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Abstract Stratospheric temperature trends for the period 2002–2014 have been estimated using
NOAA’s Integrated Microwave Inter-calibration Approach (IMICA) version of advanced microwave sounding
unit (AMSU) on AQUA satellite. In this period the stratosphere continued cooling over most of the globe
with a rate ranging from −0.4 ± 0.3 to −0.5 ± 0.4 K/decade above 25 km. Considering specific latitude
bands, trends are highly variable with height. In the tropical region, trends vary from −0.5±0.3 K/decade for
channel 12 (∼30 km) to −0.7±0.3 K/decade for higher channels and present small seasonal variability in the
intensity of cooling. In the polar regions and in the midlatitudes, trends for all channels are negative but not
significant; uncertainties are large due to the high dynamical variability particularly in high latitudes. There
is also large seasonal variability, with southern midlatitudes seasonal trends significant during summer
(December, January, February) and autumn (March, April, May) above ∼25 km, with values ranging from
−1.0± 0.5 to −0.6± 0.5 K/decade. Regional trends estimated with AMSU and long-term lidar measurements
(over two decades) confirm stratospheric cooling in the northern midlatitudes and tropical regions. The
effect of the length of the short series on trends was found to be small outside polar regions. It was found to
be large in polar regions with about 1 K changes in trend depending on start dates of the time series.

1. Introduction

Stratospheric temperature trends are fingerprints of climate change, reacting to radiative, chemical, and
dynamical forcing. A large range of observations and climate model simulations for the period until ∼2005
indicate that the stratosphere cooled in most of the layer up to 50 km in altitude due to both the decrease in
stratospheric ozone concentration and the increase in tropospheric greenhouse gases (GHG) [Hansen et al.,
1997; Waugh et al., 1999; Shine et al., 2003; Cagnazzo et al., 2006; Austin et al., 2009; Son et al., 2009; Hu and
Fu, 2009; Randel et al., 2009; Keckhut et al., 2011; Gillet et al., 2012; Angot et al., 2012; Garfinkel et al., 2013a;
Young et al., 2013; Aquila et al., 2016], with a mean cooling of 0.5–1.5 K/decade over much of the globe for the
period 1979–2007 [Randel et al., 2009]. Aquila et al. [2016] used the NASA Goddard Earth Observing System
Chemistry-Climate Model (GEOSCCM) and assessed the contributions of GHG, ozone depleting substances
(ODS), volcanic eruptions, and the solar cycle in global scale, for the period of 1979–2014, and found that in
the period before 2000 the cooling was dominated by ODS. After 2000, their simulations showed that trends
have been dominated by GHG effects (also with important contribution by the ascending phase of the solar
cycle), and cooling values were estimated to have weakened substantially within the whole stratospheric
column. In effect, since the implementation of the Montreal Protocol in the late 1980s, the levels of ODS
have decreased in the stratosphere and ozone concentrations have started to climb [World Meteorological
Organization, 2014]. These changes in the chemical composition impact the radiative balance in the
stratosphere, potentially leading to a reversal of cooling trends in the stratosphere. Could substantial changes
in trends be already observed?

Temperature measurements in the stratosphere are limited to few sources with only spaceborne instru-
ments providing temporally continuous global coverage temperature measurements since the late 1970s,
first with the Stratospheric Sounding Unit (SSU) until early 2006 and with the Advanced Microwave Sounding
Unit (AMSU) since 1998. SSU operated on NOAA platforms from 1979 to 2006, i.e., covering more than
25 years. It provided invaluable global-scale stratospheric temperature data; however, SSU data require special
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processing before it can be used in climate applications [e.g., Ramaswamy et al., 2001; Keckhut et al., 2011;
Wang et al., 2012; Nash and Saunders, 2015]. Until recently, only one SSU-based temperature series were avail-
able for the climate community, but in the past few years new versions that addressed several issues of the
former data set have been released [Wang et al., 2012; Zou et al., 2014; Nash and Saunders, 2015]. The first
new release from NOAA in 2012 [Wang et al., 2012] showed that the reprocessed SSU data trends seemed to
become positive in the lower stratosphere (15–20 km); however, in the middle and upper stratosphere (above
25 km) the trend was not clear [Thompson et al., 2012]. Analysis of version 2 of this data set [Zou et al., 2014] has
confirmed long-term cooling trends [McLandress et al., 2015] in association with increasing CO2, from ozone
depletion caused by ODS, and the effects of the solar cycle (which was in the descending phase until the
middle-to-late 2000s). Finally, a new version from the UK Met Office has been made available in 2015 [Nash
and Saunders, 2015], which confirms cooling in the stratospheric column up to ∼50 km.

After the retirement of the SSU instrument in 2005, AMSU has become the sentinel instrument for strato-
spheric temperature monitoring. AMSU has very different weighting functions than those of SSU, with better
vertical resolution. The “stitching” of measurements of these two instruments is challenging due to their
very different weighting functions. McLandress et al. [2015] have recently addressed this issue by merging
nadir-sounding measurements from SSU and AMSU, with support of Michelson Interferometer for Passive
Atmospheric Sounding data. They constructed global mean temperature data for SSU channels for the period
1979 to 2011 and found that the upper stratosphere (35–45 km) has cooled with a rate of ∼ −0.6 ±
0.3 K/decade from 2004 to 2012. This value is less negative than estimates for the preceding period (around
−1 K/decade for the period 1979–2005), but they concluded that the differences found were not statistically
significant. Randel et al. [2016] used SSU combined with data from the Aura Microwave Limb Sounder (MLS)
and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) to form a data record span-
ning the period of 1979–2015 to study stratospheric multidecadal temperature trends, solar cycle variations,
and volcanic effects. They found that over the more than three decades coverage period the stratosphere
cooled with a rate of −0.1 to −0.2 K/decade at the lower stratosphere to ∼−0.5 to −0.6 K/decade in the mid-
dle and upper stratosphere, but the cooling slowed down in the period of 1998–2015 compared to the earlier
one (1979–1997).

Although McLandress et al. [2015] detected a global cooling of the stratosphere, the latitudinal, seasonal, and
regional trends were not investigated, as done by Randel et al. [2016] from combined satellite observations.
Here we examine these aspects using solely AMSU data, which has a finer vertical resolution compared to
the SSU data. The ozone recovery is inhomogeneous across the latitudes [Pawson et al., 2014]; thus, we do
not know whether this is apparent in the trends. Also, the global-scale (Brewer-Dobson) and regional (strato-
spheric polar vortex and tropospheric blocking patterns) circulations may affect trends locally. Finally, there
is also seasonal and interannual variability, for example, the occurrence and intensity of stratospheric sudden
warming (SSW) events. We address these issues by examining recent stratospheric temperature trends using
AMSU data for (a) separate latitude bands and (b) separate seasons, from the low to the middle stratosphere
(up to around 45 km).

2. Data and Methods
2.1. AMSU
AMSU is a cross-scanning microwave-based sounder operating onboard NOAA, AQUA, and MetOp polar-
orbiting platforms since late 1998 on NOAA 15. AMSU is composed of two modules of which the module -A
was designed to give optimal information on the temperature profile from the surface up to around 50 km
in altitude. Channels 9–14 sample at or above the tropopause region, with weighting functions peaking at
approximately 18, 20, 25, 30, 35, and 40 km, respectively (Figure 1a). The horizontal resolution at the near-nadir
field of view is approximately 48 km, and the vertical half width of the weighting functions is about 10 km.

Figure 1b shows the equatorial crossing local time of the current platforms that carry AMSU. NOAA and MetOp
orbital hour data were obtained through the site http://www.ospo.noaa.gov/Products/ppp/navpage.html.
Orbital data for NOAA 17 were not available after 2012; AQUA orbital data were taken from http://aqua.nasa.
gov/content/about-aqua. NOAA platforms present a strong drift with time, while MetOp and AQUA satellites
are maintained in near-fixed orbits. AMSU measurements in distinct platforms may present different values for
the same target even for measurements taken at around the same time due to calibration issues. The NOAA
Center for Satellite Applications and Research (STAR) has recently released intercalibrated brightness tem-
peratures from the Advanced Microwave Sounding Unit-A (AMSU-A) sensors onboard NOAA 15, 16, 17, 18,
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Figure 1. (a) AMSU weighting functions for the upper tropospheric and stratospheric channels (channels 9–14) (from
McLandress et al. [2015]). (b) Equatorial crossing hour of the ascending node of NOAA platforms (15–19), MetOp-A, and
-B, and NASA’s AQUA satellite.

EUMETSAT MetOp-A, and NASA AQUA, spanning from 1998 to the present [Zou and Wang, 2011; Zou et al.,
2013]. The native AMSU-A Level 1b data were intercalibrated using the Integrated Microwave Inter-calibration
Approach (IMICA) method to obtain a long-term data product, which permits a better application for climate
analysis. This data set includes corrections for the limb effect [Goldberg et al., 2001], which arises because
AMSU is a cross-scanning instrument (the atmospheric depth contribution increases away from the near-nadir
field of view). Still, we opted to use only information from fields of view 11 to 20 (the least affected by limb
effects), covering a swath of∼500 km. Daily orbits (approximately 14 per day) were aggregated to form zonally
averaged monthly means for latitude bands covering 90∘S–90∘N every 30∘.

Keckhut et al. [2015] took advantage of the strong orbital drift of NOAA platforms to assess the amplitude of
diurnal tides effect on temperature in the middle stratosphere. They showed that tidal correction is a complex
task, with the semidiurnal tidal component very difficult to assess and corrections strongly dependent on the
tidal model. For climate assessment of temperature trends a satellite’s orbital drift represents a constraint, as
tidal effects must be removed from stratospheric measurements particularly for channels sampling higher
in altitude. We use mainly AMSU data from AQUA (June 2002 to December 2014), as this satellite is kept in
a near-constant orbital track, and thus, temperature measurements are not influenced by diurnal-scale tidal
effects. AMSU on MetOp platforms also is suitable, except that the first MetOp was operational in late 2006,
thus yielding a shorter time series. We examined the consistency of the results obtained by AMSU on AQUA
by comparing the series and trends with NOAA 16 for the period 2002–2006 (NOAA 16 orbit drifts after 2004)
and with MetOp-A and NOAA 18 for the period (2007–2014).

2.2. SSU and Lidar
In addition to AMSU data, we use SSU and Rayleigh lidar measurements to further analyze our results. Lidar
temperature profiles are derived from molecular scattering caused by the emission of a short duration laser
pulse in the zenith direction [Hauchecorne and Chanin, 1980]. They derive high vertical precision tempera-
ture profiles from the low stratosphere up to the mesosphere; however, measurements can only be made
in nights with clear sky. Thus, temporal sampling is inhomogeneous. In addition, lidars are geographically
scattered and mainly located in the Northern Hemisphere. Keckhut et al. [2011] present a thorough descrip-
tion of ground-based lidar temperature series, its attractiveness, and issues involved. Here we use data from
three lidar stations located in distinct latitude zones: the Observatoire de Haute Provence (OHP) in south-
ern France (43.91∘N, 5.71∘E) for the period 1979–2013, the Jet Propulsion Laboratory Table Mountain Facility
(TMF) [McDermid et al., 1990] in California (34.41∘N, 117.71∘W) for 1989–2013, and the Mauna Loa Observa-
tory (MLO) [McDermid et al., 1995] in Hawaii (19.51∘N, 155.61∘W) for 1993–2013. Data are available through
the Network for the Detection of Atmospheric Composition Change (NDACC; http://ndacc-lidar.org/).

For SSU we use the recently released reconstituted and recalibrated data for climate studies by the NOAA
STAR [Zou et al., 2014]. Specifically, we use the version 2 gridded (2.5∘ latitude by 2.5∘ longitude resolution)
pentads data to form monthly means for the period 1979–2006. This multiplatform merged data series takes
into account changes in instrument cell pressure and atmospheric carbon dioxide concentration, viewing
angle differences, and semidiurnal tides due to orbital drift.
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2.3. Linear Trend Estimation
Trends were estimated using multiple regression following Hauchecorne et al. [1991]. The multiple regression
takes into account the annual, semiannual, terannual, and seasonal cycles (i.e., frequencies of 12, 6, 4, and
3 months, respectively); the quasi-biennial oscillation (QBO) at 10 and 30 hPa; and variations in the solar flux
at 10.7 cm. The latter is used as a proxy of the solar short wavelength radiative input. The multiple linear
regression is expressed as follows:

T(t) = T0 +
4∑

k=1

[
Aksin

2k𝜋
12

t + Bksin
2k𝜋
12

t
]
+ L(t − t) + C

[
F(t) − F

100

]
+D10QBO10(t) +D30QBO30(t) + T ′(t) (1)

where t is the time variable, t is the mean value of t, T0 is the constant term, Ak and Bk are the coefficients
for the seasonal (periodic) terms, C is the solar flux coefficient, F(t) is the 10.7 cm solar flux at time t, F is the
mean solar flux during the period of analysis, Dn is the coefficient for the QBO term, with n = 10 hPa or
n = 30 hPa, L is the linear trend component, and T ′(t) is the random (residual) component of the temperature.
QBO10 and QBO30 are the Singapore monthly mean zonal wind components at 10 and 30 hPa, respectively,
obtained from http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo, and the monthly averaged solar
flux F at 10.7 cm was obtained from ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux/monthly_averages/maver.txt.
The period of 2002–2014 includes a little over one solar cycle, with the descending phase at the beginning,
followed by a minimum over ∼2007–2009, and a recent ascending phase. We computed the linear correla-
tion between the different proxies and found that they are all very small (between −0.11 and 0.08). Thus, the
linear trend is mathematically independent from the solar cycle as the correlation between these two proxies
is 0.08.

As in Hauchecorne et al. [1991], the confidence interval for each parameter of the fit is calculated based upon
the variance of the random component and the correlation between two successive measurements. As such,
the uncertainty in the trends is dominated by the variability in the brightness temperatures (and not the
uncertainty in the measurement itself ). Except for the seasonal trends, all uncertainties presented here repre-
sent the 2𝜎 statistical uncertainty level (corresponding to the 95% confidence interval) as in Hauchecorne et al.
[1991]. Deseasonalized series refer to the total series minus the 12, 6, 4, and 3 month frequency components.
Seasonal trends were calculated based on the series of residual plus the linear trend component; a linear fit
was then applied on this series considering only the pertinent months for each season. For these trends only
we present the 1𝜎 statistical uncertainty levels.

3. Results
3.1. Global and Zonal Mean Averaged Trends
The time series of (near-)global mean and global mean deseasonalized brightness temperatures (BT) for
AQUA, NOAA 16 (N16), NOAA 18 (N18), and MetOp-A and are shown in Figure 2. Global average trends
estimated from AQUA series (2002–2014) are presented in Table 1 and Figure 3a. Globally, temperatures con-
tinued to decline at all levels with values ranging from−0.2±0.3 K/decade for channel 9 to−0.5±0.4 K/decade
for channels 12 and 13. These values are slightly smaller than those estimated in previous studies for the
preceding decades [e.g., Ramaswamy et al., 2001; Randel et al., 2009].

In order to examine whether these trends can be considered as reliable, we compared trends derived from
AQUA with those from N16 for the period of 2002–2006, and N18 and MetOp-A for the common period of
2007–2014 for the three series. AQUA and N16 had close equatorial crossing times until ∼2004 and AQUA
and N18 until ∼2010, after when N16 and N18 started drifting heavily (Figure 1b). The time series of their BT
and deseasonalized values are shown in Figure 2. All series have a rather good agreement in the global mean,
with very similar mean values (differences ≤0.3 K for most channels; Figure 2a). MetOp-A deseasonalized BT
are slightly off compared to AQUA and N18 for the period 2011–2013 (Figure 2b).

Trend estimates are comparable between AQUA and the other platforms for the two distinct periods (Table 2).
For the period 2002–2006, temperature tendencies are in good agreement for channels 9–11, but differ-
ences are larger in the stratosphere increasing with height. That is due to the larger impact of the N16
orbital drift in the temperature signal, which is more prominent in the stratosphere. Trend estimates for
the period 2007–2014, however, show good agreement particularly for the stratospheric channels (12–14)
between AQUA and MetOp-A. Trends for this latter period show a consistent cooling in the stratosphere
(−1.0 ± 0.7 to −2.1 ± 0.9 K/decade) but warming in the upper troposphere/tropopause region (channel 9).
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Figure 2. Time series of (a) global mean brightness temperature (BT) and (b) deseasonalized global mean BT (K) issued
from AMSU on N16 (purple; only from 2002 to 2006), AQUA (dark blue), N18 (blue), and MetOp-A (red) for channels 9
(bottom) to 14 (top).

The overall agreement between the estimates based on distinct platforms gives us confidence on the
robustness of the results based on AMSU on AQUA.

Because the distribution of both dynamical (global stratospheric circulation and tropospheric forcing) and
chemical (ozone, water vapor, etc.) forcing is spatially inhomogeneous in the stratosphere, it is instructive also
to look at trends at distinct latitudes. For example, the polar stratosphere is dynamically more active than the
tropics, and there is also a difference between the austral and boreal polar dynamics. How are these differences
reflected in the trends?

Figure 3b and Table 3 show the estimates of linear trends for zonal mean bands of 30∘ width at low, middle, and
high latitudes. In the tropical region (30∘S–30∘N), channels 9–10 present positive trends ranging from+0.1±
0.4 to +0.4 ± 0.4 K/decade, decreasing until −0.7 ± 0.3 K/decade for channel 14. The stratospheric channels
in the tropics are the only ones that show significant trends, varying from −0.3 ± 0.3 to −0.7 ± 0.3 K/decade.

Uncertainties are large in the polar regions due to the high wintertime dynamical variability. The northern
polar regions present cooling of −0.2 ± 2.6 to −0.5 ± 1.9 K/decade depending on the height, while in the
southern polar regions trends range from+0.1 ± 1.2 to −1.1 ± 1.6 K/decade. The southern polar region
trend estimate is strongly affected by the September 2002 stratospheric sudden warming [e.g., Hu and Fu,
2009]. We recalculated the trends for the period 2003–2014, and we found that trends became very small,
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Table 1. Linear Trends (2002–2014) and 2𝜎
Uncertainty (K/Decade) of Globally Averaged
AMSU-AQUA Brightness Temperatures for
Channels 9–14

Channel Trend

9 −0.2 ± 0.3

10 −0.3 ± 0.3

11 −0.4 ± 0.3

12 −0.5 ± 0.3

13 −0.5 ± 0.4

14 −0.4 ± 0.4

between 0.1±1.6 and −0.2±1.4 K/decade with little variation in
the stratosphere. The uncertainties, however, are still large, and
trends are not statistically significant. For the midlatitudes, the
observed stratospheric temperature (channels 12–14) trend is
negative (i.e., cooling), from −0.1 ± 0.4 to −0.7 ± 0.8 K/decade.

3.2. Seasonal Trends
Besides the latitudinal variability, there exist also seasonal differ-
ences, for example, due to the polar vortex breakup in spring and
SSWs in winter. Trend estimates were further broken down by
season, specifically winter (December, January, February- DJF),
spring (March, April, May- MAM), summer (June, July, August-
JJA), and autumn (September, October, November- SON) in the
Northern Hemisphere and conversely for the Southern Hemi-
sphere. Trend estimates by seasons are presented in Figure 4.

Outside the tropical region, trends present noticeably larger uncertainties in winter and spring than in the
summer and autumn, particularly in the northern polar winter (Figure 4a). In northern polar latitudes in
autumn and spring (Figures 4b and 4d), channels 11–14 show positive trends. These positive trends are
affected by the period chosen, as, for example, trends become negative in autumn when considering the
period 2003–2014 but still within the 1𝜎 uncertainty range. In autumn, trend uncertainty is likely related to
the occurrence of minor stratospheric warmings, as recently investigated by Maury et al. [2016]. The residual
plus linear component series of AMSU for this latitude band shows a number of positive temperature anomaly
peaks in channels 11–14 in October and November that could be associated with such warmings (not shown).

Between 30∘S and 30∘N trends are small year round (−1.0±0.3 to 0.6±0.2 K/decade for all channels) but still
showing some seasonal variability: trends are smaller and uncertainties are larger in DJF and MAM than in JJA
and SON for channels 12–14. In all seasons channel 9 has positive trends (0.1±0.2 to 0.6±0.2 K/decade) except
in MAM for Eqt–30∘N when the trend is slightly negative but not significant (−0.0±0.2 K/decade). In general,
trends tend to be positive for the lowest channels, becoming more negative with height—exception is noted

Figure 3. Linear trends (based on AQUA series) for the period 2002–2014, issued from multiparameter regression, of
stratospheric temperature for (a) global mean BT and (b) each latitude band shown in the ordinates. Error bars represent
the 2𝜎 statistical uncertainty estimates.
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Table 2. Linear Trends and 2𝜎 Uncertainty (K/Decade) of AQUA, N16, N18, and MetOp-A
Globally Averaged Brightness Temperatures for Channels 9–14a

2002–2006 2007–2014

Channel AQUA N16 AQUA N18 MetOp-A

9 −1.1 ± 1.2 −1.1 ± 1.2 +1.3 ± 0.5 +1.4 ± 0.5 +1.8 ± 0.8

10 −1.0 ± 1.2 −1.0 ± 1.2 +0.5 ± 0.5 +0.5 ± 0.5 +0.9 ± 0.7

11 −1.0 ± 1.2 −1.2 ± 1.2 −0.2 ± 0.6 −0.4 ± 0.6 +0.0 ± 0.8

12 −1.2 ± 1.4 −1.6 ± 1.5 −1.0 ± 0.7 −1.3 ± 0.8 −1.0 ± 0.9

13 −1.1 ± 1.6 −1.8 ± 1.6 −1.8 ± 0.9 −2.2 ± 0.9 −1.8 ± 1.0

14 −0.6 ± 1.6 −1.4 ± 1.7 −2.1 ± 0.9 −2.6 ± 0.9 −2.3 ± 0.9
aTrends are given for the common period of 2002–2006 for AQUA and N16 and for the

period 2007–2014 for AQUA, N18, and MetOp-A.

for channels 13 and 14 in summer for the southern tropical region (Eqt–30∘S; Figure 4a). The spring and
summer trends in the midlatitudes of both hemispheres are small, between−0.9±0.2 and 0.1±0.2 K/decade.

The large spring trend variability in the Southern Hemisphere polar regions (Figure 4d) is linked to the variabil-
ity of the polar vortex breakup that occurs mostly around September/October [e.g., Hu and Fu, 2009; Garfinkel
et al., 2013b]. Once more, due to the SSW of September 2002 these trends are strongly affected by the period
chosen for trends estimation. We redid the seasonal calculations for the periods 2003–2014 and 2004–2014
to assess the impact of the beginning of series on the estimated trend values. In all seasons, there were no sub-
stantial differences in the southern midlatitudes and equatorial regions (not shown). However, in the southern
polar regions, a difference of the order of 0.5–1.0 K/decade was observed, which is within the uncertainty
range regardless of the period considered.

3.3. Comparisons of AMSU Recent Trends to Long-Term Lidar and SSU Data
Here we seek to use long-term lidar and SSU records to put AMSU-derived results in perspective by compar-
ing recent trends to those of the last few decades at regional scale. Lidar measurements are the only data
that spans nearly the entire period of both SSU and AMSU measurements. Lidar and SSU observations for
the 1990–2000 decade have shown a seemingly slowing of stratospheric cooling [e.g., Keckhut et al., 2011;
Seidel et al., 2016]. We wish to examine whether lidar measurements show a continuous cooling in the long
term and also how well do AMSU and lidar measurements compare for the shorter period.

First, we present a brief comparison between AMSU channel 14 (2002–2014), SSU channel 3 (1979–2006), and
lidar measurements at OHP (1979–2013), TMF (1989–2013), and MLO (1993–2013). Extensive comparisons
between AMSU, SSU, and lidars have been shown elsewhere [Randel et al., 2009; Keckhut et al., 2011; Funatsu
et al., 2008, 2011]. AMSU and SSU data were first averaged over an area overpassing each lidar site in order to
mitigate spatial sampling differences inherent to lidar and satellite measurements, as was done in Funatsu et al.
[2008], while lidar data were vertically averaged over the layer 38–42 km, around the peak of AMSU channel
14 weighting function. Despite the amplitude differences among the different measurements and a lower
mean temperature of SSU relative to AMSU or lidar (due to differences between AMSU and SSU weighting
functions that peak at different altitudes), there is a remarkably good agreement between the time series

Table 3. Linear Trends (2002–2014) and 2𝜎 Uncertainty (K/Decade) of AQUA Zonally Averaged
Brightness Temperatures for Channels 9–14

Latitude Band

Channel 60∘N–90∘N 30∘N–60∘N Eqt–30∘N Eqt–30∘S 30∘S–60∘S 60∘S–90∘S

9 −0.4 ± 1.5 −0.1 ± 0.4 +0.2 ± 0.3 +0.4 ± 0.4 −0.2 ± 0.5 −1.0 ± 1.7

10 −0.4 ± 1.5 −0.2 ± 0.5 +0.1 ± 0.4 +0.2 ± 0.3 −0.5 ± 0.5 −1.1 ± 1.6

11 −0.5 ± 1.6 −0.2 ± 0.5 −0.1 ± 0.3 −0.2 ± 0.3 −0.6 ± 0.7 −1.0 ± 1.4

12 −0.5 ± 1.9 −0.3 ± 0.6 −0.3 ± 0.3 −0.5 ± 0.3 −0.7 ± 0.8 −0.7 ± 1.4

13 −0.4 ± 2.3 −0.5 ± 0.7 −0.5 ± 0.3 −0.7 ± 0.3 −0.6 ± 0.7 −0.3 ± 1.3

14 −0.2 ± 2.6 −0.6 ± 0.7 −0.6 ± 0.3 −0.7 ± 0.3 −0.4 ± 0.6 +0.1 ± 1.2
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Figure 4. Linear trends of stratospheric temperature for the period 2002–2014 by season: (a) DJF, (b) MAM, (c) JJA, and
(d) SON. Error bars represent the 1𝜎 statistical uncertainty. Error bars were cropped (one side only) for Northern
Hemisphere polar regions in Figures 4a and 4b in order to keep uniform abscissas for all panels.

(not shown), with a linear correlation r of rOHP,SSU3 = 0.75 (rOHP,SSU2 = 0.68), rOHP,AMSU = 0.63, and rAMSU,SSU3 =
0.99 (rAMSU,SSU2 = 0.95) for the OHP site; rTMF,SSU3 = 0.81 , rTMF,AMSU = 0.90, and rAMSU,SSU3 = 0.99 for the TMF
site; and rMLO,SSU3 = 0.80 , rMLO,AMSU = 0.86, and rAMSU,SSU3 = 0.97 for the MLO site. Similar values of correlation
between SSU and lidars were found by Wang and Zou [2013]. We stress that in this work no joining or merging
of SSU and AMSU is attempted, and each series is regarded separately with emphasis on AMSU-based results.

The time series of midstratospheric temperatures anomalies given by lidars, AMSU, and SSU are shown in
Figure 5, spanning the period of 1979–2014. These monthly mean anomalies were computed by removing
the regressed annual, semiannual, terannual, and seasonal cycles from the full series based on the common
period between the three series (July 2002 to May 2006). SSU regional trends (corresponding to the lidar sites)
for the period 1979–2006 were estimated to −0.6 ± 0.2/−0.9 ± 0.1/−0.8 ± 0.1 K/decade at OHP/TMF/MLO.
Trends estimated by the shorter AMSU series (2002–2014) also present cooling in all locations, with values
of −0.8 ± 1.0/−0.7 ± 0.6/−0.6 ± 0.2 K/decade for OHP/TMF/MLO. These results show that the stratosphere
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Figure 5. Time series of monthly mean stratospheric temperature anomalies for three lidar sites: (a) OHP (1979–2013),
(b) TMF (1989–2013), and (c) MLO (1993–2013). Lidar temperatures (gray) correspond to the 38–42 km layer average
and are shown superimposed to SSU channel 3 (blue; 1979–2006) and AMSU channel 14 (red; 2002–2014). Both SSU
and AMSU were averaged over the areas (42–47∘N, 10∘W–20∘E) for OHP, (32–37∘N, 225–265∘E) for TMF, and (17–22∘N,
183.5–223.5∘E) for MLO. Linear trends and 2𝜎 uncertainty estimates are given in each panel for each instrument.

continued cooling in the recent decade at a rate similar to that of previous decades, and the temperature
“flattening” in the 1990s was not sustained. The long-term trend estimated by lidars series is consistently
negative, with trend values of −1.6 ± 0.7/−2.1 ± 0.7/−0.4 ± 0.4 K/decade for OHP/TMF/MLO. Uncertainties
remain large, especially for the OHP site. The OHP site, located in midlatitudes, suffers from a larger influ-
ence of the winter polar dynamics [e.g., Funatsu et al., 2011; Angot et al., 2012], which is reflected in the trend
uncertainties. The estimates of correlation between OHP and SSU, and the linear trends for this site are in line
with those presented by Wang and Zou [2013].

The vertical profiles of linear trends estimated using lidar data for the whole archived period and for the recent
decade (2002–2013) are shown in Figure 6. Trends are negative and statistically significant at OHP and TMF
(Figures 6a and 6b, respectively) for the long term for nearly the entire column from about 30 to 45 km. At OHP,
trends range from−0.6±0.5 K/decade at 32 km to−1.6±0.6 K/decade at 44 km, while southwestward at TMF
trends range from −1.0 ± 0.4 (at 28 km) to −2.2 ± 0.6 K/decade above 36 km. At MLO, the long-term trend is
slightly negative (>−0.7 ± 0.4 K/decade) above 35 km (Figure 6c). Because trends are closer to neutrality at
MLO (particularly below 35 km), uncertainties are large relative to the trend itself.

For the most recent decade (2002–2013), except for some altitude ranges at TMF and MLO, trends from lidars
are mostly not statistically significant (Figures 6d–6f ). Even if not statistically significant, we can still derive
some insight as to the local tendencies at these sites. In this period trends are mostly negative varying from
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Figure 6. Vertical profiles of linear trends (solid lines) for three lidar sites: (a, d) OHP, (b, e) TMF, and (c, f ) MLO, for
the total period of data archives (Figures 6a–6c) and for the commom period of the recent decade (2002–2013;
Figures 6d–6f ). Linear trends derived from AMSU-AQUA were superimposed to the lidar estimates for the recent decade
for channels 11–14. Error bars and dashed lines represent the 2𝜎 statistical uncertainty.

−0.2 ± 1.7 to −2.2 ± 2.9 K/decade at OHP, −0.2 ± 1.0 to −3.0 ± 1.9 K/decade at TMF, and +0.0 ± 0.6 to
−1.8 ± 1.3 K/decade at MLO (Figures 6d–6f ). The AMSU-derived tendencies show that only channels 13 and
14 at MLO present significant trends, both at −0.5 ± 0.4 K/decade. There is overall negative trends for the
stratospheric channels (11–14) at the three sites (Figures 6d–6f ) as shown in Table 4, but uncertainties are
comparable to or larger than the trends themselves. Trend estimates from lidars were found to be generally
cooler than AMSU-based estimates. Although AMSU temperatures were averaged over an area overpassing
a lidar, trend estimates differences are still present largely due to the irregular temporal sampling by lidars

Table 4. Linear Trends (2002–2013) and 2𝜎 Uncertainty (K/Decade) Based On AQUA Values
Averaged Over an Area Encompassing a Lidar Site for Channels 9–14

Trend

OHP TMF MLO

Channel (42–47∘N; 10∘W–20∘E) (32–37∘N; 225–265∘E) (17–22∘N; 183.5–223.5∘E)
9 +0.2 ± 0.8 −0.2 ± 0.5 +0.7 ± 0.5

10 +0.0 ± 0.9 −0.3 ± 0.6 +0.3 ± 0.5

11 −0.2 ± 1.0 −0.2 ± 0.5 +0.0 ± 0.4

12 −0.5 ± 1.1 −0.3 ± 0.7 −0.3 ± 0.4

13 −1.0 ± 1.3 −0.6 ± 1.0 −0.5 ± 0.4

14 −1.4 ± 1.5 −0.9 ± 1.0 −0.5 ± 0.4
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(which can make measurements only in nights with clear sky) compared to a mostly regular temporal
sampling by satellites, as demonstrated by Funatsu et al. [2008].

4. Summary and Discussion

We used AQUA AMSU-IMICA channels 9–14 (upper troposphere to middle stratosphere) data to assess global,
zonal, and seasonal trends for the period 2002–2014. Global averaged temperature trend estimates show that
the stratosphere continues to cool at a global rate of approximately −0.4 ± 0.3 to −0.5 ± 0.4 K/decade for
channels above ∼25 km (channels 11 and up). Latitudinal bands show a large range of temperature trends,
depending on the channel and on the zonal band. Outside the polar regions, trends vary between −0.7± 0.3
and 0.4 ± 0.4 K/decade. In general, polar regions show stronger trends but large uncertainties (due to the
high dynamical variability), with values ranging from −1.1±1.7 to +0.1±1.2 K/decade for the southern polar
region and between −0.2 ± 2.6 and −0.5 ± 1.9 K/decade in the northern high latitudes. Finally, regarding
trends seasonality, within the tropical region seasonal variation (except in DJF) of stratospheric cooling is
observed for channels 12 and above, with cooling typically stronger with height. The southern midlatitude
region (30∘–60∘S) also present consistently negative cooling in the stratosphere (above ∼25km) from spring
to autumn, with values varying from −1.0 ± 0.6 up to −0.4 ± 0.6 K/decade.

We also calculated trends based on regional AMSU temperature averages over three lidar sites located in the
midlatitudes (OHP), subtropics (TMF), and tropics (MLO). Trends within the tropics are positive for channels
9 and 10 (+0.7 ± 0.5 and +0.3 ± 0.5 K/decade, respectively, for the period 2002–2013) and negative for the
stratospheric channels (12–14) in all sites (Table 4). Consistently, trends calculated based on lidar data for
the period 2002–2013 (the latest year available in the NDACC database) show cooling throughout the strato-
spheric layer. Previous studies have pointed to a flattening of stratospheric temperature trends between the
mid-1990s to the mid-2000s [e.g., Keckhut et al., 2011; Seidel et al., 2016], noticeable, for example, in Figure 5
by the three lidars. The most recent AMSU and lidar data indicate, however, that this (apparent) plateau was
not sustained, and stratospheric temperatures continue to decrease.

The latest WMO ozone assessment [Pawson et al., 2014] showed that observations and models exhibit a slight
near-global (60∘N–60∘S) ozone trend reversal in the middle stratosphere at around 42 km (corresponding
approximately to AMSU channel 14) starting at the end of the 1990s. The increase in ozone is most visible in
the midlatitudes (35∘–60∘ latitude bands in both hemispheres) but small in the tropical region.

In the tropical region, Nedoluha et al. [2015] have shown that there was a significant decrease in O3 near
∼10 hPa (close to channel 12) based on measurements of the NASA Aura Microwave Limb Sounder (MLS) for
the period 2004–2013. They explain that ozone concentration in this region is very sensitive to variations in
NOy and that the observed O3 decrease can be interpreted as a spatially localized, long-term increase in NOy .
Decrease in NOy , in turn, is linked to changes in dynamics, for example, decreased upwelling in the tropics,
leading to a larger production of NOy and subsequent destruction of O3. The decrease in O3 in the tropics
could partially explain the seemingly strengthening in the cooling trends in the recent past (compared to
the long-term trends) observed at MLO (Figures 6c and 6f). On the other hand, chemistry climate simulations
using the GEOSCCM model showed that no trends were observed in the lower stratosphere tropical tem-
perature anomalies but a cooling trend above 30 km (channels 12–14) caused mainly by greenhouse gases
(V. Aquila, personal communication, 2015). In general, Aquila et al. [2016] have shown that in global scale after
2000, GHG are the main contributors for cooling above 20 km, but the rate of cooling is hampered by the
decrease in ODS and with an important contribution from the ascending phase of the solar cycle.

Finally, the correlation coefficients between predictors (linear term, QBO, and solar flux) were found to be
small, indicating that they are mathematically independent. The regression coefficients for the solar cycle (not
shown) displayed positive and statistically significant values for channel 14 in the tropical region, mostly pos-
itive and significant in the southern midlatitudes (all channels) and southern polar regions (channels 9–11).
The shape of the latitudinal distribution of regression coefficients showed a somewhat qualitatively similar
distribution of that found by Randel et al. [2016] based on more than three decades of combined SSU, SABER,
and MLS, as they found large values for MSU4 (close to channel 9) in the Southern Hemisphere polar regions
and coefficient values increasing with SSU channel within the tropics. In our study, QBO regression coeffi-
cients were found to be mostly significant in the tropical region, with values changing with height following
the phase shift between the winds at 10 and 30 hPa. This feature was found to be particularly prominent in
the equatorial region (15∘S–15∘S) as shown in Figure 7. The correlation with QBO at 30 hPa peaks in channel
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Figure 7. Vertical profiles of regression coefficients (K.s/m) for the QBO predictors at 10 hPa (blue) and 30 hPa (red) in
the equatorial region (15∘S–15∘N). Error bars represent the 2𝜎 statistical uncertainty.

10 (around 50 hPa) and in channel 11 (around 25 hPa) with QBO at 10 hPa. This is in agreement with Baldwin
et al. [2001], which showed that the equatorial temperature is correlated with the vertical gradient of zonal
wind that peaks lower than the zonal wind itself.

In the present work we did not consider the effect of volcanic aerosols on the trends. The last major volcanic
eruption was the Pinatubo in 1991, which injected large amounts of aerosol in the stratosphere and caused
tropospheric cooling and increase in stratospheric ozone depletion [e.g., McCormick et al., 1995]. The strato-
spheric aerosol levels decreased to its “background levels” between 1998 and 2002 [Mehta et al., 2015, and
references therein]. Since 2002, a series of minor volcanic eruptions in 2002, 2005, 2006, 2010, and 2011 in the
tropics, and also in the northern midlatitudes in 2008 and 2009, have injected aerosols into the stratosphere
(up to 25 km) and transported to the adjacent latitudes [Mehta et al., 2015]. These sequence of eruptions led
to the increase of stratospheric optical depth (AOD), which in turn have been linked to decrease in global
tropospheric temperature over the period 2000–2010 [e.g., Solomon et al., 2011]. Mehta et al. [2015] found
limited response of the upper troposphere and lower stratosphere temperature, with warming of 0.5–0.8 K
for 7 months only in the 16–18.5 km layer after two tropical eruptions. The effect of the AOD increase in the
stratospheric temperature trend, however, is difficult to assess as their effects are nonlinear in time and space
and would not be adequately assessed with the multiple linear regression method alone used here [Santer
et al., 2015].

AMSU observations are at present the only observations of this part of the atmosphere that cover a long
period of time in global scale and will continue in the future. They appear as essential for detecting climate
change and provide robust measurements for comparisons with climate model outputs.
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