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Abstract In this paper, we describe a new flexible and robust NH3 retrieval algorithm from measurements
of the Infrared Atmospheric Sounding Interferometer (IASI). The method is based on the calculation of a
spectral hyperspectral range index (HRI) and subsequent conversion to NH3 columns via a neural network.
It is an extension of the method presented in Van Damme et al. (2014a) who used lookup tables (LUT) for
the radiance-concentration conversion. The new method inherits the advantages of the LUT-based method
while providing several significant improvements. These include the following: (1) Complete temperature
and humidity vertical profiles can be accounted for. (2) Third-party NH3 vertical profile information can
be used. (3) Reported positive biases of LUT retrieval are reduced, and finally (4) a full measurement
uncertainty characterization is provided. A running theme in this study, related to item (2), is the importance
of the assumed vertical NH3 profile. We demonstrate the advantages of allowing variable profile shapes in
the retrieval. As an example, we analyze how the retrievals change when all NH3 is assumed to be confined
to the boundary layer. We analyze different averaging procedures in use for NH3 in the literature, introduced
to cope with the variable measurement sensitivity and derive global averaged distributions for the year
2013. A comparison with a GEOS-Chem modeled global distribution is also presented, showing a general
good correspondence (within ±3×1015 molecules.cm−2) over most of the Northern Hemisphere. However,
IASI finds mean columns about 1–1.5×1016 molecules.cm−2 (∼50–60%) lower than GEOS-Chem for India
and the North China plain.

1. Introduction

Ammonia (NH3) is released to the atmosphere primarily by agricultural activities and biomass burning. It
greatly impacts air quality and human health as a precursor of secondary aerosols and leads to acidification
and eutrophication of ecosystems. We refer the reader to Behera et al. [2013, and references therein] for a
review on the biogeochemical impacts of NH3 and its role in the global nitrogen cycle.

Our present knowledge of atmospheric NH3 levels comes from a combination of in situ measurements,
from emission inventories coupled with models, and from satellite measurements. In situ measurements
[e.g., Flechard et al., 2011] are useful on local scales and can give insight into emission sources and different
atmospheric processes at play. However, because of the highly reactive nature of NH3 —and thus its short
lifetime—in situ observations contribute only indirectly to our knowledge of the global spatiotemporal vari-
ability of NH3. Emission inventories, based mainly on livestock numbers, fertilizer application rates, and fire
counts coupled with global chemistry-transport models, were until recently the only way of estimating the
global distribution. But this modeling approach is still limited by the lack of reliable inventories and observa-
tions at a suitable spatial and temporal resolution. Current uncertainties on local and also global emissions
hence remain very large, even when averaged over longer time periods [Sutton et al., 2013].

The possibility of measuring NH3 with infrared satellite sounders has allowed measuring NH3 on a daily global
basis. Since the first satellite observations of NH3 were reported [Beer et al., 2008; Clarisse et al., 2009], continu-
ous improvements have been made to the retrieval algorithms, increasing both sensitivity and accuracy. The
potential of such measurements to improve our understanding and knowledge of emission sources, sinks,
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and transport pathways through comparison and assimilation with models is huge [Streets et al., 2013]. First
exploitations of satellite data in this direction have appeared recently in the literature. Direct comparisons
with global and regional models were performed in Heald et al. [2012] and Van Damme et al. [2014b]. Zhu et al.
[2013] and Fortems-Cheiney et al. [2016] used satellite observations to constrain NH3 emission used as input
for modeling activities. Finally, Whitburn et al. [2015] made a first assessment of state-of-the-art fire invento-
ries, while Luo et al. [2015] investigated NH3:CO ratios. However, satellite data are currently not exploited to
the fullest, in part because satellite measurements of NH3 are challenging to work with due to the variable
accuracy of the measurements and lack of vertical profile information. In this paper we outline a novel flexi-
ble and robust NH3 retrieval algorithm, which was specifically designed to overcome some shortcomings of
the current algorithms and more importantly facilitate future assimilation in models and comparison with
ground-based measurements. In the rest of section 1, we give a brief historical account of NH3 satellite
measurement techniques, highlighting the strengths and weaknesses of the different algorithms before
introducing the benefits of this new neural-network-based retrieval.

Satellite observations of NH3 were first reported from measurements of the Tropospheric Emission Spectrom-
eter (TES) [Beer et al., 2008]. Shortly after that, the Infrared Atmospheric Sounding Interferometer (IASI) was
also shown capable of measuring NH3, first in fire plumes [Coheur et al., 2009] and later on a global scale
[Clarisse et al., 2009]. This first global study relied on conversion of a brightness temperature difference to a
column via a constant multiplicative factor. While this method allows processing of large amounts of data
in a short time, it is neither very sensitive nor accurate. An accurate but typically computationally heavy
method for the retrieval of trace gas concentrations is the optimal estimation method [Rodgers, 2000]. It has
been applied to NH3 measurements from IASI on a local scale in Clarisse et al. [2010] and later on a global
scale as reported by Heald et al. [2012] over the U.S. Unfortunately, the latter reported problems with the
measurement characterization, which hampers comparison with models. For this, and also computational
reasons, the global IASI product based on optimal estimation has not been developed further. Note that a
successful global implementation of optimal estimation (with realistic averaging kernels) was reported in
Shephard et al. [2011] from TES measurements, albeit TES has significantly less data than IASI. More recently,
Shephard and Cady-Pereira [2015] and Warner et al. [2015] successfully implemented an optimal estimation
method on tropospheric NH3 for Cross-track Infrared Sounder (CrIS) and Atmospheric Infrared Sounder (AIRS)
measurements, respectively.

Optimal estimation techniques are based on iterative spectral fitting, minimizing at the same time the residual
between the measured and calculated spectrum and the distance between the measurement outcome
and a priori information. Fitting spectrally interfering species and using full radiative transfer calculations
allows for potentially very accurate measurements. The use of a priori information allows dealing efficiently
with the general ill-conditioned nature of inverse problems in remote sensing and with variable measure-
ment sensitivity. In addition, the optimal estimation framework provides a full measurement characterization
(measurement errors and averaging kernels) that is useful for model assimilation and comparison with other in
situ observations. A disadvantage of this type of method includes slow computational performance (which in
case of sounders with a high spatial sampling like IASI is a real issue). In the infrared, variable surface emissivity
and cloud coverage are very important parameters to take into account for accurate forward simulations.
In practice, retrievals are often performed on a restricted spectral range to avoid systematic errors due to
interfering gases and so that accurate simulation of the baseline is not needed. While this choice also has
computational benefits, by restricting the spectral range, the raw spectral measurement is not used to its full
potential. Another argument against optimal estimation methods for the retrieval of NH3 is that choosing
a representative a priori and covariance matrix for each single measurement on a global scale is not always
straightforward because of the extreme variability in NH3 concentrations.

In parallel with these first global quantitative products, Walker et al. [2011] proposed a pseudoquantitative
detection method specifically developed for highly variable weak absorbers which are not observed in each
spectrum. One key element of the method is a covariance matrix Sy built from measurements where the
target species is not observed (so here spectra not containing observable amounts of NH3). Such a covariance
matrix is a powerful statistical characterization of the expected correlations between the different spectral
channels in the absence of observable NH3. The detection method itself is a covariance weighted projection
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of an arbitrary spectrum y onto the NH3 spectral signature (a spectral Jacobian K corresponding to a change in
NH3) resulting in a single pseudoquantitative number (called hereafter HRI, for “hyperspectral range index”):

HRI =
KT S−1

y (y − y)√
KT S−1

y K
, (1)

with y a mean background spectrum associated with Sy . Note that the HRI defined here is normalized such
that it has a mean of zero and a standard deviation of 1 for spectra without observable quantities of NH3.
When the HRI exceeds 3 or 4 (standard deviations) one can be reasonably confident that detectable NH3

are present in the observed scene. This method is derived from the main formula appearing in optimal
least squares estimates but turns out to be equivalent to the statistical method called “linear discrimination
analysis,” which is commonly used in classification problems [Clarisse et al., 2013]. The HRI detection method is
fast and extremely sensitive (up to an order of magnitude more sensitive than brightness temperature differ-
ence techniques), because very wide spectral ranges can be used and because it captures spectral correlation
better than forward models can. A forward model is used only for the calculation of the Jacobian, but since
Jacobians are essentially spectral differences, the majority of the forward model errors cancel out. Thus, the
errors introduced to the HRI by the forward model are, in general, unimportant. As such, the detection method
avoids a lot of the problems of regular optimal estimation methods.

The HRI, a measure for the NH3 signature strength in the spectrum, is not only dependent on the amount of
NH3 but through the radiative transfer also on the thermal state of the atmosphere. The principal parameter
here is the thermal contrast defined as the temperature difference between the atmospheric boundary layer
and the surface. For a fixed NH3 column, a larger thermal contrast (TC) will give rise to larger spectral signatures
and vice versa. HRIs can therefore be converted into reasonably accurate columns by taking into account
the thermal contrast via two-dimensional lookup tables (LUT) mapping the pair (HRI, TC) to NH3 columns.
A retrieval algorithm based on this idea was developed in Van Damme et al. [2014a], who also presented a
way to realistically estimate uncertainties for each measurement. The high sensitivity of this LUT-based HRI
method was apparent in this first study with the discovery of a large number of new highly localized hot spots,
retrieval results for the evening overpass of IASI, and for the first time detection of NH3 transport over oceans.
Quantitatively, the algorithm showed a good correlation with independent retrievals using optimal estima-
tion techniques. These measurements were compared with the LOTOS-EUROS model output in Van Damme
et al. [2014b] and to in situ measurements in Van Damme et al. [2015a], and agreement was overall achieved
within measurement uncertainty, although limitations of both models and in situ measurements were also
exposed. These studies also highlighted the difficulties in comparing satellite measurements with models or
in situ data and stressed the need to very carefully take into account the measurement uncertainties. They also
exposed the following limitations of the LUT-based HRI method: (1) Using constant NH3 vertical profiles can
introduce potentially large errors (in Van Damme et al. [2014a], one fixed profile over land is used which peaks
at the surface and one over oceans which peaks around 1400m). (2) While TC is taken into account, residual
dependencies on, for instance, the complete temperature profile are not. (3) Instrumental noise causes a high
bias of the measurements [Van Damme et al., 2015a], as a result of the fact that each HRI is always converted
into a positive column. Especially for observations where the sensitivity to NH3 is low this can lead to drastic
positive mean biases (even if the associated estimated uncertainty on the individual observations are correct).

In this paper we propose an extension of the LUT-based HRI method from Van Damme et al. [2014a]. Instead
of using a two-dimensional LUT, we use here a feedforward neural network (NN) for the conversion of HRI to
NH3 columns. A NN can approximate any (unknown or difficult to calculate) function Y = f (x) (under mild
assumptions) by a transfer function F(W, x) which can be readily evaluated. The weights W of the function
F are obtained via training on a training set {yi = f (xi)} (see, e.g., Hadji-Lazaro et al. [1999] and Turquety et al.
[2004] for earlier satellite retrieval schemes that used NNs). As both rely on a database of training data, a NN
can be seen as a generalization of a LUT. However, the important difference is that a LUT needs to store an
output value for each combination of its input parameters, and the size of the LUT therefore grows exponen-
tially with the dimension of the table. The great strength of a NN lies in its ability to cope with hundreds of
input parameters, thereby offering a lot more flexibility than a two-dimensional LUT, while not requiring the
expensive and, in many cases, repetitive calculations of spectral fitting approaches. So rather than using TC
as an input parameter, the NN allows use of the full temperature profile as input. Other input parameters that
we will use are surface emissivity, surface temperature, the pressure and water vapor vertical profiles, satellite
viewing angle, and information on the vertical profile shape of NH3.
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Figure 1. (top) Deviation (%) between total columns retrieved from simulated spectra based on various vertical profiles
and the total column obtained with the reference land profile (case 6). (bottom) profile shapes considered in volume
mixing ratios (VMR). Cases 1 to 5 (profile A) correspond to a well-mixed distribution up to a maximum altitude of 100 m,
500 m, 1 km, 2 km, and 3 km and with absence of NH3 above these limits; case 6 (profile B) is the reference land profile
used for the LUT over land in Van Damme et al. [2014a]; cases 7 to 9 (profile C) correspond to well-mixed distribution up
to 500 m, 1 km, and 2 km and with the case 6 distribution above these limits.

In the next section we explore the importance of NH3 vertical profiles for satellite retrievals and propose a
three-parameter formula which can be used to describe NH3 vertical profiles. The NN retrieval itself is detailed
in section 3 (setup, training, evaluation, and uncertainty characterization). In section 4 we give a first assess-
ment of the impacts of using variable NH3 profiles on a global scale. In sections 5 and 6, we provide global
annual mean distributions of retrieved NH3 columns and compare the satellite measurements with Goddard
Earth Observing System (GEOS)-Chem modeled distributions. Note that for this study the retrieval algorithm
was developed for the IASI sounder [Clerbaux et al., 2009; Hilton et al., 2011] but that it could easily be adapted
to any other high-resolution infrared sounder capable of sounding NH3 such as AIRS, TES [Shephard et al.,
2011], or CrIS [Shephard and Cady-Pereira, 2015].

2. NH3 Vertical Profiles

As a highly reactive compound, NH3 has a relatively short lifetime ranging from a few hours to 5days [Baek
and Aneja, 2004] and a large spatiotemporal variability [Van Damme et al., 2015b]. In addition to an impor-
tant horizontal heterogeneity, NH3 can also present highly variable vertical distributions which will affect the
sensitivity of IASI to the NH3 column. In this section, we first give an assessment of the sensitivity of infrared
IASI-NH3 column retrievals to the vertical profile used as input in the processing chain and then detail how
the vertical distributions were characterized in the NN.

2.1. Infrared Sensitivity to Profile
Here we illustrate the impact of assumed NH3 vertical distributions on retrieved IASI-NH3 columns. For this, we
have simulated a set of spectra based on different profile shapes (shown in volume mixing ratios (VMR) at the
bottom of Figure 1), while other input parameters were kept constant. From these spectra, a NH3 column was
retrieved using the LUT method of Van Damme et al. [2014a] which uses a fixed profile (see case 6 in Figure 1).
Results of the impact assessment of varying vertical distributions are presented in Figure 1 as a percentage of
deviation from the true NH3 column. Errors introduced by an inappropriate vertical profile can be as large as
50%. A complementary analysis (not shown here) revealed that for transported NH3 plumes or NH3 at higher
altitude, the errors can be even larger.

A good representation of the NH3 vertical profile is therefore needed to increase the accuracy of NH3 satellite
retrievals. Table 1 gives a list of representative NH3 profile measurements. The vertical evolution of NH3 emit-
ted from the ground can be observed in the first atmospheric layers with surface instruments [e.g., Erisman
et al., 1988], but the majority of the measured profiles useful for satellite retrievals are acquired by airborne
instruments. These cover a larger part of the tropospheric column, provide useful probing of the vertical distri-
bution inside the column, and allow consistent validation of satellite quantities [e.g., Sun et al., 2015; Shephard
et al., 2015; Van Damme et al., 2015a]. Nevertheless, the spatial and temporal coverage of such data sets is very
heterogeneous, as the majority of observations are acquired during dedicated campaigns.
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Table 1. NH3 Vertical Measurements in the Literature

Authors Location Measurement Technique Altitude Range Period Covered Comments

Geordii and Muller [1974] Bavaria, Germany automated wet chemical 0–4,000 m November 1969 to

methods (airborne) September 1972

Hoell et al. [1980] Virginia, United States remote infrared heterodyne 0–15,000 m 1979

radiometer (ground-based)

LeBel et al. [1985] Maryland and Virginia, tungsten oxide denuder 0–3,000 m March and September

United States system (airborne) 1983

LeBel et al. [1985] North Atlantic ocean and tungsten oxide denuder 0–5,300 m August 1982 First NH3 profile

Bermuda system (airborne) measured over oceans

Alkezweeny et al. [1986] Kentucky, United States tungsten oxide denuder 380–3,580 m Summer 1983 Poor vertical resolution

system (airborne) (2 to 4 observations/flight)

Ziereis and Arnold [1986] Federal Republic of modified ion mass 0–10,000 m 11, 14, and 15 May 1985

Germany spectrometer (airborne)

Erisman et al. [1988] Cabauw, Netherlands two denuder tubes and a 0–200 m 30days (not specified)

filterpack (ground-based and

tower)

Yokelson et al. [1999] North Carolina, United Fourier transform infrared 84–598 m April 1997 not a dedicated campaign

States spectrometer (airborne)

Nowak et al. [2007] New York City and chemical ionization mass not specified July–August 2004 2004 NEAQS-ITCT

Georgia, United States spectrometer (airborne) campaign

Nowak et al. [2010] Houston, United States chemical ionization mass 0–5,500 m 16 September to 13

spectrometer (airborne) October 2006

Nowak et al. [2012] California, United States chemical ionization mass not specified 4 May to 20 June 2010 CalNex campaign

spectrometer (airborne) [Parrish, 2014]

Leen et al. [2013] Washington, United quantum cascade laser 100–2,800 m 24–25 May 2012

States (airborne)

Müller et al. [2014] Fresno, California, United proton transfer reaction 30–2,500m January/February 2013 Discover-AQ

Sates time-of-flight mass campaign

spectrometer (airborne)

Schiferl et al. [2014] California, United States chemical ionization mass 0–6,000 m May–June 2010 CalNex campaign

spectrometer (airborne) [Parrish, 2014]

Sun et al. [2015] California, United States cavity ring down spectrometer 30–2,500 m 21, 28, and 30 January Discover-AQ campaign

and a proton transfer reaction 2013 (additional flights on 23

time-of-flight mass January and 6 February)

spectrometer (airborne)

Shephard et al. [2015] Canadian oil sands, dual quantum cascade laser 150–6,400m 3 and 5 September 2013

Canada (airborne)

As we will demonstrate, the proposed NN retrieval product can make optimal use of ancillary vertical profile
data. However, given the limitations of in situ data, we will in first instance make use of vertical distributions
from atmospheric models. While these have generally not been validated, a few local assessments have been
performed when NH3 vertical profile observations were available [e.g., Schiferl et al., 2014]. The spatial resolu-
tion of global models is also more representative for satellite instruments and allows a direct implementation
of the NH3 vertical distributions in the retrieval processing chain.

2.2. A General Formula
From the previous section, it is clear that better accuracy in the retrieval will be achieved by considering
realistic vertical profiles. Therefore, vertical profile information should be incorporated in the input param-
eters in the NN. For this, it is necessary to parametrize the continuous vertical profile using a suitable
analytical function. An analysis was made of the GEOS-Chem (www.geos-chem.org) v8.03.01 global chemical
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Figure 2. Example of GEOS-Chem model (blue) and fitted (red) profiles (left) above a source area and (right)
characteristic of transport with z0, 𝜎, and 𝜌max indicated. The top right insets are histograms of 𝜎 derived from fitting
of equation (2) to a representative set of GEOS-Chem profiles.

transport model (CTM) profiles for the year 2009. The GEOS-Chem oxidant-aerosol simulation includes
H2SO4-HNO3-NH3 aerosol thermodynamics coupled to an ozone-NOx-hydrocarbon-aerosol chemical mech-
anism [Park et al., 2004]. Partitioning of total ammonia and nitric acid between the gas and particle phases
is calculated using the ISORROPIA II thermodynamic equilibrium model [Fountoukis and Nenes, 2007] as
implemented in GEOS-Chem by Pye et al. [2009]. Among the functions that were tried, the following
three-parameter Gaussian function was found to be able to approximate most GEOS-Chem profiles to good
accuracy:

𝜌 = 𝜌maxe
−
(

z−z0
𝜎

)2

, (2)

with 𝜌max the maximum NH3 concentration (in ppb), z0 the peak height of the profile (in km), and 𝜎 a mea-
sure for the spread or thickness of the NH3 layer (in km). As an example, Figure 2 shows two vertical NH3

profiles from GEOS-Chem (one representative for source (left), one for transport (right)), together with their
Gaussian fit. We found that about 73% of the GEOS-Chem profiles could be fitted to a high accuracy with the
proposed formula. The remaining profiles were found to have multiple maxima. The insets in Figure 2 are his-
tograms of the𝜎 parameter of representative GEOS-Chem profiles with a NH3 total column larger than 5×1014

molecules.cm−2, separately for source (profiles peaking at the surface) and transported conditions. They show
that most profiles have a 𝜎 around 1 and virtually all modeled profiles a 𝜎 between 0 and 2.

3. The Neural Network
3.1. Training Set
The main idea of the proposed retrieval approach is to map the HRI to NH3 columns via a NN. As explained in
section 1 a NN is built via training. Ideally, the training set should be as large, as accurate, and as extensive as
possible, and input data in the training should be representative of the real input data. A description of the
principles of operation of a supervised NN for atmospheric remote sensing can be found in Hadji-Lazaro et al.
[1999], Turquety et al. [2004], and Blackwell and Chen [2009]. In this section, we explain how the NN training
set was built.

Since a reference data set of IASI-NH3 is not available, we built a synthetic training set using forward simula-
tions with the Atmosphit line-by-line radiative transfer model [Coheur et al., 2005]. To be representative for IASI
observations, background atmospheric conditions were taken from 1year of thermodynamic atmospheric
profiles provided by the meteorological Level 2 information from the operational IASI processor [August et al.,
2012]. Most profiles (about 88%) were taken above land because of the larger variability encountered in the
atmospheric conditions (e.g., thermal contrast, pressure profiles, and emissivity). NH3 vertical profiles were
constructed following equation (2), where the three input parameters were varied randomly: 𝜎 values were
taken randomly between 0.25 and 2.5 km, and z0 was set to 0 for 90% of the profiles (representative for
source profiles) and set randomly between 0 and 10km for the remaining 10% (representative for transported
profiles). 𝜌max was taken randomly between 0 and 20ppb. To account for background trace levels of NH3,
a mean constant NH3 background profile was added to each polluted profile. This background profile was
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calculated as the mean of GEOS-Chem profiles with a NH3 column below 5 × 1014 molecules.cm−2. For the
simulations, the vertical sampling of these NH3 profiles was set to 1 km with a finer division of 0.2 km applied
in a layer of 4 km around the peak height (z0). About 250,000 IASI spectra were simulated both with and
without NH3 (500,000 spectra in total).

We do not need the actual spectra as training data, but rather the derived HRI values. These were calcu-
lated following equation (1) but with one important difference. From early tests, it was clear that simulated
spectra with a zero NH3 column often had a rather large HRI value, probably related to inaccuracies in the
forward model. To make the training data set as accurate as possible, we simulated for each spectrum y a twin
spectrum ywo, with a zero NH3 column and calculated the HRI as

HRI =
KT S−1

y (y − ywo)√
KT S−1

y K
. (3)

The HRI calculated in this way is noise free (as mentioned in section 1, HRIs of spectra without observable
NH3 do have a mean HRI of 0 but a standard deviation of 1). Finally, note that in the calculation of the HRI
(equation (3)) we used angular dependent K , ȳ, and S as in Bauduin et al. [2016] because of the dependence of
the signal strength on the viewing angle. We refer to this paper also for a detailed explanation for the rational
behind this.

3.2. The Setup, Training, and Evaluation
With the calculated HRI and the atmospheric parameters used for the construction of the associated spectra,
we next trained the NN. We chose a supervised two-layer feedforward network: one hidden layer of 15 neurons
with sigmoid transfer functions and one output layer of one linear neuron. The training was performed using
the Levenberg-Marquardt backpropagation algorithm. For the training, the training set was divided into three
distinct groups: (1) the training set strictly speaking, (2) a validation set, and (3) a test set. The selection of the
training, validation, and test sets was performed randomly by considering a distribution of 85%-10%-5%. Eight
different parameters were selected as inputs for the NN. These are the surface temperature, the temperature,
pressure, and humidity profiles, all four provided by the meteorological Level 2 information from the oper-
ational IASI processor [August et al., 2012]; the 𝜎 and z0 parameters describing the shape of the NH3 vertical
profiles; the surface emissivity (𝜖); and the viewing angle of the satellite. The temperature, pressure, and
humidity profiles are described by 12, 11, and 7 levels, respectively. Surface emissivities over land were taken
from the 2014 monthly mean spectral emissivity database provided by Zhou et al. [2011]. Over sea, emissivi-
ties were taken from the Nalli et al. [2008] emissivity database. These spectral emissivities were averaged over
the range [800–1010; 1065–1200] cm−1. The 1010–1065 cm−1 region was excluded to avoid interferences
from the 𝜈3 ozone band. The NN output parameter was set as the ratio of the NH3 total column to the HRI. The
relationship between the input and the output parameters can be written as

NH3column = HRI × f (T , Tsurf, P,H2O, 𝜎, z0, 𝜖, angle). (4)

The rationale of using the ratio rather than the NH3 total column itself is that the ratio has a smaller dynamic
scale, which allows for a much better training of the network. Also, working with the ratio ensures that the
uncertainty on the HRI (mainly caused by instrumental noise) is translated in a linear way to the retrieved
column. The sign of the ratio f will depend on the exact vertical profile of NH3 and the atmospheric tempera-
ture but will mostly follow the sign of the TC. Note that the ratio itself is totally independent of the HRI value
(owing to the linear relationship between the HRI and the NH3 column in the range of NH3 column values
usually encountered), and that noise on the HRI can result in negative NH3 columns. This has a number of
benefits which will be discussed further on.

To assess the performance of the training, we have calculated for the whole training set the mean relative
error and relative bias of the retrieved columns (ŷ) over the actual columns y per bin of 1 K of TC and 2.5×1015

molecules.cm−2 of NH3 total column:

Error = 1
n

n∑
k=1

|||| ŷk − yk

yk

|||| × 100, (5)
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Figure 3. Evaluation of the training of the neural network. The color bar represents (left column) the mean error (%)
and (right column) bias (%) between the real state and the output from (top row) the NN-based and (bottom row)
the LUT-based HRI method used in Van Damme et al. [2014a].

Bias = 1
n

n∑
k=1

ŷk − yk

yk
× 100. (6)

To make the assessment more representative of real IASI measurements, we have added normally distributed
noise on the HRI. The results are shown in Figure 3 as a function of TC and NH3 column. To compare, the mean
error and bias calculated from the LUT-based HRI method are given as well (here we used the forward sim-
ulations used to build the LUT). The TC (K), which drives the sensitivity of the IR measurements to boundary
layer concentrations, is defined here as the difference between the surface temperature and the temperature
at 1.5 km of altitude. The comparison between the two methods shows a clear improvement of the NN com-
pared to the LUT, both in the mean and the bias, especially for low TCs. As expected, largest errors (>100%)
are found for low TCs (low sensitivity) since a large fraction of NH3 vertical profiles peak at the surface (z0 =0)
and rapidly decrease with altitude. Relative errors are also large for low NH3 total columns (but in this case
absolute errors can still be small).

For the NN-based method, the mean error rapidly decreases with increasing TC and total column and becomes
lower than 30% (40%) for TC above (below) +10 K (−10 K) and total column higher than about 5 × 1016

molecules.cm−2. The corresponding mean bias is generally below 10% except at low TC (between 0 and 5 K)
for high NH3 columns (>1×1017 molecules.cm−2) where an underestimation of about 40% is observed. For the
LUT-based method in contrast, a large mean overestimation (>50%) is observed at low NH3 columns or low
TC up to high total columns (>3 × 1017) but associated with large mean uncertainties (>100%). This overesti-
mation is due to the instrumental error on the HRI (represented here by the random noise added on the HRI)
which results in a nonzero HRI, even in the absence of NH3. In the LUT-based HRI method, these nonzero HRIs
are converted into positive NH3 total columns introducing therefore a systematic positive bias in the mean.
In contrast, in the NN-based method this bias is lower owing to the parametrization of the NN which allows
negative value of NH3 columns for low (positive or negative) values of HRI, resulting in a mean bias close to 0.

3.3. Retrieval, Uncertainty Estimate, and Example
For the actual retrieval we first filtered out observations with a cloud fraction inside the IASI field of view above
25%, since our training data did not include clouds. Then for the remaining observations the different input
parameters of the NN were gathered. Atmospheric profiles (water vapor, pressure, and temperature) were
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taken from the IASI meteorological L2. Surface emissivities were taken as the mean of the spectral emissivity in
the range [800–1010; 1065–1200] cm−1 from the 2014 monthly mean database provided by Zhou et al. [2011]
(for land measurements) and from the Nalli et al. [2008] database for sea measurements. HRIs were calculated
following equation (1) (with again angular dependent K , ȳ, and S). In first instance, and to ease comparison
with the LUT product, we used fixed values for the 𝜎 and z0 input parameters by fitting the single NH3 profiles
used for land and sea in the LUT-based HRI method [Van Damme et al., 2014a]. We found z0 = 0; 𝜎 = 1.07 km
and z0 = 1.4; 𝜎 = 1.28 km for land and sea profiles respectively. These are used as default values for 𝜎 and z0,
unless specifically otherwise stated.

After application of the network, a filter is applied to remove unphysical retrievals associated with errors in the
input parameters. Retrievals are removed when (1) negative columns are associated with a HRI above 1.5 in
absolute value and (2) the ratio of NH3 column to the HRI is higher than 3×1016. The first criterion guarantees
that negative columns are only possible for NH3 retrievals within the IASI noise. The second criterion removes
retrievals where a large HRI is observed corresponding to an almost zero TC (thus likely caused by errors in the
TC or NH3 profile). This procedure removes between 5% and 10% of the data, mostly with evening overpasses.

To each retrieved NH3 total column an associated uncertainty can be estimated by propagating the uncer-
tainties of the different parameters of the NN following

sNH3
=

√(
𝜕NH3

𝜕HRI

)2

s2
HRI +

(
𝜕NH3

𝜕T

)2

s2
T +

(
𝜕NH3

𝜕Tskin

)2

s2
Tskin +

(
𝜕NH3

𝜕H2O

)2

s2
H2O +

(
𝜕NH3

𝜕𝜎

)2

s2
𝜎
. (7)

Here sNH3
is the absolute uncertainty on the NH3 column. sT and sH2O are the uncertainty on the temperature

profile and the water vapor profile, respectively, which are set at 1 K for each level of the temperature profile
and at 10% for the levels of water vapor profile, based on early validation of the IASI Level 2 meteorological
fields [Pougatchev et al., 2009]. sTskin is the uncertainty on the surface temperature and is conservatively set
to 1 K. sHRI and s𝜎 are the standard deviation of the HRI and 𝜎 and are set to 1 (per definition) and 0.5
(see histogram of𝜎 in Figure 2), respectively. s𝜎 is used to evaluate the uncertainty associated with the retrieval
sensitivity to the vertical distribution of NH3. Note that cloud coverage, by affecting the value of the calculated
HRI, also influences the retrieval. An analysis over Europe in the summer showed that the impact of clouds on
the HRI is almost linear up to high values with a slope close to −1 (a 25% cloud coverage causes on average a
roughly equal decrease of the HRI). Although the 25% threshold is arbitrary, it is a good compromise between
keeping the number of measurements high and the impact of clouds low. This is important to keep in mind
for the utilization of the product.

An example of retrieved NH3 total columns (molecules.cm−2) on 2 June 2013 for the morning (top) and the
evening (bottom) overpasses of IASI is given in Figure 4. Light gray points correspond to cloudy pixels. The cor-
responding distributions of the uncertainty are shown in the inset. Large columns are, for example, observed
above the usual agricultural hot spots. The large columns observed over the Pacific Ocean near the west coast
of Mexico correspond to transported plumes emitted by biomass burning in this region. Differences observed
between morning and evening overpasses of IASI could be due to diurnal variations of NH3 but have not been
further investigated.

An appealing feature is that the retrieved NH3 total columns (moleculesm−2) for areas far away from source
regions (such as over most of the oceans) are close to 0. As explained, this is due to the fact that retrieval noise
is translated in a linear way into the retrieved columns. Therefore, and because of the definition of HRI, the
retrieved values over remote areas will follow a Gaussian distribution around zero, guaranteeing an average
close to 0. However, over certain regions (e.g., for this day, over Bolivia and Peru), negative NH3 columns are
predominant, especially for the evening overpass. This bias is either caused by a bias in the HRI (e.g., due to sur-
face effects) or by incompatible meteorological L2 data (for instance, relative high HRI values corresponding
to areas with a negative TC). Most of these observations are already removed by the filter mentioned above,
but as it is quite conservative it does not remove all the anomalies. An analysis of data from different years
(2008–2015) revealed that the anomalous negative values occur less frequently with newer L2 data, indicating
improvements in the IASI L2 products. The analysis of the uncertainty distribution reveals uncertainties gener-
ally below 30% (50%) over the identified source areas for the morning (evening) overpass time measurements.
For regions with low NH3 columns in contrast, the uncertainty is typically larger than 150%.
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Figure 4. NH3 total column distributions (molecules.cm−2) for (top) the morning and (bottom) the evening overpasses
of IASI on Metop-A for 2 June 2013. Associated uncertainty distributions (%) are shown as well (bottom left inset).

3.4. Uncertainty Characterization
An example of uncertainties and their partitioning in the different uncertainty contributions is shown in
Figure 5 for measurements selected on 15 June 2013 (morning overpass time). Four cases characterized by dif-
ferent sensitivity to the measurement (TC) and NH3 column were considered: (1) high NH3 column (∼9×1016

molecules.cm−2) and high TC (∼15 K, high sensitivity); (2) high NH3 column (∼9 × 1016 molecules.cm−2) and
low TC (∼3 K, low sensitivity); (3) low NH3 column (∼4.5 × 1015 molecules.cm−2) and high TC (∼14 K); and (4)
low column (∼ 4.5 × 1015 molecules.cm−2) and low TC (∼2 K).

The lowest uncertainties are around 25% when high columns and high TC coincide. When either of these
decrease, the uncertainty progressively increases. For these cases, uncertainties are found up to 85–148%.
When both the TC and column are low, all sensitivity to NH3 is lost. In case of high TC and high NH3 columns
(high HRI), the major relative contribution to the total uncertainty comes from the thickness of the NH3 layer
(𝜎) (36%) followed by the surface temperature (24%) and the temperature profile (16%). The relative contri-
bution of the HRI is low (11%) since HRI is large in absolute value (because of the large TC and large column).
For low TC and high NH3 column, the sensitivity of the retrieved NH3 total column to small variations of the
TC and HRI is larger. This results in a higher relative contribution of the HRI (17%), surface temperature (25%),
and temperature profile (19%), while the relative contribution of the 𝜎 parameter is reduced (22%).
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Figure 5. Example of error distributions of the NH3 retrieved columns for different situations characterized by
different sensitivity to the measurements and NH3 total column. From left to right: (1) high NH3 column (∼9 × 1016

molecules.cm−2) and high TC (∼15 K), (2) high column (∼9 × 1016 molecules.cm−2) and low TC (∼3 K), (3) low column
(∼4.5 × 1015 molecules.cm−2) and high TC (∼14 K), and (4) low column (∼4.5 × 1015 molecules.cm−2) and low TC (∼2 K).
The total relative error for each case is given as well.

For high TC and low NH3 column in contrast, the major contribution to the total uncertainty is on the HRI,
reaching 67%, because in this case the uncertainty on the HRI (one by definition) can be comparable or even
larger than the value of the HRI. In this case this uncertainty dominates all other contributions. Finally, for low
TC and low NH3 column (low HRI), the relative uncertainty on the retrieved column is very large (270%), and
compared to the previous case, also uncertainties on the other parameters become more important. It is clear
that such measurements are of limited usefulness.

3.5. NN Versus LUT Retrievals
In this section we compare retrievals of the LUT-based and the NN-based HRI method. For this, all measure-
ments for the year 2013 with a relative uncertainty below 100% were selected. A scatterplot between the two
retrievals over land is shown in Figure 6. Three main patterns stand out (numbered (1)–(3) in the figure):

1. For measurements where both algorithms give a relative uncertainty below 25%, the retrieved NH3

columns from the NN-based and the LUT-based method are in excellent agreement (543,847 mea-
surements in total with a correlation coefficient of 0.91 and linear regression (Pearson’s major axis) of
NN = LUT × 0.85 − 0.17 × 1016). These correspond to measurements associated with high TC (>15 K) and a
high HRI (>10). A similar analysis was made for retrievals over oceans only (not shown here). While the cor-
relation coefficient for the measurements over sea is relatively good (0.87), the linear regression indicates
larger differences than for land (NN = LUT × 1.19 − 0.72 × 1016; 1574 measurements in total).

2. The measurements in this group are associated with a relative uncertainty mainly comprising between 25%
and 75% and a high HRI (>10) but a fairly low positive TC (5–10K). The retrieved columns derived from the
NN are consistently larger than the columns retrieved from the LUT (more than a factor of 2). A possible
reason for these differences is that the LUT was derived from averages of forward simulations using many
different background atmospheres, which could be affected by outliers.

3. These measurements have a low HRI (−3 <HRI<3) and TC (−5 <TC<5 K). Here the sensitivity to atmospheric
NH3 is low. The columns retrieved from the NN are generally much smaller than for those retrieved from the
LUT. The existing bias in the LUT is the largest for these retrievals, and the reduction of this bias in the NN
can be seen clearly (with an average close to 0). Over sea, the majority of the observations belongs to this
category, and an even larger scatter is observed between the LUT and NN.
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Figure 6. NH3 total columns (molecules.cm−2) retrieved from the NN-based method (y axis) versus those retrieved from
the LUT-based method (x axis) over the entire year 2013 (morning and evening overpasses) over land. The colors refer
to the uncertainty (%) associated with the total columns retrieved from the NN-based method. Numbering (1)–(3)
corresponds to the main patterns standing out. These correspond to measurements associated with (1) a high TC and
a high HRI, (2) a high HRI and a low positive TC, and (3) a low HRI and TC.

4. Impact of the NH3 Vertical Profiles

One of the advantages of the NN-based method is that it allows using variable NH3 profiles. As shown in
section 2.1, the vertical distribution can have a large impact on the retrieved total column. To give an idea of
the potential impact on a global scale, we have retrieved NH3 columns assuming that most NH3 is located in
the planetary boundary layer (PBL) by setting 𝜎 equal to the PBL height derived from the ERA-interim reanal-
ysis [Dee et al., 2011]. Note that for PBL heights lower than 250m, the 𝜎 value has been set to 250m since the
NN has not been trained for lower values. Figure 7 shows the relative difference (%) between the retrieval
using the fixed 𝜎 derived from the LUT (=1.07 km for land) and the retrieval using the PBL height for 2 June
2013 (morning orbits, land only). Corresponding PBL height (km) and TC distributions (now taken at 1 km) are
provided as well (bottom left and bottom right insets, respectively). Highly variable PBL heights are observed

Figure 7. Relative differences (%) between NH3 total columns (molecules.cm−2) retrieved over land for 2 June 2013 (morning orbits) using a fixed 𝜎 (=1.07 km for
land) and using the PBL height from the ERA-interim reanalysis as 𝜎. The bottom left and bottom right insets show the corresponding PBL height (km) and TC
(K, Tsurf − T1km) distributions, respectively.
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Figure 8. (top left) Nighttime IASI-NH3 total column (molecules.cm−2) distribution for 2 June 2013 over India retrieved
by considering a fixed 𝜎, (top right) associated TC (K, Tsurf − T1km) and (bottom left) PBL height (km), and (bottom right)
relative differences (%) between NH3 total columns (molecules.cm−2) distributions retrieved using a fixed 𝜎 (=1.07 km
for land) and using the PBL height from the ERA-interim reanalysis as 𝜎.

globally ranging from above 0 km to more than 2.5 km. The largest differences in the retrieved NH3 columns are
between 60% and 100% (e.g., in the Southern Hemisphere and at high latitudes). Since the PBL height is spa-
tially highly variable, no clear geographical patterns can be discerned. In case of positive TC (which is almost
always the case here), the retrieved NH3 columns will generally be lower for NH3 profiles with a thicker layer
because of the better sensitivity to NH3 at higher altitude—and conversely. This is consistent with Figure 1.

The impact of the NH3 vertical profile on the retrieved column for a nighttime distribution is shown in Figure 8
(bottom right). As the sensitivity is generally lower for nighttime measurements (due to a general lower TC),
we focus only on a source region (South Asia) and land profiles. The nighttime NH3 total column distribution
retrieved for a fixed 𝜎 (Figure 8, top left), and corresponding TC (Figure 8, top right) and PBL height (Figure 8,
bottom left) distributions are also shown. At night, the PBL height is generally much lower than during the
day [Jacob, 1999]. For the region shown, the PBL is mostly below 500m. The TC distribution is mostly positive,
except over Pakistan where slightly negative values are observed. As for the daytime distribution, for a given
signal in the IASI spectra, lower 𝜎 values combined with positive TCs result in higher retrieved NH3 columns
with relative difference up to 100%. In contrast, for the area showing slightly negative values of TC, the
retrieved columns are about 20–30% lower than the retrieved columns using a fixed 𝜎. The magnitude of
these differences is in line with what was shown in section 2.1.

5. Global Annual Mean and the Importance of the Averaging Procedure

For some applications, it is useful to consider monthly or yearly average distributions. However, as discussed
in Van Damme et al. [2014a], averaging is not straightforward because of large variability of the NH3 measure-
ment sensitivity. It can for instance happen that the arithmetic mean of a group of observations is dominated
by a single anomalous high measurement value (corresponding to a measurement with low sensitivity and
high uncertainty). Averages from the LUT retrieval approach suffered from such measurements. For this reason
Van Damme et al. [2014a] made use of weighted averages, where the weight was taken inversely proportional
to the square of the estimated uncertainty of the measurement (in relative or absolute terms). Therefore,
measurements thought to have a high accuracy carry a larger weight in the average. Another approach is to
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Figure 9. NH3 total columns (molecules.cm−2) distributions from IASI measurements for the year 2013, in a 0.25∘ by
0.25∘ grid for the morning overpasses. NH3 distributions are a mean of all measurements within a cell following (top) an
arithmetic mean (A-mean), (middle) a weighted mean by the relative uncertainty (RU-mean), and (bottom) a weighted
mean by the absolute uncertainty (AU-mean).

WHITBURN ET AL. NEW IASI-NH3 NN RETRIEVAL ALGORITHM 6594



Journal of Geophysical Research: Atmospheres 10.1002/2016JD024828

remove those measurements for which the uncertainty exceeds a certain threshold value (this is equivalent to
using 0/1 weights). The disadvantage of weighting approaches is that they bias the average: for instance, 0/1
weighting or weighting with the relative error will favor the largest columns with a low uncertainty; weighting
with an absolute error will favor the lowest columns. Figure 9 illustrates three different averaging procedures:
arithmetic mean (A-mean, top), weighted mean by the relative uncertainty (RU-mean, middle), and the abso-
lute uncertainty (AU-mean, bottom). In all three cases we used all retrievals of the morning overpass of the
year 2013 but removed grid cells with less than 15 observations. For more details on the weighted averaging
procedure, we refer to Van Damme et al. [2014a].

A main feature to notice in Figure 9 is that, despite the different averaging procedures, the mean NH3 total
columns are of the same order of magnitude. This indicates that anomalous high or low measurements are not
as important for the NN as for the LUT. Analyzing the daytime distribution reveals the same main NH3 hot spots
that were identified by Van Damme et al. [2014a], mainly related to fire and agriculture. For agricultural sources,
we observe large NH3 columns especially above the Indo-Gangetic Plain, the Fergana Valley in Central Asia, the
North China Plain in Asia, the US Midwest region and San Joaquin Valley, the Po valley, and the Netherlands in
Europe. NH3 hot spots associated with biomass burning are found, for example, above central Africa, Eastern
Russia, Thailand, and Indonesia. For a more complete analysis of the NH3 sources and hot spots, we refer
to Van Damme et al. [2014a]. However, the comparison between the different averaging methods highlights
important differences in the regions with large NH3 columns. In particular, a large impact of fire plumes is
revealed in the RU-mean due to the better sensitivity of IASI for NH3 at higher altitude [Van Damme et al.,
2014a, 2014b]. High NH3 columns related to fires emissions are, for example, observed above Canada, Eastern
Russia, and Indonesia. Moreover, many localized hot spots show up, especially above the US and Western
Russia. In contrast, in the AU-mean only the permanent hot spots of NH3 total columns appear (these are
principally related to agriculture). Hot spots associated with biomass burning are generally not visible, due to
the more important weight given to the low columns (with a lower absolute uncertainty). Mean NH3 columns
are therefore also lower than in the RU-mean. The A-mean is relatively close to the AU-mean but reveals slightly
better the biomass burning hot spots (e.g., Eastern Russia). We conclude that with the proposed NN product,
the expected differences between the different averaging procedures are still present but less pronounced.
The choice of averaging procedure will principally be determined by the specific application.

6. Comparison With GEOS-Chem

In this section we compare the mean NH3 global distributions to those simulated with the GEOS-Chem CTM.
The GEOS-Chem v8.03.01 model provides NH3 total columns on a daily basis with a horizontal resolution of
2∘ × 2.5∘. One of the advantages of the new product is that it can use profile information from other sources.
To compare optimally with GEOS-Chem, it therefore makes sense to use collocated vertical profile shape
information in the retrieval. 𝜎 and z0 values were obtained for each IASI observation by fitting the Gaussian
profile (equation (2)) to the corresponding GEOS-Chem grid cell sampled at the same time as the IASI
overpass. Note that we only considered IASI observations and corresponding GEOS-Chem modeled for which
the GEOS-Chem profile could be fitted to a high accuracy (∼73% of all profiles). The global NH3 mean distribu-
tions derived from IASI measurements and given by the GEOS-Chem simulations for the year 2009 are shown
in Figure 10 (top and middle, respectively). The absolute differences between the two distributions are also
shown (Figure 10, bottom).

The same main source areas are found both in the satellite and modeled distributions. Also, transport pat-
terns over oceans are in very good agreement (off the west coast of Africa, Indian Ocean, Mediterranean Sea,
and off the east of South America). However, some source areas appear to be more concentrated in the IASI
distributions. This is in particular the case for India for which the highest IASI columns are confined to the
Indo-Gangetic plain, while GEOS-Chem simulates very high columns over most of India and Pakistan. On a
quantitative level, IASI and GEOS-Chem are consistent on a yearly basis over most of the Northern Hemisphere
within ±3× 1015 molecules.cm−2. However, an overestimation of GEOS-Chem simulations over IASI measure-
ments of about 1–1.5× 1016 molecules.cm−2 is found for India and the North China plain. Overestimations of
about 0.7–1×1016 molecules.cm−2 are found as well over Central Africa. IASI columns are larger only for certain
hot spots (the San Joaquin Valley, the Netherlands, and West Africa). Considering the generally strong positive
thermal contrast prevailing during daytime, these observed differences between IASI and GEOS-Chem distri-
butions (about 50–70% over the source areas) appear to be too high to be only explained by the reported
bias on the training data set (for TC>5–10K) (Figure 3).
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Figure 10. (top) NH3 total columns (molecules.cm−2) distributions from IASI measurements for the year 2009, in a 2.5∘
by 2∘ grid for the morning overpasses. 𝜎 values were selected by fitting the corresponding GEOS-Chem NH3 vertical
profiles. (middle) NH3 total columns (molecules.cm−2) distributions from the GEOS-Chem CTM. (bottom) Differences
between NH3 total columns (molecules.cm−2) distributions measured by IASI and simulated by GEOS-Chem.
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7. Conclusion

In this paper we have introduced a new neural network (NN)-based NH3 retrieval algorithm. It combines most
advantages of full fitting approaches with HRI based approaches. To recapitulate, from the latter it inherits
the following:

Computational Efficiency. The only parameter retained from the measurement is the HRI value. Calculating
these is straightforward and computational time is negligible. Calculating the neural network function F is
equally straightforward.

Full Spectral Range. The HRI takes into account the spectral range 800–1200 cm−1, which contains all the
important NH3 lines in the infrared, and thereby takes full advantage of the thermal infrared.

Low Dependency on the Forward Model. The forward model is only of secondary importance for the calcula-
tion of the Jacobians in the HRI and also for the HRI calculated from the NN training data. Because we use an
angular dependent gain matrix, the NN-based approach removes the residual angular dependency previously
reported in Van Damme et al. [2014a].

No A Priori Information. No a priori information on the column is used. This means that all the information
from the final measurement comes from the spectral measurement (but potentially with very large associated
uncertainty estimates). So in contrast to optimal estimation approaches, no averaging kernel needs to be
applied when carrying out comparison with other measurements/models. A priori information on the vertical
profile shape is used though.

The main advantages of the NN over the LUT-based HRI method are the following:

Full Atmospheric State. Because the number of input parameters is not limited in the NN, the full temperature,
humidity, and pressure profiles can be taken into account. This property is shared with the spectral fitting
approaches.

Full Uncertainty Analysis. By perturbing the input parameters a full uncertainty characterization can be made
of how the uncertainty of each of the input parameters propagates to the final result. This analysis can be
carried out on a per-pixel basis.

Reduced Bias. Rather than mapping the input parameters directly to a NH3 column, the output of the NN is
a scaling factor, which after multiplication with the HRI gives the column. In this way, the instrumental error
on the HRI is translated in a linear way in an error on the column, and negative columns become possible.
At the same time, this implies that the algorithm itself is not biased high as was the case with the LUT-based
conversion (this is assuming that the HRI values themselves are not biased). At least for making averaged
distributions, this decreased bias helps to reduce the importance of the precise averaging procedure that
is used.

Flexible NH3 Profiles. All the retrieval approaches which have been used so far assume a fixed or an a priori
NH3 vertical profile. While infrared sounders have limited or no sensitivity to the vertical profile of NH3, the
assumptions on the profile can affect the retrieved column greatly. It is clear, even from the limited amount
of in situ measurements, that the vertical profiles of NH3 exhibit a huge variability. To deal with this, we have
included two input parameters in the NN describing the profile, namely, the peak height and the thickness of
the NH3 layer. This allows to estimate robustly the uncertainty in the retrieved column due to the uncertainty
in the assumed profile but also allows the following:

1. Study of wildfire emissions. Using a fixed NH3 profile can yield large errors on the retrieved column espe-
cially when studying wildfire plumes which can have a peak altitude several kilometers above the surface.
Coupling bottom-up [Sofiev et al., 2012] or top-down [Val Martin et al., 2010] height estimates could
therefore greatly improve the accuracy of satellite retrievals of NH3 in wildfire plumes.

2. Model exploitation possibilities. The flexibility in NH3 vertical profiles can in the future be exploited to
improve atmospheric chemistry-transport models. In evaluating a chemical transport model, retrievals can
be carried out using the modeled NH3 profile for a more consistent comparison. Improvements in, e.g.,
dispersion and lifetime of the model could then be evaluated from the retrievals carried out with updated
profiles.

3. In situ measurements. In situ measurements of NH3 profiles or boundary layer heights can be directly utilized
to improve satellite retrievals and/or validation exercises, as suggested in Van Damme et al. [2015a]. Here
we have demonstrated that these can greatly alter the retrieved columns on a global scale.
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The full IASI-NH3 data set (8years of data) is being reprocessed using the retrieval method described in this
paper. The 𝜎 and z0 values which are used in the retrieval process are derived from the fitting of the single
NH3 profiles used for land and sea in the LUT-based HRI method (see section 3.3) and will be distributed
along with the NH3 data. The data set will be available in 2016 for all users through the Ether database
(http://www.pole-ether.fr/), along with daily quicklook plots and selection tools.
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