

Energy Harvesting Enhancement of a Piezoelectric Converter

Youssef Kebbati, H. Souffi, M Pyée

▶ To cite this version:

Youssef Kebbati, H. Souffi, M Pyée. Energy Harvesting Enhancement of a Piezoelectric Converter. International Journal of Engineering and Applied Sciences (IJEAS), 2015, 2 (9). insu-01344700

HAL Id: insu-01344700 https://insu.hal.science/insu-01344700

Submitted on 1 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Energy Harvesting Enhancement of a Piezoelectric Converter

Y. Kebbati, H. Souffi, M. Pyée

Abstract— In this paper, we present the optimization of the energy harvesting in the case of piezoelectric converter. In fact, the conversion of mechanical energy from environmental vibrations into electrical energy is a key point for powering sensor nodes, toward the development of autonomous sensor systems. Piezoelectric energy converters realized in a cantilever configuration are the most studied for this purpose. In order to improve the performances of the converter, the polarization was specially studied with FEM simulations. A parametrized model was created. The electrical energy generated by the converter under an applied force was computed. The experimental results was shown for ceramic PZT.

Index Terms— Ceramic PZT, conversion of mechanical energy, piezoelectric energy converter, polarization enhancement.

I. INTRODUCTION

Within power electronic electromagnetic transformers have been the dominating component for converting and transforming of electrical power. The trend of power converters goes in the direction of higher efficiency and smaller volume. Research has shown that piezoelectric converters (PC) can compete with traditional electromagnetic transformers on both efficiency and power density [1-4]. PCs are therefore an interesting field of research.

A PC cantilever model includes the inverse and direct piezoelectric effect which harvesting the energy from the motion. The piezoelectric constitutive equations [5] in stress-charge form are given by couple of equations (1) and (2). These equations describe the relation between stress-charge form and stain-charge form. The symbols are explained in Table 1.

Equations 1: stress-charge form

 $T = c_E. S - e^T. E$ $D = e. S + \varepsilon_S. E$

Equations 2: strain-charge form

 $S = S_E . T + d^T . E$ $D = dT + \varepsilon_T . E$

T	Stress
C_{E}	Elasticity matrix (rank 4 tensor)
S	Strain
Е	Electric field
e	Coupling matrix (rank 3 tensor)
D	Electric displacement
3	Permittivity matrix (rank 2 tensor)

Table 1: Piezoelectric constitutive equation symbols

Y. Kebbati, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, CNRS Orléans, Université d'Orléans, Orléans, France.

H. Souffi, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, CNRS Orléans, Orléans, France.

M. Pyée, , Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, CNRS Orléans, Orléans, France.

II. THE INTEREST TO POLARIZE A PIEZOELECTRIC ELEMENT

A number of crystals present a piezoelectric behavior; we can quote the quartz, the tourmaline, the salt of Seignette, the sugar... This behavior appears in crystals presenting an asymmetric structure and ionic connections; it can be described by observing the figure 1, which represents a view of the structure of the quartz. If we apply an effort, mechanical constraints which appear in the material cause distortion of its crystalline structure and so relative movement of the electric charges of the ions. These movements correspond to an electric polarization in the material.

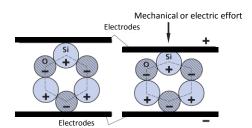


Figure 1: Cutting of an elementary cell of a quartz crystal under the effect of a mechanical or electric effort

Unlike the crytals which the structure is fixed, the piezoelectric ceramic has a crystallography structure that can vary. An important family of piezoelectric ceramic, most used in industry, is the PZT (Lead-Zirconate6Titanate) which possess excellent piezoelectric properties. The PZT is generally formed by cristals of Lead Zirconate Pb²⁺Zr⁴⁺O₃²⁻ and by Lead Titanate Pb²⁺Ti⁴⁺O₃²⁻, in near equal proportions [6]. The Titanate of Barium Ba²⁺Ti⁴⁺O₃²⁻ piezoelectric ceramic which possesses the crystallography structure as the PZT. Althought, ceramic PZT are used in a broad range of applications due to their excellent properties, such as high sensitivity, ease of manufacture and the possibility of poling the ceramic in any direction, they are very fragile and their piezoelectric parameters are sensitive to the temperature and can evolve in the time. To increase the mechanical/electric conversion, the polarization of ceramic allows obtaining an initial geometrical distortion which will be added to the external distortion (stress). The result is an enhancement of energy harvesting without risk of mechanical destruction of the ceramic.

III. SIMULATION

The model uses a piezoelectric application mode for the simulation of the mechanical and the electrical behavior of the converter when a sinusoidal vertical acceleration about 0.9m.s⁻², 50Hz is applied. The polarization direction of piezoelectric is along the y-axis. Fig. 2 shows the distortion of the piezoelectric cantilever without (a) and with (b) 10V polarization. The piezoelectric material parameters are derived from Ferroperm's PZ26 [7]. The piezoelectric

Energy Harvesting Enhancement of a Piezoelectric Converter

geometry is described in [8] and the layer thickness is fixed to $200\mu m$.

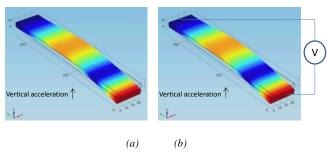


Figure 2: Distortion of the cantilever. (a) Without polarization. (b) With polarization

Fig. 3 shows the open circuit voltage when the vertical acceleration is applied. The output Voltage reaches its peak with polarization. The increase of the tension reaches nearly 10^{-3} Volt.

Figure 3: Open circuit voltage when a sinusoidal vertical acceleration, with a magnitude of 0,9 m/s⁻² and frequency of 50Hz, is applied to the cantilever

IV. EXPERIMENTAL RESULTS

The experimental validation is realized using bench test with laser, lenses, reflector, photo receiving cell and PZT system as shown in figure 4. The PZT system is composed: ceramic PZT with 280 multilayers of 60 μ m thickness each, an electronic circuit supplying polarization in the ceramic PZT and an actuator which applies mechanical stress.

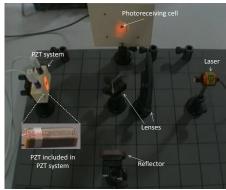


Figure 4: Bench test

The photo receiving cell measures the movements of the PZT, whereas energy harvesting is converted in volt. The experimental results are shown in figure 5. As predicted with simulation, the polarization allows enhancement in

energy harvesting. To reach the same energy, we need to increase the mechanical stress applied to the PZT through the actuator about 18%. However, this increase of the stress also increases risk of destruction of the micro layers in ceramic.

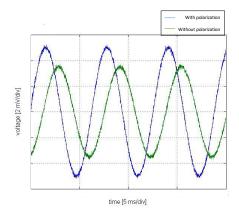


Figure 5: Experimental results

V. CONCLUSION

This paper shows how polarization can be used to optimize the energy conversion for PZT. A simulation model was developed to validate the idea. The experimental results show the enhancement of energy harvesting in the case of ceramic PZT multilayers. The sensibility of the PZT to the mechanical stress was increased by 18 %. The use of the PZT as sensor is improved.

REFERENCES

- [1] T. Bove, W. Wolny, E. Ringgaard, and K. Breboel, "New type of piezoelectric transformer with very high power density", in Applications of Ferroelectrics, 2000, pp. 321-324 vol. 1
- [2] A. M. Flynn and S. R. Sanders, "Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers," IEEE Transactions on Power Electronics, vol. 17, pp. 8-14, 2002.
- [3] W. Shao, L. Chen, C. Pan, Y. Liu, and Z. Feng, "Power density of piezoelectric transformers improved using a contact heat transfer structure," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 59, pp. 73-81, 2012.
- [4] E. Horsley, M. Foster, and D. Stone, "State-of-the-art piezoelectric transformer technology," in EPE, 2007, pp. 1-10.
- [5] T. Andersen, M. A. E. Andersen, O. C. Thomsen "Simulation of Piezoelectric Transformers with COMSOL", Proceedings of the 2012 COMSOL Conference in Milan.
- [6] A. H. Carim, B. A. Tuttle, D. H. Doughty, S. L. Martinez, "Microstructure of Solution-Processed Lead Zirconate Titanate (PZT) Thin Films" Journal of the American Ceramic Society, 1991.
- [7] Ferroperm. Available: http://www.ferroperm-piezo.com
- [8] M. Guizzetti, V. Ferrari, D. Marioli, and T. Zawada, "Thickness Optimization of a Piezoelectric Converter for Energy Harvesting" Proceedings of the 2009 COMSOL Conference in Milan.