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We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall
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I. INTRODUCTION AND MOTIVATIONS

We apply the indirect method of Part I to the motion of a particle perturbed by the back-action, that is the influence
of the emitted radiation and of the mass m0 on its own worldline, thanks to the interaction with the field of the other
mass M .
The problem of the back-action for massive point particles moving in a strong field with any velocity has been

tackled by concurring approaches all yielding the same result, exclusively defined in the harmonic (H) gauge. Result
derived in 1997 by Mino, Sasaki and Tanaka [1], Quinn and Wald [2], around an expansion of the mass ratio m0/M .
The main achievement has been the identification of the regular and singular perturbation components, and their
playing or not-playing role in the motion, respectively. The conclusive equation has been baptised MiSaTaQuWa from
the first two initials of its discoverers. Later, Detweiler and Whiting [3] have shown an alternative approach, not any
longer based on the computation of the tails, but derived from the Dirac solution [4]. It is customary to call self-force
(SF) the expression resulting from MiSaTaQuWa and DeWh approaches, and to switch between the former (the SF
externally breaking the background geodesic as non-null right hand-side term) and the latter (the particle following
a geodesic of the total metric, background plus perturbations) intepretations of the same phenomenon.

∗ Corresponding author: spallicci@cnrs-orleans.fr, http://lpc2e.cnrs-orleans.fr/∼spallicci/
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A full introduction to the SF is to be found in [5], while for a first acquaintance the reader might be satisfied by
the arguments exposed in [6].
In the MiSaTaQuWa conception, the gravitational waves are partly radiated to infinity (the instantaneous, also

named direct, component), and partly scattered back by the black hole potential, thus forming back-waves (the tail
part) which impinge on the particle and give origin to the SF. Alternatively, the same phenomenon is described by an
interaction particle-black hole generating on one hand a field which behaves as outgoing radiation in the wave-zone,
and thereby extracts energy from the particle; on the other hand, in the near zone, the field acts on the particle and
determines the SF which impedes the particle to move on the geodesic of the background metric. From these works,
it emerges the splitting between the instantaneous and tail components of the perturbations, the latter acting on the
motion. Unfortunately the tail component can’t be computed directly, if not as a difference between the total and
the instantaneous components. Instead, the DeWh approach reproduces the Dirac definition. It consists of half of the
difference between the retarded and the advanced fields, to which is added an ad hoc field including the contributions
from the past light inner cone, while avoiding non-causal future contributions.
The SF computation is not an easy task because the field perturbation is divergent at the position of the particle,

and it is therefore necessary to use a suitable procedure of regularisation. The latter deals with the divergences
coming from the infinitesimal size of the particle. In the Regge-Wheeler (RW) gauge [7], we benefit of the wave-
equation and of the gauge invariance of its wave-function. Regrettably, the singularity in the perturbed metric has
a complicated structure which has made impossible so far to find a suitable regularisation scheme. Nevertheless,
current investigations attempt to identify gauge transformations between the RW and H gauges, e.g., Hopper and
Evans [8, 9], or use numerical integration approaches that deal de facto only with the homogeneous form of the
Regge-Wheeler-Zerilli (RWZ) equation [7, 10].
In the H gauge, a regularisation recipe in spherical harmonics and named Mode-Sum, was conceived by Barack

and Ori [11, 12]. Such a procedure is to be carried out partially or totally in the H gauge. There is an exception
though for a purely radial orbit. In this case, there is a regular connection between the RW and H gauges; thus the
quantification of the SF may be carried out entirely in the RW gauge. Further, the outcome is invariant for these two
gauges and all regularly related gauges [12]. Herein, we thus proceed with a detailed computation in toto in the RW
gauge, announced by Barack and Lousto in [13] but never appeared.
In the ’70s, Zerilli computed the gravitational radiation emitted during the radial fall [10, 14, 15] into a

Schwarzschild-Droste (SD) black hole [16–18]. Many studies followed later on. The first was from Davis et al.
[19], who considered, in the frequency domain, the radiation emitted by a particle initially at rest in free fall from
infinity. Later, Ferrari and Ruffini [20] resume, still in the frequency domain, the same system, but conferring an
initial speed to the particle from infinity. The first to solve the problem of the fall of the particle still initially at rest
but for a finite distance from the black hole were Lousto and Price in a series of papers [21–23], where they detail
and give a numerical technique to deal with the point source in the time domain. Martel and Poisson [24] resume the
same problem by proposing a family of parametrised initial conditions, all of them being solutions of the Hamiltonian
constraint; further they study the influence of these initial conditions on the wave-forms and energy spectra.
Thirty years later, back-action - without orbital evolution - was partially analysed only in two works [13, 25], and

with contrasting predictions (in the former Lousto suggests that back-action is repulsive for most modes, conversely
to the latter where Barack and Lousto attribute always an attractive feature). We have largely commented these
papers in [26]. Needless to say, the time shortness of the fall forbids any important accumulation of back-action effects
but, from the epistemological point of view, radial fall for gravitation remains the most classical problem of all, and
raising the most delicate technical questions. Early gravitational SF computation were carried out in the H gauge by
Barack and Sago for circular [27, 28] and eccentric orbits [29].
In the context of the Extreme Mass Ratio Inspiral (EMRI) gravitational wave sources, the gravitational SF heavily

impacts the wave-forms. It has been suggested to evolve the most relativistic orbits through the iterative application
of the SF on the particle worldline, i.e., the self-consistent approach by Gralla and Wald [30, 31]. We implement it for
the least adiabatic orbit of all, that is radial infall, using our integration method. The strict self-consistency would
imply that the applied SF at some instant is what arises from the actual field at that same instant. So far this has
been done only for a scalar charged particle around an SD black hole by Diener et al. [32], and never for a massive
particle. For quasi-circular and inspiral orbits, dealt by Warburton et al. [33], Lackeos and Burko [34], the applied
SF is what would have resulted if the particle were moving along the geodesic that only instantaneously matches the
true orbit. Herein, we adopt the latter acception.
We thus study how the back-action affects the motion, the radiated energy and the wave-forms of a particle without

and with the self-consistent approach. According to the different inclinations of the reader, his interest may raise
from one or more of the following considerations.

Technical assessments and advancements

• The feeble differences between a radial orbit for which the self-force corrections are neglected or conversely taken
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into account (without and with orbital evolution) allow to test our numerical integration scheme, as we expect
similar results, while possibly appreciating any difference, among these three cases.

• The inclusion of back-action effects demands a sophisticated algorithm of at least fourth order, since considering
third time derivatives of the wave-function.

• The contrasting results in [13, 25] need a resolution. We have recovered the results in [13] (self-force is attractive
in H and RW gauges) and proved wrong those in [25] (claiming that the self-force is mainly repulsive and divergent
at the horizon), see the full discussion in [26]. Anyway, the work in [13] does not consider the impact of the
self-force on the trajectory, which we deal with herein.

• Radial infall is the least adiabatic orbit of all types. Imposing the identity between the radiated energy and the
lost orbital energy for computing the corrections on the motion would be most unjustified as shown by Quinn
and Wald [35]. Indeed, it is just for non-adiabatic orbits, that is required applying a continuous correction on
the trajectory due to the SF effects, i.e. the self-consistent method [30, 31]. Thus, radial infall imposes such an
application, though it is not rewarding due to the feebleness of the SF effects themselves.

• Given the limitations of numerical relativity in evolving circular and elliptic orbits for small mass ratio binaries,
the comparison of results for head-on collisions from numerical and perturbation methods is of interest.

• In particle physics, when referring to the transplanckian regime and black hole production, back-action has a
pivotal role in head-on collisions according to Gal’tsov et al. [36, 37].

• The regular transformation between H and RW gauges for radial trajectories allow to carry out the Mode-Sum
regularisation entirely in the RW gauge.

When endeavouring towards astrophysical scenarios, we recall that

• It has been estimated by Amaro-Seoane, Sopuerta et al. [38, 39] that a relevant number of EMRIs will consist
of direct plunges when the supermassive black hole (SMBH) is not rotating.

• Radial trajectories are comparable to portions of highly eccentric orbits producing an EMRB (Extreme Mass
Ratio Burst) following Berg and Gair [40–42].

• The last stages of EMRI plunges were analysed by Keden, Gair and Kamionkowski [43] for discriminating
supermassive black holes from boson stars, supposedly horizonless objects, and by Macedo et al. [44] for
signatures of dark matter.

• The concept of maximal velocity in radial fall is discussed in high energy astrophysics for jets and tidal disruption
by Chicone and Mashhoon [45, 46], Kojima and Takami [47].

General motivations

• Radial fall is the most classic problem in physics instantiated by the stone of Aristotélēs, the tower of Galilei,
the apple of Newton, and the cabin of Einstein. The solutions represent the level of understanding of gravitation
at a given epoch, and have thereby an epistemological relevance.

• It is a worthwhile problem à la Feynman: The worthwhile problems are the ones you can really solve or help
solve, the ones you can really contribute something to. No problem is too small or too trivial if we can really do
something about it [48].

The paper is structured as follows. Section II, after a brief review of the SF, is largely devoted to the computation in
the RW gauge of the regularisation parameters through the Mode-Sum method. Section III deals with some numerical
issues, the performance and validation of the code. In Sect. IV, we deal with the impact of the SF on the motion of the
particle without and with the self-consistent evolution for the radial fall through osculating orbits. The appendixes
deal with the Riemann-Hurwitz regularisation [49, 50], the numerical extraction of the field at the particle position
and display the jump conditions for the radial orbit.
Geometric units (G = c = 1) are used, unless stated otherwise. The metric signature is (−,+,+,+). The particle

position on the perturbed metric is noted by rp(τ) while on the background metric by R.
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II. GRAVITATIONAL SF

A. Foreword

The SF equation, defined in the H gauge, is given by [1–3]

Fαself = −1

2
m0(g

αβ + uαuβ)
(
2h

R(H)
µβ;ν − h

R(H)
µν;β

)
uµuν , (1)

where R stands for the regular part of the perturbations hµν , either tail (MiSaTaQuWa) or radiative (DeWh). The
two contributions are not equivalent, but the final results are. The other quantities are the background metric gµν
and the four-velocity uα. The SF is obtained by subtracting the singular part from the retarded force

F
α(H)
self = F

α(H)
ret − F

α(H)
S . (2)

The retarded force is computed from the retarded field

F
α(H)
ret = Fα

[
h
ret(H)
αβ

]
= m0k

αβγδ∇δh
ret(H)

βγ = −1

2
m0

(
gαβ + uαuβ

) (
2∇δh

ret(H)
βγ −∇αh

ret(H)
γδ

)
uγuδ , (3)

where hαβ = hαβ − 1/2gαβh, and k
αβγδ is given by

kαβγδ =
1

2
gαδuβuγ − gαβuγuδ − 1

2
uαuβuγuδ +

1

4
uαgβγuδ +

1

4
gαδgβγ . (4)

As shown in [12], for a transformation to any gauge (G)

h
ret(G)
αβ = h

ret(H)
αβ + δh

(H→G)
αβ , (5)

the SF changes as

F
α(G)
self =F

α(H)
self + δFα(H→G) = F

α(H)
ret − F

α(H)
S + δFα(H→G) = F

α(G)
ret − F

α(H)
S . (6)

Thus, in an arbitrary gauge G, the singular term - to be extracted from the retarded force - is always expressed in
the H gauge and not in the G one, as it might be supposed. In the H gauge, the isotropy of the singularity around the

particle eases the computation of F
α(H)
S , while guaranteeing its inconsequential role on the motion. Instead, in other

gauges we are confronted with the lack of isotropy [2]. We recall the expression of the Mode-Sum decomposition in
the H gauge [11]

F
α(H)
self =

∞∑

ℓ=0

F
αℓ(H)
ret − F

α(H)
S =

∞∑

ℓ=0

F
αℓ(H)
ret −

∞∑

ℓ=0

[
Aα(H)L+Bα(H) + Cα(H)L−1

]
−Dα , (7)

where L = ℓ+ 1/2, and ℓ is the mode index. Inserting the Mode-Sum expression of F
α(H)
S from Eq. (7) into Eq. (6),

and decomposing F
α(G)
ret in ℓ modes, we get [12]

F
α(G)
self =

∞∑

ℓ=0

[
F
αℓ(G)
ret −Aα(H)L−Bα(H) − Cα(H)L−1

]
−Dα . (8)

In Eq. (8), the regularisation parameters are computed in the H gauge, but we can go a step further and totally
dismiss the H gauge. For a restricted class of gauges for which the transformation gauge vector is regular, the
Mode-Sum technique can be used to regularise the retarded force directly in those gauges [12]. We then have
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F
α(G)
self =

∞∑

ℓ=0

[
F
αℓ(G)
ret −Aα(G)L−Bα(G) − Cα(G)L−1]−Dα(G) . (9)

In [12] several orbits were examined. It was concluded that the RW gauge is regularly connected to the H gauge
only for purely radial orbits. Further, it has been shown that the components of the transformation gauge vector are
not only regular at the position of the particle but they can be made vanishing. That is to say, for radial orbits, the
regularisation parameters share the same expression in the RW and H gauges. The SF is thus gauge invariant for
RW, H and all other gauges interrelated via a regular transformation gauge vector.
We thus derive the regularisation parameters entirely in the RW gauge, and confirm their identity with those in

the H gauge found by Barack et al. [51]. The RW gauge has the distinct advantage of giving easy access to the
components of the perturbation tensor (instead strongly coupled in the H gauge) via the RWZ wave-functions.
We deal from here onwards with radial infall. This implies that i) the odd modes vanish, and the source term for

even modes is simplified; ii) there are not m modes; iii) the perturbation K vanishes for a fixed θ; iv) for symmetry,

the terms F tself and F
r
self don’t vanish, conversely to F θself = Fφself = 0.

B. Computation of the regularisation parameters in the RW gauge

The value x′p(τ) = (t′p, r
′
p) represents any point of the γ world-line followed by the particle, while xp = (t, rp) =

x′p(τ = 0) the point where the SF is evaluated, Fig. (1), τ being the proper time. Further, x = (t, r) indicates a point
taken in the neighbourhood of xp where the field ψ(x) is evaluated, before taking the limit x→ xp.

x
b

b

b

x′

p(τ)

xp(τ=0)

γ

FIG. 1: We define x′
p(τ ) = (t′p, r

′
p) any point of the γ world-line followed by the particle, and xp = (t, rp) = x′

p(τ = 0) the point
where we finally evaluate the SF, τ being the proper time; x = (t, r) indicates a point taken in the neighbourhood of xp where
the field ψ(x) is evaluated, before taking the limit x→ xp.

We define the Green function G (x, xp(τ)) as

ψ(x) =

∫ 0+

−∞

G
(
x, x′p(τ)

)
dτ . (10)

When associated to the RWZ equation [7, 10], we get

[
− ∂2t + ∂2r∗ − V (r)

]
G = Ĝ(r)δ(r − r′p)δ(t− t′p) + F̂(r)∂rδ(r − r′p)δ(t− t′p) , (11)

where the even potential is

V ℓe (r) = 2f
λ2(λ+ 1)r3 + 3λ2Mr2 + 9λM2r + 9M3

r3(λr + 3M)2
, (12)
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where λ = (ℓ − 1)(ℓ+ 2)/2, and the source term coefficients are

F̂(r) = − κrf2(r)

4(λ+ 1)(λr + 3M)
,

Ĝ(r) = κrf

2(λ+ 1)(λr + 3M)

[
r(λ + 1)−M

2r
− 3ME2

λr + 3M

]
,

(13)

for κ = 8πm0Y
ℓ0 = 4m0

√
2πL, and E = f(rp)u

t.
According to the properties on distributions, Appendix (B) in Part I, Eq. (11) is rewritten using an alternative

version of the Green function, named Ĝ and defined such that

G(x, x′p) =
[
Q̂(r′p)− F̂(r′p)∂/∂r

′
p

]
Ĝ(x, x′p) , (14)

where Q̂(r′p) ··=
[
Ĝ(r) − dF̂(r)/dr

]
r=r′p

. Using δ(r − r′p) = f(r′p)
−1δ(r∗ − r′∗p ) and Z ··= −∂2t + ∂2r∗ − V (r), Eq. (11)

becomes

ZG(x, x′p) =
[
Ĝ(r) − dF̂(r)

dr

]

r=r′p

δ(r − r′p)δ(t− t′p)− F̂(r′p)
∂

∂r′p
δ(r − r′p)δ(t− t′p)

=

[
Q̂(r′p)− F̂(r′p)

∂

∂r′p

]
δ(r − r′p)δ(t− t′p) = Xδ(r − r′p)δ(t− t′p)

(15)

ZXĜ = XZĜ = Xδ(r − r′p)δ(t− t′p) , (16)

[
− ∂2t + ∂2r∗ − V (r)

]
Ĝ = f(r′p)

−1δ(r∗ − r′∗p )δ(t− t′p) . (17)

Considering the causal structure of the Green function, it is now useful to introduce the Eddington-Finkelstein
coordinates (u, v) [52, 53]. In these new variables, v = t+ r∗ ingoing and u = t − r∗ outgoing, the expression of the
wave-operator is simply given by ∂2r∗ − ∂2t = −4∂uv. In the same way, casting δ(r∗ − r′∗p )δ(t− t′p) in (u, v) variables,
requires to deal with the product of a function µ(t, r∗) with δ. Under the integral definition of the latter

∫

µ(R2)

δ(x)φ(x)dx =

∫

R2

δ(µ(x))φ(µ(x)) |Jµ| dx , (18)

where φ ∈ D(R2) and |Jµ| is the determinant of the Jacobian matrix associated to µ |Jµ| = 2. Then, in (u, v)
coordinates, Eq. (17) turns into

[
4∂uv + V (r)

]
Ĝ = 2f(r′p)

−1δ(u− u′p)δ(v − v′p) . (19)

The Mode-Sum regularisation in the RW gauge, and thus the determination of the SF, will be achieved by the un-
dertaking of two pursuits (i) the analytic computation of the regularisation parameter; (ii) the numerical computation
of the ℓ-modes of the retarded force by solving the RWZ equation.
For the analytic venture, the regularisation of the SF by the Mode-Sum technique requires the evaluation of the

divergency, i.e. the singular part FαS of the retarded solution. The singular part is fitted by a 1/L power series, of
which coefficients are the regularisation parameters. The computation of the latter is based on a local analysis, i.e.
at the neighbourhood of the particle, of the wave-function ψ, or more exactly of its associated Green’s function. The
technique consists of a perturbative expansion of the Green function modes in a small spacetime region around the
particle for great values of ℓ.
To accomplish the local analysis, we write the Green function G in a reduced form that takes into account the
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causal nature of its support, i.e., its non-zero value in the future light cone of x′p. Then, we expand the reduced Green
function in powers of 1/L, where each term of the series, namely Gn, will also be locally expanded for x → xp, such
that the coefficients of the expansion Gnwill be function of xp and x′p.
The next step considers integrating G with respect to the proper time τ . To this end, we have to express the Gn

coefficients explicitly in terms of τ . This is achieved by a Taylor series of Gn
(
x′p(τ)

)
around τ = 0. Finally, we

integrate G and ∂rG to get the asymptotic behaviour of ψℓ and ∂rψ
ℓ when ℓ → ∞. The computation of the other

derivatives ∂nt ∂
m
r G, is performed by borrowing from Part I the relationships on partial derivatives, which were used

for the jump conditions to get ∂nt ∂
m
r ψ

ℓ→∞ quantities for which n+m ≤ 3.
We will gain access to the behaviour of the wave-function and its derivatives versus ℓ, thereby testing the convergence

of our numerical code for very high modes. We will then compute the ℓ-modes of the perturbations Hℓ
1,2, K and of

the retarded force Fαℓ[hretℓαβ ], for large values of ℓ, thereby accomplishing the other (numerical) venture.

The reader may skip this very technical discussion and get directly to the results expressed by Eqs. (120). Otherwise,
we assume the reader be well acquainted with the Mode-Sum by Barack [54, 55] and the coming after literature.

1. Computation strategy and detailed description

For the asymptotic behaviour of ∂nt ∂
m
r ψ

ℓ when ℓ → ∞ for n + m ≤ 3, that is up the third derivative of the
wave-function, we apply our strategy through the following steps

• a. Reduced Green’s function.

• b. Expansion of the reduced Green function in powers of 1/L around x = xp.

• c. Reconstruction of the Green function G(x, x′p).

• d. Expansion around x′p = xp.

• e. Computation of ψℓ→∞(xp), ∂rψ
ℓ→∞(xp), and ∂

n
t ∂

m
r ψ

ℓ→∞(xp).

a. Reduced Green’s function. The causal structure allows to rewrite Ĝ in a reduced form g(x, x′p). Indeed, Ĝ(x, x
′
p)

has support in the future light cone of x′p, so Ĝ(u < u′p, v) = Ĝ(u, v < v′p) = 0. Thus

Ĝ(x, x′p) = 2f(r′p)
−1g(x, x′p)H(u − u′p)H(v − v′p) , (20)

where H(u − u′p)H(v − v′p) are Heaviside or step distributions, which confine the support of Ĝ(x, x′p) to the area
made by all points x belonging to the future light cone of x′p. By inserting Eq. (20) into Eq. (19), we express the

wave-operator applied to Ĝ

∂uv

[
g(x, x′p)H(u− u′p)H(v − v′p)

]
= ∂u

[
∂vgHu′

p
Hv′p + gHu′

p
δv′p

]
= ∂uvgHu′

p
Hv′p + ∂vgδu′

p
Hv′p + ∂ugHu′

p
δv′p + gδu′

p
δv′p .

(21)
Equation (19) involves four distinct types of quantities

• (i) (· · · )×Hu′
p
Hv′p ,

• (ii) (· · · )× δu′
p
Hv′p ,

• (iii) (· · · )×Hu′
p
δv′p ,

• (iv) (· · · )× δu′
p
δv′p .

The action of each term relies upon the behaviour along the characteristic lines u = u′p and v = v′p.

• (i). For u > u′p and v > v′p, only the term (i) has a contribution; g satisfies the homogeneous equation associated
to Eq. (19).

• (ii). If u = u′p is constant, only the term (ii) has a contribution; then ∂vg(u
′
p, v) = 0.

• (ii). If v = v′p is constant, only the term (iii) has a contribution; then ∂ug(u, v
′
p) = 0.
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• (iv). On the world line (u, v) = (u′p, v
′
p), the coefficient of term (iv) must be equal to the coefficient of the source

term of Eq. (19); then g(u′p, v
′
p) = 1.

According to (i), we have

4∂uvg + V (r)g = 0 , ∀ u > u′p and v > v′p , (22)

while according to (ii), (iii) and (iv), we have

g(u = u′p, v) = g(u, v = v′p) = 1 . (23)

Equation (23) is in fact the initial condition to be associated with Eq. (22); it ensures the uniqueness of the solution.
Figure (2) shows the support of the reduced Green function.

FIG. 2: The reduced Green function Ĝ(x, x′
p) has support in the future light cone of x′

p (dark grey area); thus Ĝ(u < u′
p, v) = 0

(blue area with top-right oblique lines) and Ĝ(u, v < v′p) = 0 (pink area with top-left oblique lines).

b. Expansion of the reduced Green function in powers of 1/L around x = xp. We are now looking for a solution
g of Eqs. (22,23) near the evaluation point x = xp, that is r = rpwhile considering large values of ℓ. Thus, we Taylor
expand the quantities around r = rp, and express them as power series in 1/L. For dealing with both very small
quantities such as the spatial separation r − rp and large quantities proportional to L, we introduce new variables of
the product form L × small spatial separation; these variables are called ”neutral” by Barack [54]. We first consider
this procedure for the potential. In the neighbourhood of r = rp, or similarly around r∗ = r∗p, we have

V (r) =V (rp) +
dV

dr∗

∣∣∣∣
r∗p

(
r∗ − r∗p

)
+

1

2

d2V

dr∗2

∣∣∣∣
r∗p

(
r∗ − r∗p

)2
+O

(
(r∗ − r∗p)

3
)

=V (0)(rp) + V (1)(rp)∆r
∗
p + V (2)(rp)∆r

∗2
p +O(∆r∗3p ) ,

(24)

with

V (0)(rp) = V (rp) ,

V (1)(rp) = f(rp)
dV

dr

∣∣∣∣
rp

,

V (2)(rp) =
1

2

[
f(rp)

df

dr

∣∣∣∣
rp

dV

dr

∣∣∣∣
rp

+ f2(rp)
d2V

dr2

∣∣∣∣
rp

]
,

(25)
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and ∆r∗p = r∗ − r∗p. The asymptotic behaviour of V (0), V (1) and V (2) for 1/L→ 0 is

V (0)(rp) =
f

r2p

[
L2 −

(
6M

rp
+

1

4

)]
+O

(
L−1

)
= V

(0)
(2) L

2 + V
(0)
(0) +O

(
L−1

)
, (26)

V (1)(rp) =
f

r2p

[
6M − 2rp

r2p
L2 −

(
96M2 − 33Mr − r2p

2r3p

)]
+O

(
L−1

)
= V

(1)
(2) L

2 + V
(1)
(0) +O

(
L−1

)
, (27)

V (2)(rp) =
f

r2p

[
60M2 − 40Mrp + 6r2p

2r4p
L2 −

1152M3 − 810M2rp + 124Mr2p + 3r3p
4r5p

]
+O

(
L−1

)
= V

(2)
(2) L

2+V
(2)
(0) +O

(
L−1

)
.

(28)

In this notation, V
(k)
(n) refers to the n-th Taylor coefficient in 1/L of the k-th coefficient in ∆r∗p. Figure (3) shows

the geometric representation of the neutral variables.

x

b

bb

x′

p(τ)

xp

γ

∆r∗p

Y

X

Z

u
=
u
′

pv
=
v ′
p

FIG. 3: Geometric representation of the neutral variables used in the local analysis of g(x, x′
p). The grey area shows the support

of the Green function corresponding to the set of points belonging to x, the chronological future of x′
p.

The expanded potential becomes

V (rp) = V (0)(rp) + V
(1)
(2) (rp)L

2∆r∗p︸ ︷︷ ︸
O(L)

+V
(1)
(0) (rp)∆r

∗
p︸ ︷︷ ︸

O(L−1)

+V
(2)
(2) (rp)L

2∆r∗2p︸ ︷︷ ︸
O(1)

+V
(2)
(0) (rp)∆r

∗2
p︸ ︷︷ ︸

O(L−2)

+O
(
∆r∗3p

)
, (29)

where we labelled the order of each term. The terms such as Ln∆r∗np n ∈ N are of 0th order, and do not catch

the behaviour of V with respect to L because O(L−1) ∼ O(∆r∗p). We then choose to introduce the neutral variables
(underlined) for which the product form can be appraised as constant. We define

∆r∗p ··= L∆r∗p . (30)

Truncating the expansion in Eq. (29) at O
(
L−1

)
, we obtain

V (rp) =
f(rp)

r2p

[
L2 +

(
ν1∆r

∗
p

)
L+

(
ν2 + ν3∆r

∗2
p

) ]
+O

(
L−1

)
, (31)
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with

ν1 =
2

rp

(
3M

rp
− 1

)
,

ν2 = −6M

rp
− 1

4
,

ν3 =
1

r2p

(
3− 20M

rp
+

30M2

r2p

)
.

(32)

Similarly to Eq. (30), we introduce X and Y as two neutral variables such that

X ··=
1

2
ρ(rp)L(u− u′p) and Y ··=

1

2
ρ(rp)L(v − v′p) , (33)

where the pre-factor ρ(rp) ··= f(rp)
1/2/rp simplifies Eq. (22) after the change of variables

∂uvg = (1/4)ρ(rp)
2L2∂XYg (34)

is made. In addition, we introduce another neutral variable Z

Z ··= 2
√
XY = ρ(rp)L

√
(u− u′p)(v − v′p) = Z = (L/rp)s , (35)

where s is the geodesic distance between the point x and the point x′p. Indeed, in the SD metric, we have ds2 = −fdudv,
and therefore s =

∫ x
x′
p

∣∣gαβdxαdxβ
∣∣1/2 ≈

√
f(rp)(u− u′p)(v − v′p). We define also the variable ∆r′∗p as

∆r′∗p ··= ρ(rp)L(r
′∗
p − r∗p) . (36)

The equation to be solved is now

∂XYg +
[
1 +

(
ν1∆r

∗
p

)
L−1 +

(
ν2 + ν3∆r

∗2
p

)
L−2 +O

(
L−3

) ]
g = 0 , (37)

where the reduced Green function g is to be expressed as a power series of 1/L, whose coefficients are function of
∆r∗p, ∆r

′∗
p and Z only

g =

∞∑

k=0

L−kgk(∆r
∗
p,∆r

′∗
p ,Z) . (38)

However, from a practical point of view, to get the desired accuracy, it is sufficient to truncate the sum at k = 2.
Equation (22) becomes

2∑

k=0

L−k∂XYgk +
[
1 + (f1∆r)L

−1 + (f2 + f3∆
2
r)L

−2 +O(L−3)
] 2∑

k=0

L−kgk = 0 . (39)

Now, by identifying powers of L, we will have a hierarchical system of equations supplemented by the initial
conditions, Eq. (23), of the form

∂XYgk + gk = Sk ,

gk(u = u′p, v) = gk(u, v = v′p) = δk0 .
(40)
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Concretely, we have

order 0 : ∂XYg0 + g0 = 0 , (41)

order 1 : ∂XYg1 + g1 = −ν1∆r∗pg0 , (42)

order 2 : ∂XYg2 + g2 = −ν1∆r∗pg1 − (ν2 + ν3∆r
∗2
p )g0 . (43)

Through a a change of variable Z = 2
√
XY, the left hand side changes into

∂2

∂X∂Y
gk + gk = Z2 ∂

2gk

∂Z2 + Z
∂gk
∂Z

+ Z2gk . (44)

Thus, Eq. (41) implies to solve a Bessel equation of order 0

Z2 ∂
2g0

∂Z2 + Z
∂g0
∂Z

+ (Z2 − 02)g0 = 0 , (45)

which solution of is a Bessel function of the first kind of order 0

g0 = J0(Z) . (46)

Equations (42,43) are also Bessel equations with source terms. By working on the relationships between neutral
variables ∆r∗p, ∆r′∗p , X and Y, we can rewrite the source terms Sk solely as function of Z and of the difference

Y−X = ∆r∗p−∆r′∗p . Implementing the relationships in Tab. I, the solutions of the Eqs. (42,43) are built compatibly
with the initial conditions of Eq. (40)

g1 = −1

4
ν1ZJ1(Z)(∆r

∗
p +∆r′∗p ) , (47)

g2 = −1

6
ZJ1(Z)

[
ν3
(
∆r∗2p +∆r∗p∆r

′∗
p +∆r′∗2p

)
+ ν2

]
+

1

96
Z2J2(Z)

[
3ν21

(
∆r∗p +∆r′∗p

)2 − 8ν3

]
+

1

96
ν21Z

3J3(Z) . (48)

S Solution of ∂XYg + g = S

0 J0(Z)

J0(Z) ZJ1(Z)/2

(Y −X)J0(Z) (Y −X)ZJ1(Z)/4

(Y −X)2J0(Z)
[
Z2J2(Z) + 2(Y −X)2ZJ1(Z)

]
/12

ZJ1(Z) Z2J2(Z)/4

(Y −X)ZJ1(Z) (Y −X)Z2J2(Z)/6

(Y −X)2ZJ1(Z)
[
Z3J3(Z) + 3(Y −X)2Z2J2(Z)

]
/24

TABLE I: Provision for the solution of the generalised Bessel equation ∂XY g + g = S with a source term S written itself with
a Bessel function [54].

c. Reconstruction of the Green function G(x, x′p). Given the local behaviour of g for large modes

g = g0 + g1L
−1 + g2L

−2 +O
(
L−3

)
, (49)

we can reconstruct the function Ĝ(x, x′p) linked to g through

Ĝ(x, x′p) = 2f(rp)
−1g(x, x′p)H(u − u′p)H(v − v′p) , (50)
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and itself connected to the Green function, Eqs. (10,11) through Eq. (14), recalled herein

G =

[
Q̂(r′p)− F̂(r′p)

d

dr′p

]
Ĝ , (51)

with

F̂(r′p) = −κ
[
f2(r′p)L

−4 +O
(
L−6

) ]
, (52)

Q̂(r′p) = κρ(r′p)
2

[
L−2 +

(
9

4
− 4M

r′p

)
L−4 +O

(
L−6

)]
. (53)

According to Eq. (51), the determination of G implies the derivative of Ĝ with respect to r′p. This term necessarily

involves the derivatives of ∆r′∗p , Z, and Hu′
p
Hv′p , listed here below

d∆r′∗p
dr′p

=
dr′∗p
dr′p

d

dr′∗p
∆r′∗p = Lρ(rp)f(r

′
p)

−1 , (54)

dZ

dr′p
= Lρ(rp)f(r

′
p)

−1 d

dr′∗p

√
(u − up)(v − vp) = Lρ(rp)f(r

′
p)

−1

(
Y −X

Z

)
= Lρ(rp)f(r

′
p)

−1

(
∆r∗p −∆r′∗p

Z

)
, (55)

d

dr′p

[
H(u′ − up)H(v − v′p)

]
= f(r′p)

−1
[
Hv′pδ(u− u′p)−Hu′

p
δ(v − v′p)

]
. (56)

Equation (56) involves two non-vanishing terms of which the contribution depends on how the evaluation point is
reached, from the right r → r+p or from the left r → r−p , Fig. (4). Therefore, for a simpler notation we adopt two
additional neutral variables, displayed with the others in Tab. II

FIG. 4: The value of the derivative, Eq. (56), depends on the limit, either taken on the right r → r+p or on the left hand-side
r → r−p of the evaluation point. If r → r−p - left panel - the term involving δ(v − v′p) in Eq. (56) is null; instead, if r → r+p -
right panel - the term involving δ(u− u′

p) in Eq. (56) is null.

ω+ = 2X

= Lρ(rp)(u − u′p) ,
and

ω− = 2Y

= Lρ(rp)(v − v′p) .
(57)
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Variable Expression

∆r∗p L(r∗ − r∗p)

∆r′∗p ρ(rp)L(r
′∗
p − r∗p)

X 1/2ρ(rp)L(u− u′
p)

Y 1/2ρ(rp)L(v − v′p)

Z ρ(rp)L
√
(u− u′

p)(v − v′p)

ω+ 2X

ω− 2Y

τ −Lτ

TABLE II: List of standard and neutral variables used and their expressions as function of L.

The above change of variable gives

δ(ω+) = δ(u− u′p)

∣∣∣∣
dω+

du

∣∣∣∣
−1

u=u′
p

= L−1ρ(rp)
−1δ(u− u′p) , (58)

and

δ(ω−) = δ(v − v′p)

∣∣∣∣
dω−

dv

∣∣∣∣
−1

v=v′p

= L−1ρ(rp)
−1δ(v − v′p) . (59)

Therefore,

d

dr′p

[
Hu′pHv′p

]
= ±Lρ(rp)f(r′p)−1δ(ω±) . (60)

From Eqs. (20,49,53), the first term of G = Q̂(r′p)Ĝ− F̂(r′p)dĜ/dr
′
p transforms into

Q̂(r′p)Ĝ =2Q̂(r′p)f(r
′
p)

−1g(x, x′p)H(u− u′p)H(v − v′p)

=

[
κ
f(rp)

2rp

[
L−2 +

(
9

4
− 4M

rp

)
L−4

]
+O(L−6)

]
2f−1(rp)

[
g0 + g1L

−1 + g2L
−2 +O(L−3)

]
θup

θvp

=
κ

r′p

{
g0L

−2 + g1L
−3 +

[
g2 + g0

(
9

4
− 4M

r′p

)]
L−4 +O

(
L−5

)}
Hu′

p
Hv′p .

(61)

In the same way, for the second term, from Eqs. (20,49,60)

dĜ

dr′p
=

d

dr′p

[
2f−1(r′p)gH(u− u′p)H(v − v′p)

]

=−4M

r′2p
f(r′p)

−2gHu′
p
Hv′p

︸ ︷︷ ︸
dĜ1(r′p)

+2f(r′p)
−1 dg

dr′p
Hu′

p
Hv′p

︸ ︷︷ ︸
dĜ2(r′p)

+2f(r′p)
−1g

d

dr′p
Hu′

p
Hv′p

︸ ︷︷ ︸
dĜ3(r′p)

, (62)

dĜ1(r
′
p) =

[
−4M

r′2p
f−2(r′p)g0 +O(L−1)

]
Hu′

p
Hv′p , (63)

dĜ2(r
′
p) =

[
2f(r′p)

−1 dg0
dr′p

+ 2f(r′p)
−1 dg1
dr′p

L−1 +O(L−1)
]
Hu′

p
Hv′p , (64)

dĜ±
3 (r

′
p) =± 2Lρ(rp)f(r

′
p)

−2g0δ(ω
±)± 2ρ(rp)f(r

′
p)

−2g1δ(ω
±) +O(L−1) . (65)
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In Eq. (64) the derivative of Z, computed with Eq. (55), and of Jn(Z) are used. Useful properties are

d

dZ

[
ZnJn(Z)

]
= ZnJn−1(Z) ,

J−1(Z) = −J1(Z) .
(66)

By multiplying Eq. (62) by Eq. (52), we get

F̂dĜ1 = κ
4M

r′2p
J0(Z)L

−4 +O
(
L−5

)
, (67)

F̂dĜ2 = κρ(rp)
(
∆r∗p −∆r′∗p

) J1(Z)
Z

L−3 +
1

2
κν1ρ(rp)

(
∆r2∗p −∆r′2∗p

)
J0(Z)L

−4 +
1

2
κν1ρ(rp)ZJ1(Z)L

−4 +O
(
L−5

)
,

(68)

F̂dĜ±
3 = ∓2κρ(rp)J0(Z)δ(ω

±)L−3 ∓ 2κρ(rp)g1δ(ω
±)L−4 +O

(
L−5

)
. (69)

We inject Eqs. (61,67-69) into Eq. (14) to get G(x, x′p) in power series of 1/L

G = G0L
−2 +G±

1 L
−3 +G±

2 L
−4 +O(L−5) , (70)

where the coefficients Gn depend on r through ∆r∗p, and on r′p through ∆r′∗p

G0 =
κ

r′p
J0(Z) , (71)

G±
1 =

κ

rp

[rp
r′p
g1 − 2f(rp)

1/2
(
∆r∗p −∆r′∗p

) J1(Z)
Z

± 2J0(Z)δ(ω
±)
]
, (72)

G±
2 =

κ

rp

{
rp
r′p
g2 +

[
1

4

(
rp
r′p

)(
9− 32M

r′p

)
− 1

2
ν1f(rp)

1/2
(
∆r2∗p −∆r′2∗p

)
]
J0(Z)−

1

2
ν1f(rp)

1/2ZJ1(Z)± 2g1δ(ω
±)

}
.

(73)

d. Expansion around x′p = xp. The behaviour of the ψ wave-function for large values of ℓ is achieved by integrating
Eq. (70) over the world line. According to Eq. (10), the integration of G, in proper time τ , imposes first rendering
the coefficients Gn(x = xp) explicitly function of τ ; put otherwise, expanding Gn in powers of τ around the evaluation
point x′p(τ) = xp. We proceed as follows

• The evaluation of Eq. (70) at x = xp for r → rp and ∆r∗p → 0. Then, all Gn coefficients will be only function
of r′p and rp.

• All r′p-dependent quantities are expanded in powers of τ around the point r′p = rp, that is to say around τ = 0

up to order τ2. This will lead us to introduce a neutral time variable τ ∝ Lτ .

• t constant τ , we find the expansion of G in powers of 1/L such that

G = G̃0(τ )L
−2 + G̃±

1 (τ )L
−3 + G̃±

2 (τ )L
−4 +O(L−5) , (74)

where the coefficients G̃n(τ ) explicitly depend upon τ and L through τ .

• The integration of G to determine ψℓ→∞(t, rp) involves terms proportional to τkJn(τ ), with k, n ∈ N. Caution
is to be exercised, improper integrals arise.

• The whole procedure is applicable to ∂rG to get ∂rψ
ℓ→∞(t, rp).

So, first we take Eqs. (71-73), while requiring that r → rp and ∆r∗p → 0

G0 =
κ

r′p
J0(Z) , (75)
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G±
1 =

κ

rp

[
rp
r′p
g1 − 2f(rp)

1/2∆r′∗p
J1(Z)

Z
± 2J0(Z)δ(ω

±)

]
, (76)

G±
2 =

κ

rp

{
rp
r′p
g2 +

[
1

4

(
rp
r′p

)(
9− 32M

r′p

)
− 1

2
ν1f(rp)

1/2∆r′2∗p

]
J0(Z)−

1

2
ν1f(rp)

1/2ZJ1(Z)± 2g1δ(ω
±)

}
, (77)

with

g1 =− 1

4
f1ZJ1(Z)∆r

′∗
p ,

g2 =− 1

6
ZJ1

[
f3∆r

′∗2
p + 3ν2

]
+

1

96
Z2J2(Z)

[
3ν21∆r

′∗2
p − 8f3

]
+

1

96
f2
1Z

3J3(Z) ,

(78)

wherein all quantities ω±, Z, ∆r′∗p are taken at r = rp. The quantities depending upon r′p, and consequently on τ , in

Eqs. (75-77) are ∆r′∗p , 1/r′p, Z and Jn(Z), named collectively Q.
Thus, an expansion around r′p = rp corresponds to an expansion around τ = 0, since rp = r′p(τ = 0). Let Γ(τ) be

one of the quantities Q, then the Taylor expansion can be written as

Γ = Γ(τ = 0) +
dΓ

dτ

∣∣∣∣
τ=0

τ +
1

2

d2Γ

dτ2

∣∣∣∣
τ=0

τ2 +
1

6

d3Γ

dτ3

∣∣∣∣
τ=0

τ3 + · · · , (79)

where τ is a small entity (τ → 0) such that O (τ) ∼ O (1/L). Introducing a neutral time variable

τ = −Lτ , (80)

for constant τ we obtain the following expansion

Γ = Γ0 + Γ1(τ )L
−1 + Γ2(τ )L

−2 + Γ3(τ )L
−3 + · · · , (81)

where the coefficients Γn(τ ) depend on τ and L only through τ . The coefficients Γn(τ ) are shown in Tab. (III) for
each quantity Q.

Γ Γ0(τ ) Γ1(τ ) Γ2(τ )

∆r′∗p −f(rp)1/2ṙ∗pτ
1

2
f(rp)

1/2rpr̈
′∗
p τ

2 −1

6
f(rp)

1/2r2p ˙̈r
′∗
p τ

3

1

r′p

1

rp

ṙ′p
rp
τ

ṙ′2p
rp

−
r̈′p
2τ2

Z −ṡτ 1
2rps̈τ

2 −1

6
r2p ˙̈sτ

3

Jn(Z) Jn(τ )
1

2
rps̈

dJn(τ )

dτ
τ2

[
−1

6
r2p ˙̈s

dJn(τ )

dτ
τ3 +

1

8
r2p s̈

2 d
2Jn(τ )

dτ2
τ4
]

TABLE III: Taylor coefficients Γ = Γ0 + Γ1L
−1 + Γ2L

−2 +O
(
L−3

)
when Γ is one of the Q quantities.

For completion of Tab. (III), here below the four-velocity, the four-acceleration and its derivative in the tortoise
coordinate
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ṙ∗p =f(rp)
−1ṙp ,

r̈∗p =f(rp)
−2
(
f(rp)r̈p − f ′(rp)ṙ

2
p

)
,

˙̈r∗p =f(rp)
−3
[ (

2f ′(rp)
2 − f ′′(rp)f(rp)

)
ṙ3p − f ′(rp)f(rp)ṙpr̈p + f(rp)

2 ˙̈rp

]
,

(82)

where the primes indicate derivation with respect to r, while the point to τ . Through the expression

ds2

dτ2
= −f(r′p)

du′p
dτ

dv′p
dτ

, (83)

we are led to the normalisation relation u̇pv̇p = f(rp)
−1. Taking then successive derivatives with respect to τ at point

r′p = rp, we get üpv̇p + u̇pv̈p = f ′(rp)
−1ṙp and u̇p ˙̈vp + 2üpv̈p + ˙̈upv̇p = f ′′(rp)

−1ṙ2p + f ′(rp)
−1r̈p. The following step is

the derivation of s with respect to τ at the evaluation point τ = 0

ṡ(τ = 0) =− 1 ,

s̈(τ = 0) =
1

2
f ′(rp)f

−1(rp)ṙp ,

˙̈s(τ = 0) =
1

16f(rp)2

[
(8f ′′(rp)f(rp)− 13f ′(rp)

2)ṙ2p + 8f ′(rp)f(rp)r̈
]
+

1

4
f(rp)üpv̈p .

(84)

Finally, the derivatives of Jn(τ ) with respect to τ for n ≥ 0

dJn(τ )

dτ
= Jn−1(τ )−

n

τ
Jn(τ ) =

n

τ
Jn(τ )− Jn+1(τ ) , (85)

d2Jn(τ )

dτ2
=

1

22

[
Jn−2(τ )− 2Jn(τ ) + Jn+2(τ )

]
= Jn

[
n(n+ 1)

τ2
− 1

]
+
Jn+1

τ
. (86)

e. Computation of ψℓ→∞(xp), ∂rψ
ℓ→∞(xp), and ∂

n
t ∂

m
r ψ

ℓ→∞(xp). Introducing expansions of Q, Tab. (III), in
Eqs. (75-77), we finally express the coefficients of G in function of the proper time

G = G̃0(τ )L
−2 + G̃±

1 (τ )L
−3 + G̃±

2 (τ )L
−4 +O(L−5) , (87)

with

G̃0(τ) =
κ

rp
J0(τ ) , (88)

G̃±
1 (τ) =± 4κδ(ω±)

rp
J0(τ )−

κν1f(rp)
1/2ṙ∗p ṡ

4rp
τ2J1(τ )−

κs̈

2
τ2J1(τ )−

κf(rp)ṙ
∗
p

rp
τJ2(τ ) , (89)
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G̃±
2 (τ ) =

κ

96rp

{
−12

[
64M − 18rp − 4f(rp)

(
−2M + 2f(rp)rp + f(rp)

1/2ν1rp

)
ṙ∗2p τ

2

+ r2p s̈
(
f(rp)

1/2ν1ṙ
∗
p ṡ+ rps̈

)
τ4
]
J0(τ )

+ rpτ
[
48ν2ṡ− 24f(rp)

3/2ν1ṙ
∗2
p ṡτ

2 + 16f(rp)ṙ
∗
p(ν3ṙ

∗
p ṡ− 3rps̈)τ

2

+ 4rpτ
(
4rp ˙̈sτ ∓ 24δ(ω±)s̈+ 3rps̈

2τ
)

+ 12f(rp)
1/2ν1

(
4ṡ∓ 4δ(ω±)ṙ∗p ṡτ + rp(r̈

∗
p ṡ+ ṙ∗p(1 + ṡ)s̈)τ2

)
J1(τ )

+
(
−8ν3ṡ

2 + 48f(rp)rp(r̈
∗
p + 2ṙ∗p s̈) + 3f(rp)ν

2
1 ṙ

∗2
p ṡ

2τ2
)
τJ2(τ )− ν21 ṡ

3τ2J3(τ )
]}

.

(90)

Thus, G̃±
2 is built from the contributions coming from the terms of G±

2 in O(τ0), of G±
1 in O(τ 1), and of G0 in

O(τ2). All quantities else than τ , involved in the formulation of G̃n(τ ), are evaluated at rp. Returning to the definition
given in Eq. (10), we can compute the integral of G with respect to τ

ψℓ→∞(x) =

∫ 0+

−∞

G
(
x, xp(τ)

)
dτ =

rp
L

∫ +∞

0−
G̃
(
x, xp(τ̂ )

)
dτ̂

=
rp
L

∫ +∞

0−

(
G̃0(τ̂ )L

−2 + G̃1(τ̂ )L
−3 + G̃2(τ̂ )L

−4 +O
(
L−5

))
dτ̂

= rp

∫ +∞

0−
G̃0(τ̂ )L

−3dτ̂

︸ ︷︷ ︸
ψOL3

+ rp

∫ +∞

0−
G̃1(τ̂ )L

−4dτ̂

︸ ︷︷ ︸
ψ±

OL4

+O
(
L−5

)
.

(91)

Integrals in Eq. (91) involve terms of the form

∫ +∞

0−
τkJn(τ )dτ k, n ∈ N , (92)

which diverge for certain values of k and n. Indeed, Jn(τ ) has an asymptotic behaviour of the form Jn(τ ) ≈√
2/πτ cos(τ − nπ/2− π/4). Thus, for large positive values of τ , the integrand will be of the form

√
2/πτm cos(τ −

nπ/2 − π/4) with m = k − 1/2. To get a finite value from Eq. (92), we cancel the divergence through recasting the
integral as [54]

∫ +∞

0−
→
∫ +∞̃

0−
. (93)

The definition of the ”tilde” integral is given by the limit of the same name, i.e. the ”tilde limit”

∫ +∞̃

0−

··= l̃im
λ→+∞

∫ λ

0−
, (94)

where the limit, applied to any quantity K depending on λ, is given by

l̃im
λ→+∞

K(λ) = lim
λ→+∞


K(λ)−

∑

j

Oj(λ)


 . (95)

The terms Oj(λ) have an oscillating form multiplied by a power law Oj(λ) = ajλ
bj cos(cjλ+dj) with aj , bj , cj , dj ∈

R. The tilde limit appears as a standard limit, when we subtract all terms of type Oj(λ) until the limit becomes finite.
This method is very well detailed and clearly justified in Part III and Appendix A of [54]. When the integration is
performed along the world line, the divergent terms for large τ are ignored and written as oscillating term times a

power of τ . Technically, the result of
∫ +∞̃

0− τkJn(τ )dτ will be dependent of the relationship between k and n. We
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propose an example where 0 ≤ k ≤ n to show how the tilde limit acts concretely on the quantity to be regularised.
Consider Ikn(λ) the primitive of the function λkJn(λ)

Ikn(λ) ··=
∫
λkJn(λ)dλ . (96)

The integrand can be rewritten as

λkJn(λ) = λk−n−1
[
λn+1Jn(λ)

]
= λk−n−1 d

dλ

[
λn+1Jn+1(λ)

]
. (97)

Then, integration by parts leads to a recurrence relation on Ikn(λ)

Ikn(λ) = λkJn+1(λ)− (k − n− 1)Ik−1
n+1(λ) =

k−1∑

j=0

[
(n− k − 1 + 2j)!!

(n− k − 1)!!
λk−jJn+1+j(λ)

]
+

(n+ k − 1)!!

(n− k − 1)!!
I0
n+k(λ) . (98)

Thus, using the tilde limit, the sum in Eq. (98) disappears because each term is of the form Oj(λ) when λ→ +∞.

The term proportional to I0
n+k(λ) is trivial since the standard integral

∫ +∞

0
Jn(λ)dλ = 1 ∀n ≥ 0 is well defined and

is finite. Accordingly,

∫ +∞̃

0

λkJn(λ)dλ =
(n+ k − 1)!!

(n− k − 1)!!
for 0 ≤ k ≤ n . (99)

Following the same reasoning, the general expressions depending on the values of the integers k and n are

∫ +∞̃

0

τkJn(τ )dτ =





(n+ k − 1)!!/(n− k − 1)!!, if 0 ≤ k ≤ n,

(−1)(k−n)/2(n+ k − 1)!!/(n− k − 1)!!, if k − n > 0 is even,

0, if k − n > 0 is odd.

(100)

Returning to the computation of ψℓ→∞, the evaluation of the integral in Eq. (91) is done by replacing the standard
by a tilde integral. The first term O

(
L−3

)
is obvious and gives

ψOL3 = rp

∫ +∞̃

0−

κ

rp
J0(τ )dτ = κ . (101)

The term O
(
L−4

)
is written as

ψ±
OL4 =

∫ +∞

0−

κ

4

[
± 8δ(ω±)J0(τ )− ν1f(rp)

1/2ṙ∗p ṡτ
2J1(τ )− 2s̈τ2J1(τ )− 4f(rp)ṙ

∗
pτJ2(τ )

]
dτ , (102)

with δ(ω±) = δ(τ ) |dω±/dτ |−1
= |fω̇∓| δ(τ ), the second equality is found by using the normalisation condition.

Applying Eqs. (100), the integral is simplified and can be computed

ψ±
OL4 =± 2κ

∫ +∞̃

0−
|fω̇∓| δ(τ )J0(τ )dτ − κf(rp)ṙ

∗
p

∫ +∞̃

0−
τJ2(τ )dτ = ±2κ |fω̇∓|τ=0 J0(0)− κfṙ∗p

2!!

0!!

=− 2κf
[
ṙ∗p ∓ ω̇∓

]
= ±2κf ṫ = ±2κE . (103)

Finally, we obtain the formulation of ψ± on the world line for large modes ℓ→ ∞

ψ±ℓ→∞ = κ
[
L−3 ± 2EL−4 +O

(
L−5

) ]
. (104)

Then, by derivation of the Green function, we get for ∂rψ
±ℓ→∞
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∂rψ
±ℓ→∞ =

κ

rp
f(rp)

−1

[
∓ EL−2 − 3

2
E2L−3 ±

(
6M

rp
− 9

4

)
EL−4 +O

(
L−5

)
]
. (105)

The next derivatives of ψ± are given by

∂rψ
± =

κ

rp
f(rp)

−1

[
∓EL−2 − 3

2
E2L−3 ±

(
6M

rp
− 9

4

)
EL−4 +O(L−5)

]
, (106a)

∂2rψ
± =

κ

r2p
f(rp)

−2
[
E2L−1 ±

(
2− 3M

rp

)
EL−2 +O(L−3)

]
, (106b)

∂3rψ
± =

κ

r3p
f(rp)

−3

{
∓E3 + E2

[
5

2
E2 +

9M

rp
− 6

]
L−1 ∓ 3E

[
7M

rp
(
M

rp
− 1) + 2

]
L−2 +O(L−3)

}
, (106c)

∂tψ
± =

κ

rp

[
±ṙpL−2 +

3

2
E ṙpL−3 ∓

(
6M

rp
− 9

4

)
ṙpL

−4 +O(L−5)

]
, (106d)

∂2t ψ
± =

κ

r2p

[ (
E2 − f(rp)

)
L−1 ∓ E

2rp
L−2 +O

(
L−3

) ]
, (106e)

∂3t ψ
± =

κ

r3pf(rp)

{
∓E
(
E2 − f(rp)

)
+

E2ṙp
2rp

[
16M + 5rp(E2 − 1)

]
L−1 ± E ṙp

r2p

(
3M2 − 2Mrp

)
L−2 +O

(
L−3

)}
,

(106f)

∂r∂tψ
± =

κ

r2pf(rp)

[
− E ṙpL−1 ±

(
3M

rp
− 1

)
ṙpL

−2 +O(L−3)
]
, (106g)

∂r∂
2
t ψ

± =
κ

r3pf(rp)

{
∓E
(
E2 − f(rp)

)
+

1

2r2p

[ (
5E4 − 9E2 + 4

)
r2p +

(
24ME2 − 20M

)
rp + 6

]
L−1

± E
r2p

(
Mrp − 3M2

)
L−2 +O

(
L−3

)}
,

(106h)

∂2r∂tψ
± =

κ

r3p
f(rp)

−2

{
±E2ṙp − E ṙp

[
5

2
E2 +

9M

rp
− 4

]
L−1 ± ṙp

[3M
rp

(
5M

rp
− 4) + 2

]
L−2 +O(L−3)

}
, (106i)

and the asymptotic behaviour of the metric perturbation functions with respect to ℓ are given by

H1 = −κ
[ E2ṙp
rpf(rp)2

L−1 +O
(
L−2

)]
, (107)

∂tH
±
1 =

κ

r2pf(rp)

{
∓ E

(
E2 − f(rp)

)
+

κ

2r2p

[
(5E4 − 7E2 + 2)r2p + (18ME2 − 10M)rp + 12M2

]
L−1 +O

(
L−2

)}
,

(108)

∂rH
±
1 =

κ

r2pf(rp)
3

{
∓ṙpE3 − κE2ṙp

2r2pf(rp)

[
(5E2 − 4)r2p + (8− 5E2)2Mrp − 16M2

]
L−1 +O(L−2)

}
, (109)

H2 = κ

[
1

2rpf(rp)

(
2E2 − f(rp)

)
L−1 +O(L−2)

]
, (110)

∂tH
±
2 =

κ

2r2pf(rp)
2

{
±E ṙp

(
2E2 − f(rp)

)
− E2ṙp

2rpf(rp)

[
(10E2 − 9)rp + 26M

]
L−1 +O(L−2)

}
, (111)

∂rH
±
2 =

κ

2r2pf(rp)
2

{
∓ E

(
2E2 − f(rp)

)
+

1

2r2pf(rp)

[
(10E4 − 13E2 + 2)r2p + (26ME2 − 4)2Mrp + 8M2

]
L−1 +O(L−2)

}
.

(112)
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Equations (107,110) confirm that also for ℓ → ∞, the perturbations are continuous at the position of the particle,
see Sect. IV. The perturbations K, although not used in the computation of the SF for the radial fall

K± = κ

[
1

2rp
L−1 +O(L−2)

]
, (113)

∂tK =
κṙp

2f(rp)r2p

[
±E − E2

2
L−1 +O(L−2)

]
, (114)

∂rK
± =

κ

2f(rp)r2p

[
∓E
(E2

2
− f

)
L−1 +O(L−2)

]
, (115)

∂trK
± =

κṙp
2f(rp)2r3p

{
− E2L± E

[
5M − 2rpE(1− E)

]
− E2

2frp

(
17M + 4rpE2 − 11rp

)
L−1 +O(L−2)

}
. (116)

We recall the relation between the h ret
αβ modes and the perturbation functions Hℓ

1 and Hℓ
2

hretℓαβ =



fHℓ

2 Hℓ
1

Hℓ
1 f−1Hℓ

2




√
2ℓ+ 1

4π
. (117)

By putting Eqs. (107-112) in the expression of the retarded SF, Eq. (3), we get

Fαℓret = −m0

2f

[
fα0

(
∂Hℓ

2

∂t
− df

dr
Hℓ

1

)
+ fα1

(
∂Hℓ

1

∂t
− df

dr
Hℓ

2

)
+ fα2

∂Hℓ
2

∂r
+ fα3

∂Hℓ
1

∂r

]
Y ℓ0 . (118)

Recalling now the definition of the ℓ independent regularisation parameters

lim
x→xp

Fαℓsing± = Fαℓ→∞
ret± (rp) = Aα±L+Bα + CαL−1 +O(L−2) , (119)

we obtain their explicit expression by equating each L power of the right and left-hand sides of Eq.(119). The
regularisation parameters for a radial geodesic in an SD black-hole in the RW gauge are given by

Ar± = ∓m
2
0

r2p
E , At± = ∓

m2
0ṙ

2
p

r2pf(rp)
,

Br = −m2
0

2r2p
E2 , Bt = − m2

0ṙp
2r2pf(rp)

E , Cα = 0 .

(120)

where ṫ = E/f(rp) and ṙp =
√
E2 − f(rp). The parameters are to be put into Eq.(9), noting that Dα = 0 [13, 51].

C. Non-radiative modes

In absence of a wave-equation for the non-radiative modes ℓ = 0, 1, it is necessary to identify an alternative way for
evaluating their contribution. Incidentally, the contributions of the radiative and non-radiative modes, though they
refer to different gauges have been summed in previous literature [13].

1. Zerilli gauge

Zerilli [10] showed that the monopole ℓ = 0 expresses a variation of the mass parameter, while in radial fall the
dipole ℓ = 1 is associated to the shift of the centre of mass and it may vanish with a proper gauge transformation,
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see also Detweiler and Poisson [56]. For the ℓ = 0 mode, it is possible to obtain an analytic solution for Fαℓ=0
ret . With

the gauge transformation xα → xα + ξαℓ=0, we get

ξαℓ=0 =
(
M0(t, r),M1(t, r), 0, 0

)
Y 00 . (121)

The perturbations transform as

h
(G’)
αβ → h

(G)
αβ +∇αξ

ℓ=0
β +∇βξ

ℓ=0
α , (122)

and thus the components are related to the new gauge (G′) by, see Gleiser et al. [57]

H
ℓ=0(G’)
0 = H

ℓ=0(G)
0 + 2

∂

∂t
M

(G→G’)
0 +

2M

r2f
M

(G→G’)
1 , (123)

H
ℓ=0(G’)
1 =H

ℓ=0(G)
1 − f−1 ∂

∂t
M

(G→G’)
1 + f

∂

∂r
M

(G→G’)
1 , (124)

H
ℓ=0(G’)
2 = H

ℓ=0(G)
2 − 2

∂

∂r
M

(G→G’)
1 +

2M

r2f
M

(G→G’)
1 , (125)

Kℓ=0(G’) = Hℓ=0(G) − 2

r
M

(G→G’)
1 . (126)

The Zerilli (Z) gauge [10] implies that the two degrees of gauge freedom M0 and M1 must render H
ℓ=0(Z)
1 =

Kℓ=0(Z) = 0.

F tℓ=0
ret =

m0

4f2

[
2f ′f2ṙp ṫ

3
p

(
H
ℓ=0(Z)
2 +H

ℓ=0(Z)
0

)
−
(
f3ṫ4p+f ṙ

2
p ṫ

2−f2ṫ2p+ṙ
2
p

) ∂
∂t
H
ℓ=0(Z)
0 −f ṙp ṫ

(
f2ṫ2p+ṙ

2
p−2f

) ∂
∂r
H
ℓ=0(Z)
0

]
,

(127)

F rℓ=0
ret =

m0

4f

[
2f ′f(ṙ2p+f)ṫ

2
p

(
H
ℓ=0(Z)
2 +H

ℓ=0(Z)
0

)
−
(
f2ṙ2p ṫ

2
p−f3ṫ2p+ṙ

4
p+f ṙ

2
p

) ∂
∂r
H
ℓ=0(Z)
0 −ṙpṫp

(
f2ṫ2p+ṙ

2
p+2f

) ∂
∂t
H
ℓ=0(Z)
0

]
,

(128)
where

H
ℓ=0(Z)
2 = 8πm0E

1

rf
Y 00⋆(0, 0)H(r − rp) , (129)

H
ℓ=0(Z)
0 =8πm0E

[
1

rf
− 1

rpf(rp)
− 1

rpf(rp)3
(ṙp)

2

]
Y 00⋆(0, 0)H(r − rp) . (130)

As noted in [13], the Z gauge leads to a pathological behaviour of Fαℓ=0
self approaching the horizon, see Fig. (8). It

is however possible to define another gauge condition.

2. The R gauge

We thus made an other gauge choice, baptised as R. The two degrees of gauge freedom M0 and M1 may be chosen

such that H
ℓ=0(R)
0 = H

ℓ=0(R)
1 = H

ℓ=0(R)
2 = Hℓ=0(R) and Kℓ=0(R) = 0. The obtained monopole solution for the

retarded force and the self-acceleration (SA) are now compliant with the behaviour of ℓ ≥ 2 modes, see Figs. (8, 14).

F tℓ=0
ret =− m0

2f2

(
f ṫp + ṙp

)[ (
f2ṫ3p + f ṙp ṫ

2
p − f ṫp + ṙp

) ∂
∂t
Hℓ=0(R)

+ f ṙp
(
f ṫ2p + ṙp ṫp − 2

) ∂
∂r
Hℓ=0(R) − f ′

(
f2ṫ3p + f ṙpṫ

2
p − f ṫp + ṙp

)
Hℓ=0(R)

]
,

(131)
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F rℓ=0
ret =− m0

2f

(
f ṫp + ṙp

)[
ṫp
(
f ṙp ṫp + ṙ2p + 2f

) ∂
∂t
Hℓ=0(R)

+
(
f ṙ2p ṫp − f2ṫp + ṙ3p + f ṙp

) ∂
∂r
Hℓ=0(R) − f ′ṫp

(
f ṙpṫp + ṙ2p + 2f

)
Hℓ=0(R)

]
,

(132)

with

Hℓ=0(R) = 8πm0E
1

rf
Y ∗00(0, 0)H(r − rp(t)) . (133)

III. NUMERICAL APPROACH, PERFORMANCE AND CODE VALIDATION

A. Computation of the perturbations, and the gravitational SF

We can test the robustness and validity of our code by comparing the numerical results to the outcomes of Eqs.
(104-106,107-112), knowing the analytic asymptotic behaviour for large ℓ. For the evaluation of the fields on the
worldline, we use an interpolation method described in App. B.
Figure (5) shows the quantities (the wave-function and its derivatives up to third order, Hℓ

1 and Hℓ
2 and their first

derivatives) that the code is able to extract at the position of the particle during its fall from an initial rest position
at r0/2M = 20. Each quantity is given for 2 ≤ ℓ ≤ 20. We plot in black the asymptotic behaviour given by Eqs.
(104-106,107-112). The dashed curves are related to the side r → r−p (superscript ”-”) and the solid curves to r → r+p
(superscript ”+”). The values are in SI units of 2M/m0κ

−1.
In Fig. (6), we check the asymptotic behaviour of the modes with ℓ. We observe example, at fixed rp, H

ℓ→∞
1,2 ∝ κL−1.

The straight line formed by the points log10 |H1,2| in terms of L has a slope −1.
Figure (7) displays the perturbation functions of the retarded field for a fall from r0/2M = 15 for 2 ≤ ℓ ≤ 20. For

the modes ℓ > 8, the behaviour tends to Hℓ→∞
1,2 as expressed by Eqs. (107,110). The divergent feature of the series is

due to the infinite sum of finite contributions. The standard theorem by Courant [58] states that on the 2-sphere of
constant t and r, a function must be at least C2 for the uniform and absolute convergence of its expansion in spherical
harmonics. This condition is clearly not satisfied in the case of the radial perturbation tensor which is C0.
For the computation of the retarded force mode by mode, we use Eq. (118). The latter may provide also Fαℓret±,

where the ± sign indicates one of the particle worldline sides. Since the ℓ-modes of the retarded field hretℓαβ are
continuous at the position of the particle in the RW gauge, their derivatives have a jump and that is why the sign ±
is needed. Indeed, the value of Fαℓret±(t, rp) depends on the direction in which the derivatives are taken through the
limit r → rp(t). In the following, we will consider the average of each mode only

Fαℓret =
1

2

(
Fαℓret+ + Fαℓret−

)
. (134)

Figure (8) shows the eight first modes of the retarded force both for r and t components as a function of the
particle position rp(t) for a fall from r0/2M = 15. For the ℓ = 0 mode, two curves are plotted for the Z and R gauges.
The former shows a divergent behaviour as expected. The black solid line refers to the parameter Bα which describes
the asymptotic form of Fαℓret when ℓ → ∞, since because Aα+ = −Aα−, Eq. (120). The divergent feature of the series
appears again due to the infinite sum of finite modal contributions. The modes tend to Bα when ℓ→ ∞.
The value of the SF does not depend on the sign ”±” shown in Eq. 118). Thus, the average Fαℓret± is taken for

regularisation. Given Eq. (134), and considering the regularisation parameters obtained, Eq. (120), we have

Fαself =

∞∑

ℓ=0

[
Fαℓret −Bα

]
, (135)

where the superscript (G) of Eq. (9), in our case (RW), has been removed. This expression ensures the L−2

convergence, Fig. (9).
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FIG. 5: Radial fall of a particle at rest from r0/2M = 20. The wave-function and its derivatives up to third order, Hℓ
1 and Hℓ

2 and their first derivatives are shown at
the position of the particle. Each quantity is given for 2 ≤ ℓ ≤ 20 (colour palette). We plot in black the asymptotic behaviour given by Eqs. (104-106,107-112). The
dashed curves are related to r → r−p (superscript ”-”) and the solid curves to the part r → r+p (superscript ”+”). The values are in SI units of 2M/m0κ

−1.
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FIG. 6: Radial fall of a particle at rest from r0/2M = 20. The quantities displayed in Fig. (5) are shown vis á vis the L mode for rp/2M ≈ 10. On the vertical axis,

the log10 of the averaged quantities in 2M/m0κ
−1 units; the average of ψℓ± provides ψ

ℓ
(rp) = 1/2

[
ψℓ+(rp) + ψℓ−(rp)

]
. The slope of each straight line corresponds to

the leading order in Eqs. (104-106,107-112). The agreement is found for different rp values.
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FIG. 7: Radial fall of a particle at rest from r0/2M = 15. The perturbation functions Hℓ
1 (upper panel) and Hℓ

2 (lower panel)
are computed at the particle position rp(t) for the modes 2 ≤ ℓ ≤ 20 (colour palette). The asymptotic behaviour of Hℓ→∞

1 and
Hℓ→∞

2 , Eqs. (107,110) traced in black, is confirmed.

We fix a value ℓ = ℓmax corresponding to an acceptable threshold error. The contribution of higher modes than
ℓmax is computed analytically using the asymptotic behaviour with respect to L, Eqs. (137,138)

Fαself = Fαℓ=0
self +

ℓmax∑

ℓ=2

Fαℓself

︸ ︷︷ ︸
numerical

+
∞∑

ℓ=ℓmax+1

Fαℓ→∞
self

︸ ︷︷ ︸
analytic

. (136)

Figure (10) shows the SF computed from the modes of the retarded force plotted in Fig. (8), for ℓmax = 8. The
case corresponds to r0/2M = 15 but the general behaviour of the components of the SF remains the same regardless
the value of r0. Indeed, the radial component is always oriented toward the black hole which suggests a positive work
of the force during the fall (attractive nature) and therefore the energy E parameter increases [26].
Figure (10) can be compared to Fig. (3) of [13]: qualitatively the behaviour Fαself is consistent but unlike [13]

our curves do not suffer of the non-physical oscillations that pollute the first stages of the fall. We use a symmetric
trajectory (m is thrown up vertically) to overcome this problem, which makes the first stage of the fall exploitable
for our analysis, Sect. III B.
The attractive nature of the SF in RW, H and all smoothly related gauges is compliant with the findings by Barack

and Lousto in [13], but at odds with those by Lousto alone in [25, 60], where the SF is repulsive for some modes and
attractive for others. This is largely discussed in [26].
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FIG. 8: Radial fall of a particle at rest from r0/2M = 15. The average retarded force Fαℓ
ret is computed at the particle position

rp(t) for the modes 2 ≤ ℓ ≤ 20 (colour palette). The asymptotic behaviour of Fαℓ→∞
ret = Bα, Eq. (120) traced in black, is

confirmed. The mode ℓ = 0 for the Z and R gauges is shown by the dot-dash and dash lines, respectively. For the former, we
note the divergent behaviour at the horizon.
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The modes beyond ℓmax are approached analytically by the quantity Fαℓ→∞
self which corresponds to the contribution
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FIG. 10: Radial fall of a particle at rest from r0/2M = 15. After the regularisation, Fig. (8), the modes are summed together
with the ℓ = 0 mode and the analytic contribution of the ℓ > 8 modes. The curves in black represent the SF, Eq. (136), for the
time F t

self (upper curve) and radial F r
self (lower curve) components. For comparison, the quadrupole mode is also traced (red

curve), thereby showing the relevance of the modes ℓ > 2 for the SF computation.

O
(
L−2

)
contained in Eq. (119). This term is computed by following the procedure in Sect. II B but keeping the

higher order of development of the Green function. We obtain

F tℓ→∞
self =

15

16

m2
0E

r2pf(rp)

◦
rp

(
2rp

◦◦
rp −

◦
r2p

)
L−2 +O

(
L−4

)
, (137)

F rℓ→∞
self = −15

16

m2
0E2

r2p

(
E2 +

4M

rp
− 1

)
L−2 +O

(
L−4

)
, (138)

where ‘◦’ is a full derivation operator with respect to ccordinate time. The derivation of Eqs. (137,138) is obtained
with a similar computation appeared in Sect. II B, but for a higher order. This is the first independent confirmation
of Eqs. (6a,6b) in [13], for which derivation the reader was reminded to an accompanying paper, that finally was
never published.

B. Initial conditions

The Brill-Lindquist [59] initial conditions generate quasi-normal modes and induce non-physical oscillations that
pollute the first stage as shown in Figs. (11a,11c) and in [13]. We circumvent the nuisance by adopting a symmetric

trajectory (m0 is thrown up vertically) and consider only the portion for which
◦
rp ≤ 0, Figs. (11b,11d).

C. Sensitivity to ℓmax

The truncation of the series in Eq. (171) depends on ℓmax, that is the highest mode to be computed numerically.
Obviously, the larger is ℓmax, and more aself tends to its exact value, Fig. (12). However, to avoid the burden
of an heavy numerical computation or conversely a large error on aself, we pick ℓmax such that its contribution to
the truncated series is less than 0.1%. This contribution is quantified by the term ∆‖aself‖ℓmax

L1 corresponding to the

relative error between the L1-norm of the truncated series at ℓmax − 1 and the truncated series at ℓmax
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FIG. 11: The Brill-Lindquist [59] initial conditions imposed at r = r0 induce non-physical oscillations polluting the first stage
of the fall. This corresponds to the graphs (a) and (c), respectively associated to a fall from r0/2M = 10 and r0/2M = 15.
In order to exploit the first stage of the fall, we use symmetric trajectories (m is thrown up vertically) and then consider
only the portion of the data corresponding to the fall into the black hole (the non-physical oscillations of the upward part
vanish at infinity). This scenario is displayed in the graphs (b) and (d), respectively associated to a fall from r0/2M = 10 and
r0/2M = 15.
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∆‖aself‖ℓmax

L1 =
‖aself‖ℓmax−1

L1 − ‖aself‖ℓmax

L1

‖aself‖ℓmax

L1

, (139)

where the L1-norm is given by the integral through the whole history of the particle position R on the background
metric

‖aself‖ℓmax

L1 =

∫
|aself|dR . (140)

Table IV gives value of aself with respect to the truncation parameter ℓmax. ‖aself‖ℓmax

L1 converges toward a finite
value such that the criterion

∆‖aself‖ℓmax

L1 ≤ 0.1% (141)

is satisfied for ℓmax = 8.

ℓmax ‖aself‖ℓmax

L1 ∆‖aself‖ℓmax

L1

2 0.03248 −

3 0.03042 6.8%

4 0.02960 2.7%

5 0.02922 1.3%

6 0.02904 0.6%

7 0.02896 0.2%

8 0.02893 0.1%

TABLE IV: Estimate of ℓmax for a given accuracy.

D. Sensitivity to h

The grid step parameter hmust be chosen carefully to reach the desired accuracy without useless extra computation.
We follow the same reasoning with ℓmax considering

∆‖aself‖hk

L1 =
‖aself‖hk−1

L1 − ‖aself‖hk

L1

‖aself‖hk

L1

, (142)

where ‖aself‖hk

L1 corresponds to self-acceleration computed with ℓmax = 8 with an integration step h/2M = hk such
that h0 = 0.01, h1 = 0.005, h2 = 0.0025, h3 = 0.001. It is found that the criterion

∆‖aself‖hL1 ≤ 0.1% (143)

is satisfied for h/2M = 0.001.
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E. Asymptotic ℓ-behaviour

In section II, we observed that the code assured the correct asymptotic behaviour of quantities for large ℓ, Fig.
(6). We confirm that the regularisation technique works and the regularisation parameters are computed correctly,
through the asymptotic behaviour of the self-quantities (acceleration and force), with respect to L.
Figure (9) exhibits the values of aℓself in terms of L. The slope of the line indicates the rate of the convergence of

the series aself =
∑
ℓ a

ℓ
ret − Bαa , that is O

(
L−2

)
. We recall that aℓret is an average aℓret = 1/2(aℓret+ + aℓret-). A good

behaviour has been found for several values of R ∈ [2M, r0] and of r0 ≥ 10. Figure (13) also displays a good exhibit
of values for the two components of the SF.
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FIG. 13: Speed of convergence of the series Fα
self =

∑
ℓ
Fαℓ
ret − Bα for both components of the SF t (continuous line) and r

(dashed line).

IV. EQUATIONS OF MOTION

The geodesic equation of motion of a test particle in the SD spacetime is

uα∇βu
β = 0 . (144)

In radial fall, the angular momentum is zero (L = 0), and without loss of generality, the azimuthal angle is chosen
to be null too (θ = 0). In coordinate time the geodesic equation is given by [61]

d2rp
dt2

= a0(rp,
◦
rp) = −

(
Γrαβ − ◦

rpΓ
t
αβ

)
◦
xαp

◦
xβp = −1

2
f(rp)f

′(rp)

[
1− 3

f(rp)2

(
drp
dt

)2
]
= f(rp)f

′(rp)

[
1− 3

2

f(rp)

E2

]
.

(145)
Instead, the perturbed motion is seen as an accelerated motion in the background SD spacetime. The worldline

xαp (τ) is not geodesic anymore. The equation of motion changes into

m0u
α∇βu

β = Fαself , (146)

where Fαself ∼ O (m0/M) is the SF computed in the RW gauge. Equation (146) can be rewritten in coordinate time

d2rp
dt2

= a0(rp,
◦
rp) + aself(rp,

◦
rp) . (147)

The trajectory rp(t) does not have the same meaning as in Eq. (145), where it described a geodesic in the background

spacetime. The acceleration term a0 is now taken on the perturbed path rp, and the velocity is
◦
rp = drp/dt. The

aℓself term is

aself =
f(rp)

2

m0E2

[
F rself −

◦
r2pF

t
self

]
. (148)
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A. Pragmatic approach

In the pragmatic approach [25, 26, 60, 62], we consider Eq. (147) in its linearised version at first order around the
reference geodesic Xα(τ) which is the solution of

d2Xα

dτ2
+ Γαβγ(X

α)
dXβ

dτ

dXγ

dτ
= 0 , (149)

where Γαβγ(X
α) is the affine connection associated to the background metric. The perturbed trajectory labelled by

the coordinates xαp (τ) = (t, rp) is the solution of Eq. (146), developed as

d2xαp
dτ2

+ Γαβγ(x
α
p )
dxβp
dτ

dxγp
dτ

=
Fαself
m0

. (150)

It differs from the reference geodesic by ∆Xα ∝ m0/M such that

xαp = Xα +∆Xα , (151)

ẋαp = Ẋα +∆Ẋα , (152)

ẍαp = Ẍα +∆Ẍα , (153)

having supposed that the perturbed motion remains close to the geodesic. By injecting Eqs. (151-153) into Eq. (150),
we have

d2

dτ2

(
Xα +∆Xα

)
+
(
Γαβγ + ∂δΓ

α
βγ∆X

δ
) d
dτ

(
Xβ +∆Xβ

) d
dτ

(
Xγ +∆Xγ

)
=
Fαself
m0

. (154)

For d/dτ = (dt/dτ)d/dt, and d2/dτ2 = (d2t/dτ2)d/dt + (dt/dτ)
2
d2/dt2, Eq. (154) is expanded to first order in

coordinate time

d2t

dτ2

(
dτ

dt

)2

(
◦
Xα +∆

◦
Xα) +

◦◦
Xα +∆

◦◦
Xα + Γαβγ

◦
Xβ

◦
Xγ + 2

◦
XγΓαβγ

◦
Xβ +∆Xδ∂δΓ

α
βγ

◦
Xβ

◦
Xγ =

Fαself
m0

(
dτ

dt

)2

. (155)

Assuming ∆Xα = σα∆R with σα ··= (0, 1) we find for the time and radial components

d2t

dτ2

(
dτ

dt

)2

=
F tself
m0

(
d2τ

dt2

)2

− Γtβγ
◦
Xβ

◦
Xγ − 2Γtβγ

◦
Xβσγ∆

◦
R − ∂rΓ

t
βγ

◦
Xβ

◦
Xγ∆R , (156)

d2t

dτ2

(
dτ

dt

)2
d

dt

(
R+∆R

)
+

◦◦
R+∆

◦◦
R+ Γrβγ

◦
Xβ

◦
Xγ + 2Γrβγ

◦
Xβσγ∆

◦
R+ ∂rΓ

r
βγ

◦
Xβ

◦
Xγ∆R =

F rself
m0

(
dτ

dt

)2

. (157)

By injecting Eq. (156) into Eq. (157), we find at first order

◦◦
R+∆

◦◦
R+

(
Γrβγ − Γtβγ

◦
R
) ◦
Xβ

◦
Xγ +∆R

(
∂rΓ

r
βγ − ∂rΓ

t
βγ

◦
R
) ◦
Xβ

◦
Xγ+

∆
◦
R
(
2Γrβγσ

γ − 2Γtβγσ
γ

◦
R− Γtβγ

◦
Xγ
) ◦
Xβ =

ṫ2

m0

[
F rself(R,

◦
R)−

◦
RF tself(R,

◦
R)

]
,

(158)

where ṫ = dt/dτ = E/f . Equation (158) is presented as
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d2rp
dt2

= a0(R,
◦
R) + a1(R,

◦
R)∆R + a2(R,

◦
R)∆

◦
R+ aself(R,

◦
R) +O(∆R2,∆

◦
R2) , (159)

with

a0(R,
◦
R) = −

(
Γrβγ − Γtβγ

◦
R
) ◦
Xβ

◦
Xγ = −1

2
ff ′

[
1− 3

f2

◦
R2

]
, (160)

a1(R,
◦
R) = −

(
∂rΓ

r
βγ − ∂rΓ

t
βγ

◦
R
) ◦
Xβ

◦
Xγ =

2M

R3

[
1− 3M

R
− 3

(
1− M

R

)
f−2

◦
R2

]
, (161)

a2(R,
◦
R) = −

(
2Γrβγσ

γ − 2Γtβγσ
γ

◦
R− Γtβγ

◦
Xγ
) ◦
Xβ =

6M

R2
f−1

◦
R , (162)

aself(R,
◦
R) =

f2

m0E2

[
F rself(R,

◦
R)−

◦
RF tself(R,

◦
R)

]
. (163)

Given
◦◦
R = a0(R,

◦
R), at first order we get through the Taylor expansion of

◦◦
rp(rp,

◦
rp) (considered as a function of

two variables) around the point (R,
◦
R) the ∆ variation

∆
◦◦
R ≈ a1(R,

◦
R)∆R+ a2(R,

◦
R)∆

◦
R + aself(R,

◦
R) . (164)

The expression of a1(R,
◦
R) differs from [25] by 4M/R3(1+

◦
R/f2), as already pointed out in [61–63]. The variation of

the acceleration is given by the aℓself computed along the reference geodesic, while the terms a1(R,
◦
R)∆R+a2(R,

◦
R)∆

◦
R

represent the background geodesic deviation. Indeed, by recasting Eq. 154 at first order we find

2Γαβγ∆Ẋ
βẊγ + ∂δΓ

α
βγẊ

β∆XδẊγ = −R α
βγδ Ẋβ∆XγẊδ , (165)

where the right hand-side term appears in the rigourous derivation of the perturbation equation at first order in the
H gauge [30, 31]

D2∆Xα

dτ2
= −R α

βγδ Ẋ
β∆XγẊδ + F

α(H)
self . (166)

Fig. (14) provides the first modes of aret, the acceleration term constructed from retarded force computed on the
reference geodesic Xα

aℓret(R,
◦
R) =

f2

m0E2

[
F rℓret −

◦
RF tℓret

]
, (167)

for ℓ ≥ 0. The sum over all modes needs to be regularised. Thus from Eq. (135) and Eq. (167) we have

∞∑

ℓ=0

aℓself =

∞∑

ℓ=0

[
aℓret −Ba

]
, (168)

where the modes of aℓret tend to an asymptotic value Ba(R) obtained analytically from

Ba =
f2

m0E2

[
Br −

◦
RBt

]
= −m0E

2R2

[
f

E

]3
. (169)
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FIG. 14: For the radial fall of a particle, initially at rest, from r0/2M = 15, the modes of the acceleration term (colour palette)
computed from the modes of retarded force, Fig. (8), are shown. The continuous curve represents the analytical behaviour for
large ℓ, Eq. (169). The dashed curve corresponds to the mode ℓ = 0.
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FIG. 15: We compare the first modes of the non-regularised acceleration term aret (upper part of the colour palette) and the
modes of the regularised acceleration term aself (upper part of the colour palette). After regularisation, aℓself well satisfies the
convergence criterion, Eq. (170), validating the method and the formulation of Ba [26].

In Fig. (15) aℓself is also plotted for ℓ = 2 to ℓ = 8 and compared to modes aℓret (before regularisation). The required
criterion of convergence of the series, Eq. (168) namely

if
∞∑

ℓ=0

aℓself converge, then aℓself
ℓ→∞−−−→ 0 . (170)

is satisfied; thereby it ensures the regularisation of the self-acceleration, and validates the formulation of Ba [64].
The convergence speed is displayed in Fig. (9), and it is discussed in Sect. III E. It appears that the aℓself is dominated
by the lowest modes, the quadrupole mode ℓ = 2 representing itself ∼ 55% of total, Fig. (16).
The total SF is computed by summing all numerical modes up to ℓ = ℓmax plus an additive part for higher modes

contribution

aself = aℓ=0
self +

ℓmax∑

ℓ=2

aℓself

︸ ︷︷ ︸
numeric

+

+∞∑

ℓ=ℓmax+1

aℓ→∞
self

︸ ︷︷ ︸
analytic

, (171)

where aℓ→∞
self = f2m−1

0 E−2
[
F rℓ→∞
self −

◦
RF tℓ→∞

self

]
is the analytic term from Eqs. (137,138). It allows to take into account



34

the contribution of the modes ℓ > ℓmax

aℓ→∞
self = A∞

selfL
−2 +O

(
L−4

)
, (172)

with

A∞
self = −15

16
m0

f2

R3E2

[
E2
(
4M +R(E2 − 1)

)
+R

◦
R

(
2R

◦◦
R−

◦
R2

)]
. (173)

Therefore the analytic part of the sum, Eq. (171), is approximated by

+∞∑

ℓ=ℓmax+1

aℓ→∞
self ≈ A∞

self

+∞∑

ℓ=ℓmax+1

(ℓ+ 1/2)−2 ≈ A∞
self ζ(2, ℓmax + 1) , (174)

where ζ is the Riemann-Hurwitz function defined by [49, 50], see App. (A)

ζ(s, n) =

∞∑

ℓ=0

(ℓ + n)−s . (175)

If ℓmax = 8, we have

ζ(2, 9) =
π2

6
− 1077749

705600
≈ 0.117512 . (176)
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FIG. 16: After adding all modes aℓself numerically computed up to ℓmax = 8, we add the non-radiative mode ℓ = 0 mode and
the analytically computed higher modes for ℓ > 8. We get the aℓself (solid curve) for a falling particle from r0/2M = 15. We
plot the mode ℓ = 2 (dot-dash curve) which is roughly ∼ 55% of the total aself (integrated over R).

Figure (16) displays aℓself for all ℓ contributions as computed in Eq. (171) for ℓmax = 8, and a2self both for r0/2M = 15.
The choice in the order of truncation of the series ℓmax = 8 admits a relative error less than 0.1% and is justified in
Sect. (III C).
In [26], we present our analysis on the impact of the SF on the motion of the particle. Herein we summarise the

main findings and produce some new insights. For a particle supposedly released from 15rg, we have identified four

zones according to the sign of ∆R, ∆
◦
R, ∆

◦◦
R, for r0 = 15rg, where rg is the SD black hole radius.

1. aself is strictly negative in R ∈ [2M, r0], and tends to a finite value at the horizon . This behaviour is independent
of the initial position r0. It reaches its maximum amplitude, in absolute value, when the particle approaches
the maximun of the Zerilli potential, R ≈ 3.1M . After, the derivative changes sign, and aself tends to zero at
the horizon, compatibly with the findings of an external observer.

2. As expected, the amplitude of the orbital deviation ∆R is of the order of the mass ratio. It reaches its maximum
amplitude, in absolute value, when the particle approaches the maximun of the Zerilli potential, R ≈ 3.1M .
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TABLE V: The four zones according to the sign of the deviation from the nominal position, velocity and acceleration for
r0 = 15rg, where rg the SD black hole radius, see reference [26].

Zone ∆R ∆
◦
R ∆

◦◦
R

I r0 − 3.5 rg - - -

II 3.5 rg − 2.2 rg - - +

III 2.2 rg − 1.2 rg - + +

IV 1.2 rg − rg - + -

The ∆R term has the same sign of aself, that is to say, the particle will reach faster the black hole horizon
premises than the geodetic motion (obviously the horizon will never be reached).

3. Table V describes the four different zones the particle passes through. In zone I (3.5 rg < r ≤ r0 = 15 rg), the
particle falls faster than in a background geodesic. Approaching the potential, it radiates more and it undergoes
a breaking phase: in zone II (2.2 rg < r < 3.5 rg), the acceleration deviation ∆r̈ becomes positive, but the
velocity deviation ∆ṙ remains negative; in zone III (1.2 rg < r < 2.2 rg), the breaking is stronger and even the
velocity deviation turns positive. Finally, in zone IV (rg < r < 1.2 rg), the acceleration deviation reappears
negative, but not sufficiently to render the velocity deviation again negative. The particle tends to acquire the

geodesic behaviour at the horizon where indeed ∆R = ∆
◦
R = ∆

◦◦
R = 0).

4. In zones I and II, ∆
◦
R < 0, the particle increases its velocity relatively to the geodesic motion. Instead, in zones

III and IV, ∆
◦
R > 0, the particle loses velocity relatively to the geodesic motion.

5. ∆
◦◦
R > 0 in zones II, III as opposed to aself which is negative. The absolute amplitude of the former is much

larger and it is due to the relevant role of the background geodesic deviation that counteracts the effects of the
self-acceleration. Nevertheless, we refrain from attributing a repulsive behaviour to the SF due to the constant
negative sign of ∆R.

6. In Fig. (17), we solve Eq. (164) for different values of r0/2M . The amplitude of aself diminishes for larger r0,
conversely to ∆R that increases. We interpret this as a manifestation of the effect of the geodesic deviation
term or of the longer time in which the particle radiates.

7. The computation for different values of r0/2M = 15, 20, 30, 40 shows that |∆
◦
R|max increases linearly with r0.

In fact, the position in which a test particle reaches the maximum value is 6Mr0/(r0 + 4M), which remains in
the strong field area where Zerilli potential is high and wherein the effect of the SF on the motion is the most
important.

8. The self-quantities (acceleration and force) are dominated by the mode ℓ = 2 that represents more than 50% of
total.

B. Orbital evolution

The pragmatic approach builds a perturbed trajectory from aself computed on the reference geodesic under the
constraint that ∆R ∼ O (m0/M). When considering a fall from a very far initial position we may doubt about the
applicability of Eq. (164), and instead, consider a 2nd order development to ensure accuracy. But the arguments
in [30, 31] lead to conclude that at sufficiently late times a second order perturbative development will fail too, and
instead it is preferable to correct the motion iteratively with a first order scheme.
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FIG. 17: For different values of r0/2M , in the upper panel, aself, and in the lower panel the ∆R deviation are plotted as
function of R. The behaviour vis à vis r0 differs between these two quantities: the amplitude of aself diminishes for larger r0,
conversely to ∆R that increases. We interpret this as a manifestation of the effect of the geodesic deviation term or of the
longer time in which the particle radiates.

Strict self-consistency implies that the applied SF at some instant is what arises from the actual field at that same
instant. This has been done for a scalar charged particle around an SD black hole [32], and never for a massive particle.
In other works [33, 34], the applied SF is what would have resulted if the particle were moving along the geodesic
that only instantaneously matches the true orbit. Herein, we adopt the latter acception. Our approach in orbital
evolution (in the RW gauge) consists thus in computing the total acceleration through self-consistent (osculating)
geodesic stretches of orbits. The self-consistent method would require solving Eq. (147), and therefore the evaluation
of aself on the trajectory taken by the particle. But the regularisation parameters are evaluated onto a geodesic. This
renders quite natural to choose an osculating method, Fig.(18).
We don’t compute the trajectories for large values of r0, but remain within the values previously analysed, as we

wish to develop an algorithm handling a self-consistent computation.

FIG. 18: Illustration of the osculating method. During evolution, each point of the perturbed trajectory (red dots) given
by the equation of motion Eq. (147), is approximated by a geodesic (black solid curves) tangent to the perturbed path and
passing through this point. The dashed curve corresponds to the geodesic followed by a test particle initially coinciding with
the perturbed trajectory at r0/2M = 20.

A geodesic λ describes the trajectory Zλ(t) = (Rλ(t),
◦
Rλ(t)) in the phase space. The osculating method finds, at

each point of the perturbed trajectory zp(tn) = (rp(tn),
◦
rp(tn)) at time tn, a geodesic λn which passes through zp(tn).
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Thus the value of the aℓself on the perturbed trajectory is given by the computed value on the osculating geodesic.
The osculating method therefore assumes that

aself(rp(tn),
◦
rp(tn)) ≈ aself(R

λn(tn),
◦
Rλn(tn)) . (177)

In a discretised version, adapted to numerical processing, we consider a family of geodesics λn that we will find at
every time step tn. We introduce a series of notations, Fig. (19)

• λn: the geodesic passing at time tn through the rp(tn) point with the velocity
◦
rp(tn).

• tn = t0 + nδt, where t0 is the instant when rp(t0) = r0 and δt = kh, k ∈ N.

• zp(tn) = (rp,
◦
rp)(tn): the point of the perturbed trajectory in phase space at time tn.

• Zλn
n = Zλn(tn) = (Rλn

n ,
◦
Rλn
n ): the point of the geodesic λn in phase space at time tn.

• Rλn
n = Rλn(tn): the position at time tn on the geodesic λn.

•
◦
Rλn
n =

◦
Rλn(tn): the velocity at time tn on the geodesic λn.

• aself(tn) = aself

(
Rλn
n ,

◦
Rλn
n

)
: the self-acceleration computed on the geodesic λn at point Zλn

n and time tn.

• En: the energy associated with the geodesic λn. It is directly given by the coordinates of the point zp(tn) = Zλn
n

En =

√√√√ f(Rλn
n )3

f(Rλn
n )2 − (

◦
Rλn
n )2

. (178)

• Zλn

i = (Rλn

i ,
◦
Rλn

i ), where Rλn

i and
◦
Rλn

i are the initial position and velocity required for the geodesic λn to reach
the point zp(tn) at time tn. The initial velocity is linked to the initial position and the energy via

◦
Rλn

i = ±f(R
λn

i )

En

√
E2
n − f(Rλn

i ) , (179)

where ”±” is the sign of the initial velocity.

Knowing aself(tn) at each time step tn, we solve numerically Eq. (147), starting from rp(t0) = r0 and
◦
rp(t0) = 0.

The diagram (20) shows the conceptual flow of the algorithm. The main steps are :

1. Initialisation of the numerical parameters, m0, h ℓmax, and r0.

2. Loop resolution of the ordinary differential equation (147) where at each step tn, the quantity aself is computed
on the osculating geodesic λn at rp(tn).

3. Discretisation of the grid defined by its boundaries r∗min and r∗max; generation of the trajectory λn passing
through the numerical domain; computation of aself at time tn for different modes ℓ to ℓ = ℓmax. For the
optimisation of the computation time, this multi-modal operation is distributed on multiple processors. The
sum is then performed over all modes (ℓ = 0 included) to which the contribution of higher modes ℓmax are added
analitically.

4. Iterative solution of the equation of motion by Euler’s method.

5. The new position zp(tn+1) =
(
rp(tn+1),

◦
rp(tn+1)

)
is obtained in phase space.

6. The new geodesic λn+1 which passes through the point zp(tn+1) at time tn+1 is searched through a modified

Newton method. The output parameter is the initial position R
λn+1

i = Rλn+1(t = 0) of λn+1.
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FIG. 19: The osculating method consists in identifying each point of the trajectory zp(tn) = (rp(tn),
◦
r p(tn)) (green dots and

curves) and at time tn, a geodesic λn (black and grey curves in the upper and lower panels, respectively) passing through
zp(tn). Using aself computed at Zλn

n point, Eq. (147) indicates a new point zp(tn+1) at time tn+1. Therein, a new geodesic

λn+1 is searched again, such that zp(tn+1) = Z
λn+1

n+1 (black curve in the lower panel).

7. The new geodesic λn+1 is characterised by the initial position R
λn+1

i from which the particle releases the energy

En+1 given by Eq. (178). The latter determines the initial speed
◦
R
λn+1

i =
◦
Rλn+1(t = 0) given by Eq. (179).

The search of new geodesics λn requires to fix the only free parameter Rλn

i , by scanning in a range of initial positions

Rλk

i , and then evaluating Zk(tn) points to be compared to the targeted zp(tn). A Newton’s method assures that the

quantity
∣∣rp(tn)−Rλk(tn)

∣∣ is below an arbitrary value 10−6, and thereby that the geodesic starting at Rλk

i is the
right geodesic.
In Fig. (21), it is shown the relative error between the zp(t) point of the perturbed trajectory and the Z(t) point

of the geodesic passing through zp(t) which is determined by the algorithm.

∣∣rp(tn)−Rλk(tn)
∣∣ ≤ 10−6 ⇒ λn = λk , (180)

In order to compare the pragmatic analysis to the osculating one, we introduce the following quantities:

∆rprag ··= ∆R , (181)

∆
◦
rprag ··= ∆

◦
R , (182)

where ∆R(t) is a solution of Eq. (159). In the same way we define a deviation term in the osculating formalism

∆rosc ··= rp −Rλ0 , (183)

∆
◦
rosc ··=

◦
rp −

◦
Rλ0 , (184)
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FIG. 20: Algorithm for the osculating method. Frame 3 is relative to the computation of aself for a given point zp(tn) at a
given instant tn. The other frames correspond to the iterative procedure determining the single geodesic passing through the
following point zp(tn+1).

where rp is the perturbed trajectory built from the osculating algorithm, and Rλ0(t) is the first reference geodesic
passing through the initial point zp(t0) = (r0, 0). Explicitly, ∆rprag is the 1st order deviation with respect to the
geodesic motion for which aself is computed along the reference geodesic. Then, ∆rosc is the deviation from the
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FIG. 21: The relative error between the zp(t) point of the perturbed trajectory and the Z(t) point of the geodesic passing
through zp(t) which is determined by the algorithm. The blue dots correspond to log10

∣∣rp(tn)−Rλn(tn)
∣∣ and the red crosses

to log10

∣∣∣∣
◦
r p(tn)−

◦

R
λn

(tn)

∣∣∣∣.

geodesic motion, wherein aself is provided at each point of the perturbed trajectory roscp by its value computed on the
osculating geodesic.

FIG. 22: Comparison between the pragmatic solution, Fig. (16), and the osculating solution for r0/2M = 15 [26].

In Fig. (22), we choose m0 = 10−5 and an initial position r0/2M = 15. Comparison is made between the solution
built by the pragmatic method, and that from the osculating algorithm (red curves). At the top of the graph, we
compare the amplitude of apragself

··= aself(R) previously given in Fig. (16) to the amplitude of aoscself given by the values of
aself taken on the osculating geodesics. The absolute difference between these two quantities has a maximum relative
amplitude of approximately 3%. The notable difference is localised in the strong field region (R . 3); the minimum
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of aoscself, ∆r
osc and ∆

◦
rosc are shifted toward the horizon with respect to apragself . For R & 3 all curves are identical

respectively.
The perturbed trajectory coming from the osculating algorithm is consistent with the pragmatic approach (there

is a correction of about 3%), thereby confirming our code. The correction of few percent remains valid for different
values of m0. We have noted that the osculating analysis shifts slightly the four zones towards the horizon.

C. Perturbed wave-forms

We wish here to evaluate the effect of the SF on the wave-form (WF) and the energy radiated to infinity. For the
computation of the perturbed trajectory, the osculating algorithm will be used as described above. For the generation
of the WFs we will use the code developed in Part I.
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FIG. 23: Perturbed WFs (top of the graph) as a function of the retarded time u = t − r∗obs (with r∗obs = 500M) for the
quadrupole mode seen at infinity for a particle falling from r0/2M = 15. The computation is done for different values of m0.
At the bottom of the graph is plotted the absolute difference in log10 scale between the perturbed WFs and the WFs generated
when the particle follows a geodetic motion.

Figures (23,24) show the perturbed WFs for a particle falling from r0/2M = 15 and r0/2M = 40, respectively.
The WFs are superimposed in the top of the graph for different values of m0. At the bottom of the graph we plot
the absolute difference between the perturbed WFs and the geodesic WFs. The area where the difference is maximal
(t ∈ [175, 250]) corresponds to the motion in the strong field area where the particle reaches the horizon and then
produce quasi-normal modes.
Knowing the perturbed WFs, the associated radiated energy can be computed. Table VI lists energy values for

the two trajectories (r0/2M = 15 and r0/2M = 40) for the modes ℓ = 2 to ℓ = 5. In each case, we compute the
energy difference δEℓ with respect to the energy radiated from a particle following a geodesic. This computation is
performed for three different values of m0. Note that δEℓ is much smaller when the mass ratio m0/M is small . This
is explined by aself ∝ m0. Moreover, for the same value of m0, δEℓ seems more important for r0/2M = 40 than for
r0/2M = 15 since the gravitational radiation effect occurs for a longer time for r0/2M = 40. Likewise, the relative
difference in energy increase when ℓ is large. However, for the sum of the modes, from ℓ = 2 to ℓ = 5, the difference
in total energy exceeds 1% for m0 = 10−2 and remains well below 1% for masses m0 = 10−3 or m0 = 10−5.
Thus, for a typical EMRI system (m0 < 10−5M), where the compact star is in free fall, the energy variation is very

negligible compared to the criterion that we set on the computation of E. For larger values of m0, orbital adjustment
becomes significant and can be taken into account. In all cases, the difference in energy is positive, which is consistent
with the fact that the system loses energy carried by GW until the distant observer.
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FIG. 24: Perturbed WFs (top of the graph) as a function of the retarded time u = t − r∗obs (with r∗obs = 500M) for the
quadrupole mode seen at infinity for a particle falling from r0/2M = 40. The computation is done for different values of m0.
At the bottom of the graph is plotted the absolute difference in log10 scale between the perturbed WFs and the geodesic WFs.

r0/2M m0 ℓ Eℓ δEℓ δEℓ/Eℓ r0/2M m0 ℓ Eℓ δEℓ δEℓ/Eℓ

15 10−2 2 1.65301.10−2 8.2.10−5 0.50% 40 10−2 2 1.85187.10−2 8.5.10−5 0.45%

3 1.95258.10−3 1.67.10−5 0.85% 3 2.12044.10−3 1.87.10−5 0.88%

4 2.60437.10−4 3.14.10−6 1.21% 4 2.85501.10−4 3.52.10−6 1.23%

5 3.68305.10−5 5.81.10−7 1.58% 5 4.06409.10−5 6.54.10−7 1.61%

10−3 2 1.64562.10−2 8.10−6 0.05% 10−3 2 1.85187.10−2 8.5.10−6 0.05%

3 1.93750.10−3 1.66.10−6 0.09% 3 2.10344.10−3 1.77.10−6 0.09%

4 2.57592.10−4 2.98.10−7 0.12% 4 2.82311.10−4 3.34.10−7 0.12%

5 3.63100.10−5 6.08.10−8 0.17% 5 4.00538.10−5 6.66.10−8 0.17%

10−5 2 1.64483.10−2 8.1.10−8 4.5.10−4% 10−5 2 1.85102.10−2 8.6.10−7 4.6.10−4%

3 1.93586.10−3 2.10−8 1.10−3% 3 2.10169.10−3 2.5.10−8 1.2.10−3%

4 2.57296.10−4 2.7.10−9 1.10−4% 4 2.81975.10−4 5.10−9 1.7.10−3%

5 3.62498.10−5 6.6.10−10 1.8.10−4% 5 3.99876.10−5 3.6.10−10 9.10−4%

TABLE VI: Radiated energy for a falling particle starting from r0/2M = 15 and r0/2M = 40 on a perturbed trajectory.
Energy is given mode by mode (in units of (2M/m2

0)) and compared to the radiated energy for a geodesic motion via δEℓ. The
computation is done for 3 values of m0
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V. CONCLUSIONS

In this second part of the work, we exploited our code for the determination of effect of the gravitational self-force
on the motion of the particle and on the wave-forms. We have computed the regularisation parameters exclusively
in the Regge-Wheeler gauge. The procedure has been described in detail since never appeared in the literature.
The perturbation tensor components and the retarded gravitational self-force were then computed numerically and
regularised.
The gravitational self-force was found with less than 0.1% error. The equation of motion was solved using two

approaches: pragmatic and self-consistent (osculating).
The convergence of the two methods results validates our indirect integration method. We confirm our previous

findings stating that in Regge-Wheeler and harmonic gauges, the self-force induces an additional push on the particle
towards the black hole, conversely to previous results. This is emphasised when the self-consistent approach is used.
The latter improves the orbital accuracy by a factor of few percents. For the computation of the radiated energy

and the display of the wave-forms, we have shown feeble but existing differences between geodesic and non-geodesics
orbits. The correction factor could be important for intermediate mass ratios.
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Appendix A: Riemann-Hurwitz regularisation

The Riemann-Hurwitz ζ function [49, 50] is formally defined for complex arguments n with R(n) > 1 and m with
R(m) > 0 by

ζ(n,m) =
∞∑

ℓ=0

(ℓ+m)−n . (A1)

This series is absolutely convergent for the given values of n and m. The ζ function has been adopted for regu-
larisation in [25, 60, 62]. From the behaviour of the metric coefficients, we consider that hretαβ can be decomposed in

two pieces. The first piece, noted hregℓαβ , tends quickly towards zero when ℓ → ∞, ensuring the convergence of the

sum. The second piece h∞αβ generates the limit behaviour when ℓ→ ∞, observed in Fig. (7), and responsible for the
divergence of the sum. For example, for the tt component, we can write

H2(t, r) =

∞∑

ℓ=0

Hℓ
2Y

ℓ0 =

∞∑

ℓ=0

Hregℓ
2 Y ℓ0 +

∞∑

ℓ=0

(2ℓ+ 1)−βH∞
2 Y ℓ0 , (A2)

where β is a parameter to be determined numerically to ensure the limit behaviour of H∞
2 when ℓ → ∞. So, when

regularising the field at the particle position, we will have

Hret
2 (t, rp) =

∞∑

ℓ=0

Hregℓ
2

√
2ℓ+ 1

4π
+ 21/2−β

H∞
2

4π
ζ(β − 1/2, 1/2) . (A3)

Numerically, we get β = 1/2 and the analytical extension of the ζ function gives ζ(0, 1/2) = 0. Thus, for this
regularisation, it is sufficient to subtract from each ℓ mode the asymptotic value, i.e. the highest mode computed
numerically H∞

2 = Hℓmax

2 such that

Hreg
2 (t, rp) =

ℓmax∑

ℓ=0

[
Hretℓ

2 (t, rp)−Hℓmax

2 (t, rp)
]
Y ℓ0 . (A4)
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Referring to the Mode-Sum formalism, we have Dα ∝ ζ(0, 1/2) = 0, where Dα is the residual parameter linked to
regularisation of the field H2. The difference between the two regularisation approaches can be represented by the
quantity Hℓmax

2 −Hℓ→∞
2 which is equal to zero when ℓmax is sufficiently large. Thus, at least in the case of a radial

orbit, a correlation could be done between ζ and Mode-Sum regularisations.

Appendix B: Numerical extraction of the field on the worldline
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FIG. 25: Stencil for the interpolation of ψ at the particle position (tx, r
∗
x). We consider fifteen collocation points and fifteen

jump relations to define the thirty coefficients p±(n,m), where n+m ≤ 4, of the interpolated polynomial at the cell central point

(t•, r
∗
•), Eq. (B2).

We approximate ψ at the position of the particle (tx, r
∗
x) with a polynomial P (t, r∗) of fourth order centred at

(t•, r
∗
•)

ψ(t, r∗) ≈ P (t, r∗) =
∑

n+m≤4

p(n,m)

n!m!
(r∗ − r∗•)

n
(t− t•)

m
. (B1)

The stencil contains fifteen points in the past light cone of the point A (included), i.e. △ =
{A,B,C,D,E, F,G,H, I, J,K, L,M,N,O}, Fig. (25). Being ψ discontinuous at rp, we approach ψ+(t, r∗) and
ψ−(t, r∗) with two interpolation polynomials P+(t, r∗) and P−(t, r∗)

ψ±(t, r∗) ≈ P±(t, r∗) =
∑

n+m≤4

p±(n,m)

n!m!
(r∗ − r∗•)

n
(t− t•)

m
. (B2)

At (tx, r
∗
x), P

±(tx, r
∗
x) ≈ ψ±(tx, r

∗
p(tx)). The thirty interpolation coefficients p±(n,m) are uniquely determined by

fifteen relations at the collocation points

P±(ti, r
∗
i ) = ψ±(ti, r

∗
i ) ∀ i ∈ △ , (B3)

and fifteen jump relations

∂nr∗∂
m
t P

+(tx, rx)− ∂nr∗∂
m
t P

−(tx, rx) =
[[
∂nr∗∂

m
t ψ
]]

x

∀ n,m | n+m ≤ 4 .
(B4)

For the errors, if the function ψ is computed with a fourth order interpolation scheme, then Eq. (B2) at most
provides an accuracy of order one for the perturbations Hℓ

1 and Hℓ
2, due to the third derivatives of the ψ function.
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Appendix C: Jump conditions: radial orbits

We list here the explicit forms of the jump conditions of the ψℓ function and its derivatives until 4th order for radial

orbits localised by R(t). The coordinate time derivative of R is
◦
R = f(R)/E

√
E2 − f(R).

0th order

[[
ψℓ
]]

=
κER

(λ+ 1)(3M + λR)
, (C1)

1st order

[[
∂tψ

ℓ
]]

= − κER
◦
R

(2M −R)(3M + λR)
, (C2)

[[
∂rψ

ℓ
]]

=
κE
[
6M2 + 3MλR+ λ(λ + 1)R2

]

(λ + 1)(2M −R)(3M + λR)2
, (C3)

2nd order

[[
∂2rψ

ℓ
]]

= −κE
[
3M3(5λ− 3) + 6M2λ(λ− 3)R+ 3Mλ2(λ− 1)R2 − 2λ2(λ+ 1)R3

]

(λ+ 1)(2M −R)2(3M + λR)3
, (C4)

[[
∂t∂rψ

ℓ
]]

=
κE
(
3M2 + 3MλR− λR2

) ◦
R

(2M −R)2(3M + λR)2
, (C5)

[[
∂2t ψ

ℓ
]]

= − κ EM
R2 (3M + Rλ)

, (C6)

3rd order

[[
∂3rψ

ℓ
]]

=
κE

R (λ+ 1) (2M −R)3(3M +Rλ)4

[
81 (λ+ 1)M5 + 9R

(
19λ2 + 18E2λ+

3λ+ 18E2
)
M4 + 9R2λ

(
7λ2 + 24E2λ− 14λ+ 24E2 + 3

)
M3 + 3R3λ2

(
7λ2

+36E2λ− 11λ+ 36E2 + 18
)
M2 + 3R4λ3

(
8E2λ− 7λ+ 8E2 − 1

)
M+

2R5λ3 (λ+ 1)
(
E2λ+ 3

) ]
,
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[[
∂t∂

2
rψ

ℓ
]]

=
−κE

◦
R

R(2M −R)
3
(3M +Rλ)

3

[
27M4 + 6R

(
5λ+ 9E2 − 3

)
M3 + 3R2λ (5λ+

18E2 − 6
)
M2 + 6R3λ2

(
3E2 − 2

)
M + 2R4λ2

(
E2λ+ 1

) ]
,

[[
∂2t ∂rψ

ℓ
]]

=
κE

R3 (2M −R) (3M +Rλ)2

[
39M3 + 9R

(
3λ+ 2E2 − 2

)
M2 +R2λ (4λ+

12E2 − 13
)
M + 2R3λ2

(
E2 − 1

) ]
,

[[
∂3t ψ

ℓ
]]

=
−κE

◦
R

R3 (2M −R) (3M +Rλ)

[
9M2 + 2R

(
2λ+ 3E2 − 2

)
M + 2R2λ

(
E2 − 1

) ]
, (C7)

4th order

[[
∂4rψ

ℓ
]]

=
−3κE

R2 (λ+ 1) (2M −R)4(3M + Rλ)5

[
567 (λ+ 1)M7 + 162R (λ+ 1) (6λ

+16E2 − 5
)
M6 + 6R2

(
139λ3 + 738E2λ2 − 123λ2 + 162E4λ+ 441E2λ

−171λ+ 162E4 − 297E2 + 27
)
M5 + 12R3λ

(
21λ3 + 252E2λ2 − 85λ2+

135E4λ− 24λ+ 135E4 − 252E2 + 18
)
M4 + 3R4λ2

(
21λ3 + 344E2λ2−

95λ2 + 360E4λ− 340E2λ+ 100λ+ 360E4 − 684E2 + 24
)
M3 + 2R5λ3·

(
88E2λ2 − 47λ2 + 180E4λ− 260E2λ+ 25λ+ 180E4 − 348E2 − 24

)
M2

+ 2R6λ4
(
6E2λ2 + 30E4λ− 53E2λ+ 23λ+ 30E4 − 59E2 + 11

)
M+

4R7λ4 (λ+ 1)
(
E4λ− 2E2λ− 2

) ]
,

[[
∂t∂

3
rψ

ℓ
]]

=
3κE

◦
R

R2(2M −R)
4
(3M +Rλ)

4

[
135M6 + 27R

(
7λ+ 32E2 − 6

)
M5 + 3R2·

(
35λ2 + 396E2λ− 75λ+ 108E4 − 144E2 + 18

)
M4 +R3λ

(
35λ2+

612E2λ− 120λ+ 432E4 − 594E2 + 72
)
M3 +R4λ2

(
140E2λ− 45λ+

216E4 − 306E2 + 36
)
M2 + 2R5λ3

(
6E2λ+ 24E4 − 35E2 + 9

)
M+

2R6λ3
(
2E4λ− 3E2λ− 1

) ]
,

[[
∂2t ∂

2
rψ

ℓ
]]

=
−κE

R4(2M −R)2(3M +Rλ)3

[
1431M5 + 6R

(
251λ+ 234E2 − 210

)
M4+

9R2
(
59λ2 + 160E2λ− 148λ+ 36E4 − 66E2 + 30

)
M3 + 6R3λ

(
10λ2+

82E2λ− 79λ+ 54E4 − 102E2 + 48
)
M2 + 2R4λ2

(
28E2λ− 27λ+ 54E4

−105E2 + 52
)
M + 12R5λ3

(
E2 − 1

)2
]
,
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[[
∂3t ∂rψ

ℓ
]]

=
κE

◦
R

R4 (2M −R)
2
(3M +Rλ)

2

[
243M4 + 3R

(
61λ+ 132E2 − 64

)
M3 + 3R2·

(
12λ2 + 92E2λ− 49λ+ 36E4 − 48E2 + 12

)
M2 + 2R3λ

(
24E2λ− 15λ+

36E4 − 51E2 + 14
)
M + 6R4λ2

(
E2 − 1

) (
2E2 − 1

) ]
,

[[
∂4t ψ

ℓ
]]

=
−κE

R6 (3M +Rλ)

[
189M3 + 2R

(
36λ+ 84E2 − 77

)
M2 + 6R2

(
E2 − 1

)
(10λ+

6E2 − 5
)
M + 12R3λ

(
E2 − 1

)2
]
.
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