clusters’ formation was not driven by the total biomass reflected by Chl a levels (Figure 1e). A

Geophysical Research Letters 10.1002/2016GL069389

SELLEGRI ET AL. NUCLEATION FROM MARINE MICROORGANISMS 6597



high day-to-day variability in the particle clusters’ concentrations was found, with a daily average in the range
of 1.1–4.0 × 104 particle clusters cm�3 during the first part of the 7 day period (16–19May), decreasing to daily
particle clusters’ concentrations in the range of 2.3–7.8 × 103 for the last 3 days. Measurements show that the
observed daily variability is not clearly linked to the availability of UVB radiation (Figure 1f), which should
increase photochemical reactions leading to higher concentrations of low-vapor pressure products nor to
the water surface temperatures (Figure 1g). A clear diurnal variation of the particle clusters’ concentration
was observed (Figures 2a and 2b), with high concentrations during daytime and nearly no particle clusters
observed during nighttime. Interestingly, the particle clusters’ production lasted over the majority of the

Figure 1. Daily averages in the ambient air, the control mesocosm (A), and the enriched mesocosms (either B or C or both) of (a) total and particle clusters (cm�3);
(b) iodine-containing species concentrations based on the abundance of the following fragments I+, CH3I

+, I2
+, IO+, and HOI+; (c) estimated H2SO4 concentrations in

the gas phase (see supporting information); (d) Methanesulfonic acid (MSA) concentrations, corrected from ambient concentrations for the mesocosm headspace; and
(e) Chl a concentrations, between 16 and 22 May. Daily variation of (f) UVB received (Wm�2) and (g) sea surface temperature (SST) in the control and enriched
mesocosms. Measurements were performed in mesocosm B on 16, 18, 19, 21, and 22 May and in mesocosm C on 17, 20, and 21 May 2013.
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day (from 8:00 UTC to 19:00 UTC) in the control mesocosm (A), while it was more intense but over a shorter
time period in the enriched mesocosms B and C (8:00–13:00 UTC and 8:00–11:00 UTC, respectively).

During new particle formation periods, aerosol size distributions show a constant profile for particles smaller
than 20 nm, with an exponential decrease of concentrations with increasing size in all mesocosms (Figures S1
and S2 in the supporting information), indicating the achievement of a quasi-steady state of a permanent
particle production. The calculated formation rates (Table S1) are high (daily averages from 25 to
2127 cm�3s�1) in comparison to those reported in the literature for ambient air (median values ranging from
0.7 to 34 cm�3s�1 over seven European sites) [Manninen et al., 2010], although below rates that can be
achieved in marine tidal areas (up to 104–105 cm�3s�1) [O’Dowd et al., 2002a].

In order to survive coagulation losses, the newly formed particle clusters must rapidly grow to larger sizes by
condensation of additional vapors. Combining the residence time distribution in the mesocosm with the
particle size distribution during steady state conditions (see supporting information) allows for the calcula-
tion of growth rates (GR) of nucleated particles between 1 nm and 10 nm (GR1–10) that ranged from
2.9 nmh�1 to 9.5 nmh�1, whereas GR10–15 ranged between 3.4 nmh�1 and 106.9 nmh�1 (Table S1). These
GR are higher than the ones reported from ambient measurements over open oceans for larger particles
[O’Dowd et al., 2010], although lower than those that can be measured in marine tidal zones [Dal Maso

Figure 2. (a) Hourly median of particle clusters’ concentrations (cm�3) for nucleation days in mesocosms A, B, and C.
(b) Hourly median of particle clusters’ concentrations (cm�3) for nonnucleation days in mesocosms B and C and the
ambient atmosphere. (c) Hourly median of iodine-containing species concentrations (μgm�3) for nucleation days.
(d) Hourly median of iodine-containing species concentrations (μgm�3) for nonnucleation days.
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et al., 2002; Manninen et al., 2010]. GR also followed a daily cycle with three maxima: at the highest radiation
level (13:00–14:00 UTC) but also in the early morning and late afternoon (Figure S3).

3.2. Screening for New Particle Clusters’ Chemical Precursors

Existing correlations between particle clusters’ concentrations and chemical species detected both in the
particulate and the gas phases were screened to identify potential precursors to the high particle clusters’
concentrations observed. When considering the 24 species measured in the gas phase, including DMS
(Figure 1d) and estimated H2SO4 (see supporting information), no significant correlations (at the 98% confi-
dence level, with R2 above 0.4) were found in any mesocosm (N= 150, 299, and 218 points for mesocosms A,
B, and C, respectively). We calculated that kinetic-type binary homogeneous nucleation of H2SO4 concentra-
tions would lead to average nucleation rates ranging from 0.52 to 11.7 cm�3s�1 and is not expected to sig-
nificantly contribute to the nucleation rates observed in the mesocosms. Thus, if sulfuric acid was involved in
the nucleation process, it would need the presence of a third species, such as amines, which could enhance
the expected nucleation rate by an order of magnitude [Almeida et al., 2013]. However, no linear correlations
were found to be significant between estimated H2SO4 (Figure 1c), or any oxidized VOC proxy, and the
particle clusters’ concentrations. The production of methanesulfonic acid (MSA) within the mesocosm
headspace can be an indicator of potential oxidation of DMS within the residence time of the experiment
and was calculated by subtracting the ambient MSA concentrations from the mesocosm dilution-corrected
MSA concentrations. We found that MSA was indeed produced within the mesocosm headspace (Figure 1d),
indicating the probable oxidation DMS in the mesocosm headspace within the residence time of the experi-
ment. However, as mentioned, the lack of correlation between estimated H2SO4 concentrations and particle
cluster concentrations allows excluding DMS (and other H2SO4 sources, if any) as the source of new particle
clusters under our experimental conditions.

The chemical analysis of the particulate phase was only made on particles larger than 70 nm, therefore on
particles larger than those formed in the mesocosm headspace. However, aerosols from the nonfiltered
ambient air entering the mesocosm headspace (Figure S1) probably served as a seed for condensing vapors
analogous to those vapors forming new particles. Considering the fragments and main identified groups of
chemical compounds found in the particulate phase (including halogenated compounds (bromine, chlorine,
and iodine) and amines, see supporting information) correlations with new particle clusters’ number concen-
trations were found to be significant in the control mesocosm A only for the total iodine-containing species
concentrations (i.e., the sum of masses corresponding to I+, CH3I

+, IO+, HOI+, and I2
+ in the HR-AMS spectrum)

(at the 98% confidence level and with an R2 above 0.4; R2 = 0.575, and N= 192), each of the oxides fragments
(IO+ and HOI+) and the CHO1 family (CxHyOz where x ≥ 1, y ≥ 0, and z= 1) (R2 = 0.466), for the overall period of
measurements. The correlation with iodine-containing species concentrations was not found in ambient air,
where these compounds are depleted compared to the mesocosm headspace. Iodine-containing species
concentrations were also correlated with particle clusters in the enriched mesocosm B (R2 = 0.664, and
N= 373). Only iodine-containing species concentrations presented significant correlations with particle clus-
ters’ concentrations on a day-to-day basis (5 days out of 7 showed significant correlations in mesocosm A).
Using nighttime and early morning measurements, it was possible to quantify a delay of 1 h and 20min
between the onset of the iodine-containing species concentration increase (at 5:40 UTC, i.e., 40min after solar
radiation increase on average) and the particle clusters’ concentration increase (at 7:00 am UTC on average).
This delay is likely the result of the iodine-containing species gas-phase condensation onto preexisting par-
ticles during the first part of the day after sunrise, until the gas-phase iodine-containing species production
rate surpasses its condensation rate onto preexisting particles, then allowing new particle clusters’ formation.

As depicted in Figures 2c and 2d, the day-to-day variability of iodine diurnal patterns was not as strong as that
for particle clusters’ concentration. The experiment revealed lower iodine-containing species concentrations
in the enriched mesocosms when compared to the control mesocosm and that iodine-containing species
concentrations were not detected in the ambient atmosphere. We observed a clear diurnal cycle in all three
mesocosms with a maximum between 7:00 and 10:00 (UTC) and near-zero concentrations during the night.
Iodine-containing species concentrations daily variations showed higher concentrations during nucleation
days compared to nonnucleation days. In the control mesocosm, iodine-containing species concentrations
showed a main emission peak in the morning, an additional peak during the afternoon and another one in
the early evening, which can be related to similar features observed in the particle clusters daily variation
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(Figure 2a). Correlation between iodine-containing species and particle clusters’ number concentrations on 19 of
May inmesocosmB (Figure 3a) suggests a threshold (~0.004μgm�3 nitrate equivalent for iodine) fromwhich the
particle clusters’ number concentration increase sharply, indicating the production of late generation products of
lower volatility than the first generation products. Enriched mesocosms generally displayed daily iodine-
containing species concentrations below that threshold, except on the nucleation days. On 19 May in mesocosm
B, we calculate a particle clusters yield of 1.5×107particle clusters cm�3 (μgiodine/m

3)�1 above the iodine-
containing species concentration threshold and a particle clusters’ yield of 1.65×106particle clusters cm�3

(μgiodine/m
3)�1 below the iodine-containing species concentration threshold. In mesocosm A, particle clusters’

yields vary from 1.2×106particle clusters cm�3 (μgiodine/m
3)�1 on 17 of May to 1.4×107particle clusters cm�3

(μgiodine/m
3)�1 on 16 May, with a medium yield of 2.8×106particle clusters cm�3 (μgiodine/m

3)�1.

3.3. Relevance of the Processes Evidenced for Open Ocean Conditions

New particle formation events were never unambiguously and directly detected (at the lowest particle sizes)
under open sea conditions in past studies, yet the fluxes of particle clusters that we computed inside the
mesocosms exceeded 200 cm�3s�1 and led to particle clusters’ concentrations up to 20 times higher than
ambient concentrations. We identified a clear positive correlation between the new particle clusters’ produc-
tion rate and iodine-containing species found in the particulate phase. These observations indicate that
iodine-related species emitted by the seawater could be direct precursors or be oxidized to form precursors
to the formation of new particles in the open ocean atmosphere, at least if similar iodine-containing species
concentrations as observed in these experiments were reached. Concentrations of iodine were higher inside
the mesocosms than in the ambient air (23 times higher in the control mesocosm (A) on average), which, as
already stated, is likely due to a lack of dilution of the emissions inside the mesocosms in comparison to the
ambient air, allowing concentrations of iodine to reach the threshold observed. As the gas-phase reactive
iodine-containing species were below instrument detection limits, a gas-phase iodine chemistry box model
coupled to a coagulation module was used to quantify the gas-phase flux of iodine-containing species and
the concentrations of total inorganic iodine compounds (Iy) necessary to generate iodine oxide clusters at
similar levels to those observed during the experiments. The gas-phase iodine chemistry box model, which
is a zero-dimensional version of the Tropospheric Halogen chemistry Model (THAMO) [Saiz-Lopez et al.,
2005; Mahajan et al., 2010], includes a complete list of inorganic iodine compounds detected in the marine
atmosphere. In the box model, the clusters are considered to be made up of iodine oxides. Recent laboratory
studies have shown that I2O3 and I2O4 form via the recombination of IO and OIO, or OIO with itself, respectively
[Saunders and Plane, 2006; Saiz-Lopez et al., 2012]. These higher oxides then act as monomers for the subse-
quent coagulation steps. At low gas-phase concentrations (<0.8 parts per thousand by volume (pptv) of Iy),
the model predicts that no appreciable levels of particle clusters are formed. Above this threshold, clusters

Figure 3. (a) Correlation between iodine concentrations (μgm�3) and particle clusters’ number concentrations (cm�3) on
19 May in the enriched mesocosm B and linear regression for iodine concentrations above (squares) and below (triangles)
the threshold value (0.004–0.005 μgm�3). (b) Pigments and Chl a detected in the mesocosm A seawater daily samples and
iodine concentration in the atmospheric particulate phase.
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containing iodine readily form and a concentration of ~2pptv of Iy is necessary to replicate the maximum particle
clusters’ concentrations observed during the experiments. Although atmospheric total inorganic iodine com-
pounds have never been measured, typical total Iy loadings have been modeled to range from 1.5 to 4pptv in
the open ocean marine boundary layer (MBL) [Saiz-Lopez et al., 2005], which correspond to the levels of Iy esti-
mated in the mesocosm headspace above the threshold. Past studies suspected I2 of being the main precursor
of new particle formation in coastal areas [Saiz-Lopez et al., 2005]. Lawler et al. [2014b] measured I2, with concen-
trations ranging from 0.02parts per thousand (ppt) to 1.67ppt in a semiremote site in the eastern Atlantic, which
would also be higher than the threshold of gas-phase iodine-containing species calculated by the model.
Therefore, our results suggest that the levels of gas-phase iodine-containing species present in the mesocosms
headspace—although more concentrated than the normal Mediterranean atmosphere during this time of the
year (May) corresponding to low levels ofmicroorganisms in the seawater—can be achieved in the ambient atmo-
sphere over other seas and oceans under different levels of biological activity, as measured/predicted in the litera-
ture. Thus, nucleation observed in the mesocosms related to iodine can occur in the ambient atmosphere.

3.4. Relationships to the Biochemical Composition of the Seawater

Recent laboratory experiments and modeling predictions have suggested that abiotic precursors would contri-
bute to the majority of the observed global iodine oxide (IO) budget [Carpenter et al., 2013; Prados-Roman
et al., 2015] (typical daytime MBL levels are ~1pptv), one of the main iodine oxidized compounds leading to par-
ticulate iodine. In addition to potential ocean abiotic iodine sources, we further show that among all biological
parameters monitored in the seawater during the experiment (see supporting information), a significant correla-
tion was found in the control mesocosm between iodine-containing species concentrations and some
phytoplanktonic pigments (peridinin, chlorophyll b, and zeaxanthin) but not with the total autotrophic biomass
(Chl a) (Figure 3b). This result explains that nucleation was not promoted in the enriched mesocosms B and C,
which both show higher levels of Chl a and lower levels of peridinin, chlorophyll b, and zeaxanthin than in the
control mesocosm A. In this particular case, the addition of nutriments to artificially create phytoplanktonic
bloomsmight alter biological equilibria and hinder our ability to extract applicable relationships between biogeo-
chemical properties of seawater and the properties of marine aerosols. This newly found correlation between
iodine-related emissions and these biological proxies should be further explored in ocean regions with high con-
centrations of phytoplanktonic species related to these biological proxies as they may represent a significant
source of atmospheric particle clusters’ formation. We also find that total VOCs emitted in the mesocosms and
the presence of amines in particles larger than 70nm is well correlated with Chl a, and that GR1–10 is strongly
correlated to gas-phase trimethylamine (TMA) (R2 =0.8, and N=80). TMA is very volatile and would need to be
associated with acids to be stabilized in particle clusters. A lower level of confidence correlation (R2 =0, 462) is
indeed found between GR1–10 and gas-phase CO2H (carboxylic acid). This would indicate that the most conden-
sable biologically driven organics participate in the growth of nucleated particles below 10nm. Thus, the best
conditions for persistent newparticle formation events in the open ocean atmospherewould be the concomitant
presence of iodine-containing species emissions for particle clusters’ formation, a low preexisting particle con-
densation sink, and condensable gases of biological origin related to Chl a to promote particle cluster subsequent
growth at larger sizes. These findings would be in line with the fact that the only open ocean new particle forma-
tion events observed so far are typically associated with polar marine air masses passing throughout biologically
rich waters [O’Dowd et al., 2010] and that increased particulate concentrations of hydrocarbons and nitrogen-
containing organics were observed during the growth period of these open ocean new particle formation events
[Dall’Osto et al., 2012]. Levels of ambient-corrected dimethylamine DMA particulate concentrations in the meso-
cosm headspace (average daily concentrations ranging from 0.86 to 3.25ngm�3) are slightly lower than the
range of concentrations reported by Facchini et al. [2008] in Atlantic Ocean marine air masses during high biolo-
gic activity (DMA=10 (2–24) ngm�3) and slightly higher than concentrations reported by Müller et al. [2009] in
Cape Verde during an algal bloom period (0.10–1.40ngm�3).

4. Conclusions

The complex mechanisms existing between bioorganisms population types, gas-phase emissions, and nucleation
are not completely elucidated from these experiments. However, this study shows a clear relationship
between biologically driven iodine-containing species emissions from nontidal seawaters and new particle
clusters’ formation in the atmosphere. After they form, these particle clusters grow to larger sizes in the
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presence of a number of Chl a-related organic precursors. Finally, these results suggest that a biological
activity modification in future climate scenarios might modulate the atmospheric nucleation frequency
and the chance for newly formed particles to grow to larger sizes. This could ultimately influence cloud cover,
inducing a subsequent change in radiation reaching the sea surface and hence a potential feedback loop
between biological activity and climate.
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