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ABSTRACT: The chemical composition of Titan organic haze is poorly known. To address this 

issue, laboratory analogs named tholins are synthesized, and analyzed by methods requiring 

often an extraction process in a carrier solvent. These methods exclude the analysis of the 

insoluble tholins fraction and assume a hypothetical chemical equivalence between soluble and 

insoluble fractions. In this work, we present a powerful complementary analysis method recently 

developed on the DESIRS VUV synchrotron beamline at SOLEIL. It involves a soft pyrolysis of 

tholins at ~230°C and an electron/ion coincidence analysis of the emitted volatiles compounds 

photoionized by the tunable synchrotron radiation. By comparison with reference photoelectron 

spectra (PES), the spectral information collected on the detected molecules yields their isomeric 

structure. The method is more readily applied to light species (m/z ≤ 69), while for heavier ones 

the number of possibilities and the lack of PES reference spectra in the literature limit its 

analysis. A notable pattern in the analyzed tholins is the presence of species containing adjacent 

doubly-bonded N atoms, which might be a signature of heterogeneous incorporation of N2 in 

tholins.  
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Introduction 

Titan, the largest moon of Saturn, has a dense atmosphere mainly composed of nitrogen (98%), 

methane, molecular hydrogen, traces of hydrocarbons and nitrogenous compounds. Atmospheric 

photochemistry leads to the production of microscopic particles forming the brownish haze that 

permanently surrounds Titan 1. The ongoing Cassini-Huygens space mission provided first 

insights on the chemical composition of these atmospheric organic aerosols. Mid- and Far-IR 

spectroscopy confirmed some aliphatic signatures 2-5, while the Aerosol Collector Pyrolyser 

experiment highlighted the presence of nitrogen in the refractory nucleus 6.  

To complete this chemical overview, the knowledge about Titan’s aerosols is improved by the 

study of analogous materials produced in the laboratory (“Titan’s tholins”). The word “tholins” 

has been proposed in 1979 by Sagan and Khare 7 to name laboratory analogues of solid planetary 

aerosols. It comes from the Ancient Greek thólos and refers to the brownish color of the material. 

These are most often synthesized by maintaining a continuous plasma discharge in gaseous N2-

CH4 mixtures 7-10, such as the PAMPRE reactor in LATMOS laboratory. This original setup is 

designed for atmospheric simulation, as the production and growth of the tholins occur directly 

in levitation inside the confined reactive plasma, avoiding any contact with a solid support during 

the growth process.  

High-resolution mass spectrometry analysis has been performed in order to understand the 

CxHyNz chemical structure 11-16 of Titan’s tholins. It was found to contain a complex mixture of 

molecules: mass spectra were actually obtained with more than one species per nominal mass at 

every mass between m/z 50 and 800. Van Krevelen representations enabled to identify their 

molecular formula, polymeric patterns and to decompose the complex organic matter into only 

about ten polymeric families 11-12. But high resolution mass spectrometry does not solve isomeric 
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ambiguity and cannot provide the chemical structure of the molecules. Moreover, the extraction 

method relies on the solubility of the material, which has been found to be mostly insoluble, even 

in a polar solvent: only 20-30% can be dissolved in methanol, and less than 1% in toluene 17. The 

material analysis has therefore to be completed by other extractions techniques, such as 

pyrolysis. 

Previous studies involving Titan’s tholins pyrolysis were performed 18-20. In 18 tholins were 

pyrolysed at four temperatures, 250, 400, 600 and 900°C, and analyzed by GC-GC-MS. 

Surprisingly, at 250°C, very few species were detected, among them acetonitrile was the major 

one. Because of this limitation, the authors focused on identifying the volatiles compounds 

obtained at a 600°C pyrolysis, and found mainly pyrrole structures. Despite the strong interest of 

this primary study on tholins pyrolysis, coupled with a powerful GC-GC-MS analysis, the quasi 

non-detection of products at 250°C remains a major issue. Indeed, the pyrrole structures detected 

at 600°C are probably not representative of the original solid material, as it is known that the 

aromaticity of pyrolysates increases with the temperature 21. Actually, recent NMR studies on 

tholins analysis confirmed a low aromatic content of tholins 22-24.  

Previous thermal degradation studies of tholins confirmed the need for soft pyrolysis 

temperatures to address the issue of a tholins molecular identification representative of the 

chemical structure of the native non-heated material 25-26. The study by Nna Mvondo et al. 26 

pointed out that Titan’s tholins contain more open-chain structures than ring-shaped structures 

and that cyclisation occurs during high temperature treatments. Similarly, He et al. 25 showed that 

the heated solid residue has an elemental content significantly modified for temperatures higher 

than 300°C. There is therefore a need for coupling a sensitive organic compound analytical 

technique to a soft temperature pyrolysis extraction.  
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This is the purpose of the present work, in which we introduce an alternative analysis method 

based on PhotoElectron/PhotoIon Coincidence (PEPICO) techniques coupled with tuneable 

VUV synchrotron radiation, and using a soft pyrolysis extraction method, by heating the material 

at temperatures lower than 300°C. This experimental method has already been successfully 

employed for species identification, including isomer differentiation, in complex media 27-30 and 

is applied here to improve the characterization of the chemical composition of Titan tholins.  

Experimental Setup and Methodology 

Sample synthesis  

Tholins samples were produced in the PAMPRE radio-frequency capacitively coupled plasma 

reactor described in detail in Szopa et al. 10. In this work, the experimental conditions at room 

temperature were a N2-CH4 gas mixture containing 5.0 ± 0.1% of methane at a flow rate of 

55.0 ± 0.1 sccm, a pressure of 0.9 mbar, and a plasma power of 30 W. During the production 

process, the particles were gently deposited in a glass vessel without any interaction with the 

substrate and were collected into microvials for further analysis.  

Vaporization and chemical analysis on the VUV DESIRS-synchrotron beamline 

The chemical analysis was performed at the DESIRS undulator beamline (Synchrotron SOLEIL, 

France) 31, on the SAPHIRS permanent molecular beam endstation, which is composed of two 

chambers, expansion and ionization, connected through a 0.7 mm skimmer 31.  

Tholins samples were heated in an in-vacuum oven placed inside the expansion chamber, and the 

resulting vapor was mixed with 1 bar of Argon and expanded through a 70 μm nozzle. The oven 

temperatures were chosen according to tholins thermal stability 25. Temperature has to be above 

150°C to go over the simple extraction of adsorbed water. But the native compounds in the 

aerosols are increasingly altered with temperature, showing thermic cracking effects. Beyond 
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300°C, both the elemental analysis and infrared signature of the residual heated sample 

significantly evolve, showing a drastic thermal evolution of the material 25. Oven temperatures 

between 150 and 300°C were therefore chosen in the present study as the best compromise to 

extract as much representative molecules as possible without modifying significantly the 

material. In this range, three temperatures 180, 230 and 280°C were used in order to probe a 

possible change in the volatiles compounds collected according to the heating. 

After traversing the skimmer, the vapor entered the ionization chamber of SAPHIRS where sits a 

double imaging PEPICO (i2PEPICO) spectrometer, named DELICIOUS III 32, which combines a 

velocity map imaging (VMI) apparatus 33 with a modified ion Wiley-McLaren time of flight 

analyser/imager. The coincidence scheme is used here to filter the electrons according only to the 

ion mass and thus to provide mass-selected photoelectron images. Abel inversion of the images 34 

yields the corresponding photoelectron spectra (PES) for all the ions in the mass spectra, in a 

multiplex manner, with an estimated resolution of 200 meV. The error bars on the experimental 

PES are estimated assuming a Poisson distribution on each independent pixel of the 

photoelectron images, and subsequent propagation of the error over the algebra operations 

performed by the Abel inversion algorithm. These error bars are then used by the least squares fit 

routine to estimate the statistical error associated to the relative isomeric abundance. 

The molecular beam was ionized by the VUV synchrotron radiation at the center of the 

spectrometer. The monochromator was set to deliver 3 x 1012 photons/sec with a resolution of 10 

meV at 10 eV. A gas filter 35 located upstream the monochromator and filled with Ar ensured 

spectral purity by effectively absorbing the high  harmonics radiation emission from the 

undulator. In practice, i2PEPICO data were recorded at the 4 fixed photon energies of 9.5 eV, 

10.5 eV, 11.5 eV and 12.5 eV for a typical 7200 sec duration.  
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Molecular identification 

Molecular identification of selected chemical compounds was achieved through the comparison 

of the cation electronic signatures in our experimental results with existing experimental data. 

All CxHyNzOw species were considered: oxygenated compounds are part of the original tholins 

aerosols, as oxidation of the surface occurs in the time between production and characterization. 

The oxygen content in our samples has been previously studied and quantified 21, 36-37.  

The mass resolving power of DELICIOUS III under the present experimental conditions (time-

focusing mode operation) is estimated from the most intense peak at m/z 111 to be 

𝑀 Δ𝑀 = 450 at the full width half maximum (FWHM). This value is not high enough to 

directly infer the chemical composition of the molecules.  

i. Photoelectron spectra (PES)  

The isomers identification is made by comparison between mass selected photoelectron spectra 

obtained in this work from the vaporized tholins and the He I, He II and Ne photoelectron spectra 

existing in the literature. This identification can be hindered due to the following obstacles: (1) 

the presence in the spectra of electronic structures corresponding to precursors of species 

produced by a dissociative photoionization process; (2) internal temperature effects (imperfect 

cooling) that may lead to hot bands, and in some cases to the presence of several conformers; (3) 

the lack of defined structure in the PES and the overlap between different isomers; (4) the 

absence of experimental PES data for the isolated molecules in the literature, and more 

commonly, the lack of fragment selected data to deduce the state-selected fragmentation pattern; 

and (5) the increasing number of possibilities with increasing mass.  
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Clearly the higher the mass, the more difficult it is to attribute the isomers, and therefore this 

work is dedicated to the isomer attribution of the lighter species of the tholins composition with 

m/z ≤ 69. 

ii. Orbitrap High Resolution Mass spectrometry analysis (OHR-MS) 

Complementary analyses using OHR-MS were made with a hybrid linear trap/orbitrap mass 

spectrometer (LTQ orbitrap) of the polar species, following the methodology developed in 12: a 

soft electrospray ionization, but limited to the soluble fraction of the sample, coupled to a high 

resolution mass analyzer. This analysis assumes that the soluble fraction is representative of the 

bulk tholins (as shown in 17). The lower mass limit of m/z 50 with this instrument precludes a full 

comparison with the PEPICO data for light species.  

Results and discussion 

Effect of the oven temperature on the volatiles compounds extracted from the tholins 
sample  

Figure 1 (a-c) shows the mass spectra obtained at 10.5 eV of photon energy with DELICIOUS 

III for oven temperatures of (a) 180°C, (b) 230°C and (c) 280°C obtained with the same 

acquisition time. The detected ions are the same in the three mass spectra. The major quantitative 

difference between these results is the ratio between the heavier and lighter ions, which increases 

as a function of the temperature. Looking at the absolute scales in Figure 1 this increase 

correspond to both a gain of the heavier masses (>100 amu), and a loss of the lighter ones. While 

the temperature trend of the heavier masses is intuitive, the loss of signal on the lighter ones must 

be explained by the volatile fraction gradually disappearing with time, since the increase in 

temperature shown in Figs. 1a-1c followed a chronological order. In any case, we did not 

observe any significant temperature (or time) dependence on the measured PES on the most part 

of the species analyzed in this work, which leads us to conclude that the evolution of this ratio 
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should be simply associated with the relative vapor pressure and quantity of these species. These 

effect are most probably attribute to the increase of the temperature, however we note that it 

could be partially attributed to a time effect, where the volatile compounds would gradually 

disappear, since the increase of the temperature follows the chronologic order of the data 

acquisition.       

The invariability of the PES with the temperature indicates that the structure of the molecules 

extracted from the sample at temperatures between 180°C and 280°C is unchanged. Therefore, 

and in order to increase the data statistics, we added the data recorded at the two lowest oven 

temperatures, 180°C and 230°C. Even if we have no evidence of a possible degradation of the 

sample at 280°C, on a precautionary principle, we discarded, for the PES, the analysis of the 

corresponding data. 
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Figure	1:	Mass	spectra	obtained	during	7200s	at	10.5	eV	photon	energy	at	DESIRS	beamline	with	an	oven	temperature	

of	(a)	180°C,	(b)	230°C	and	(c)	280°C.	

General comparison with OHR mass spectra 

Figure 2 (a) shows a typical OHR mass spectrum of the soluble part of tholins aerosol. The OHR 

mass spectrum presents two peak groups: (1) strong single peaks are visible for m/z < 130, (2) a 

polymeric structure visible with regular patterns for m/z > 130. Figure 2 (b) is a VUV mass 

spectra (VUV-MS) obtained at the DESIRS beamline for volatile molecules released from 

tholins after soft heating at 180°C. Detected ions are globally consistent between the two spectra, 

showing no major differences according to the extraction method except for quite different 

relative intensity ratio. The polymeric structure with regular patterns for m/z > 130 observed 
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during the soluble fraction analysis was also detected in the VUV-MS (Figure 2b) but was not 

analyzed due to the low signal intensity.  

 
Figure	2:	 (a)	OHR	mass	spectrum	(b)	VUV	Mass	spectra	(VUV-MS)	obtained	at	 10.5	eV	photon	energy	with	an	oven	

temperature	of	180oC	on	the	DESIRS	beamline	with	DELICIOUS	III	spectrometer.	

Molecular identification of the lighter ions, with m/z < 69 

Figure 3 corresponds to the VUV-MS for the signal of the lighter ions at m/z ≤ 69 obtained at 

10.5 eV photon energy with an oven temperature of 230°C. Several ions are detected, such as 

m/z 17, 30, 31, 42, 43, 44, 45, 56, 57, 58, 59, 60, 67, 68 and 69. The molecular identification of 

some of these ions—those where the statistics are high enough to extract the PES—is performed 

by comparing the PES obtained in coincidence with PES reference spectra, as detailed in the 

experimental section. 

 
Figure	 3:	 VUV-MS	 obtained	 at	 10.5	 eV	 at	 an	 oven	 temperature	 of	 230oC.	 The	 inset	 shows	 a	 close-up	 of	 the	 region	

between	m/z	27	and	70.	
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First, the ion at m/z 17 is found unambiguously to be ammonia (NH3) by comparing our 

photoelectron spectra with the one obtained by Locht et al. 38. Thanks to this attribution we could 

use 8 observed vibrational transitions to calibrate the kinetic energy scale of our spectra, leading 

to an absolute precision of 5 meV on the binding energy for all species.  

 

Figure	4	:	Photoelectron	spectra	for	ion	at	m/z	30	obtained	in	this	work	(black	line)	at	(a)	hν	=	10.5	eV	and	(b)	hν	=	11.5	

eV,	along	with	those	for	the	possible	isomers	found	in	the	literature	for	the	formaldehyde	(CH2O)	(resolution	80	meV))	

39,	diazene	(N2H2)	
40	represented	by	red	line	and	nitric	oxide	(NO)	(resolution	15	meV)	41	ionization	energies	represented	

in	blue	lines.	

In the case of ion at m/z 30 several species with this m/z ratio could make a contribution to the 

observed PES. Comparison of the PES (Figure 4) found in the literature with our spectra 

suggests the presence of nitric oxide (NO) 41, and formaldehyde (CH2O) 42, the diazene (N2H2) 40 

photoelectron spectrum is also represented in Figure 4 (b), but the comparison suggests that if 

the diazene is present it is in small quantity, since our spectra are dominated by NO structures. 
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Figure	5:	 (a)	Photoelectron	 spectra	obtained	 in	 this	work	 (black	 line)	 for	 	m/z	 31	 at	 11.5	 eV	photon	energy	and	He	 I	

photoelectron	 spectra	 (red	 marker)	 obtained	 of	 methylamine	 (CH5N)	 by	 Bieri	 et	 al.	 43.	 (b)	 Photoelectron	 spectra	

obtained	 for	 m/z	 41	 at	 11.5	 eV	 photon	 energy	 and	 He	 I	 photoelectron	 spectra	 obtained	 of	 acetonitrile	 (CH3CN)	 by	

Gochel-Dupuis	et	al	(resolution	25	meV)	(red	line)	44.	

A more complex example of the isomers identification in this work is illustrated in Figure 5 for 

the ion at m/z 31. Although we could readily identify the methylamine (CH5N) and probably 

nitrosyl hydride (HNO) through comparison with the experimental PES by Bieri et al. 43 and 

Baker et al. 45 , the region above 10.8 eV is unexplained. Other candidate such CH3O radical 46-47 

was also excluded by their cation’s electronic footprint, and the fact that radicals are not 

expected in tholins. Alternatively, the structure above 10.8 eV could come from dissociative 

ionization of some unidentified heavier ion(s). 

12.412.312.212.112.011.911.811.711.6
Binding Energy (eV)

  He I PES of acetonitrile (Gochel-Dupuis et al)
 PES from m/z 41 at hν = 12.5 eV
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Binding Energy (eV)
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 He I PES of methylamine (Bieri et al.)
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For m/z 41 we could easily identify the contribution as acetonitrile (CH3CN), as illustrated on the 

comparison between our PES obtained at 12.5 eV and the He I PES of the acetonitrile obtained 

by Gochel-Dupuis et al. 44 on Figure 5 (b). For the weak ion signal at m/z 42 (Figure 6) we 

identify the possible presence of 3H-diazirine (cyclic CH2N2) 48, Cyanamide (NC-NH2) 49 and 

propene (C3H6) 50 and exclude the presence of cyclopropane (C3H6) 51 and diazomethane (linear 

CH2N2) 52. N3 radical 53 is unlikely, but cannot be excluded, For binding energies greater than 11 

eV we observed structures of unidentified origin. 

 

Figure	6	:	Photoelectron	spectrum	for	ion	at	m/z	42	obtained	in	this	work	at	(a)	hν	=	10.5	eV	and	(b)	hν	=	11.5	eV,	along	

with	those	for	the	possible	isomers	found	in	the	literature	for	3H-diazirine	(CH2N2)	(resolution	30	meV)	(blue	marker)		

(47),	propene	(C3H6)	(red	line)	(48),	N3	(pink	line)	
53	and	cyanamide	(CN2H2)	(green	marker)	49.	

For the ion at m/z 43 we could compare the PES obtained in this work with three isomers of 

C2H5N, the N-methylmethylenimine, C-methylmethylenimine and ethylenimine. Our 

experimental PES obtained at 10.5 eV could be explained by the presence of only C-

methylmethylenimine isomer as illustrated on the PES on Figure 7. However, we have to take 
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into account two important points: (1) First one, despite the C- methylmethylenimine spectra was 

obtained by Bock et al  54 with a higher resolution (18meV-25meV) than the one obtained in this 

work, we verify that we have more resolved electronic structures. In our point of view, we 

interpret this discrepancy as a higher temperature effect on the C-methylmethylenimine spectra 

due to their synthesis procedures that involves pyrolysis process without an adiabatic expansion 

afterwards 54. (2) Second one, since this molecule is highly unstable, 55 showing a tendency to 

polymerize, we believe that if it is present it would be a product of thermal decomposition of 

some unspecified compound in the tholins.   

 
Figure	 7:	 Photoelectron	 spectrum	 for	 ion	 at	m/z	 43	 obtained	 in	 this	work	 at	 hν	=	 10.5	 eV	 	 along	with	 those	 for	 the	

possible	 isomers	 found	 in	 the	 literature	 for	 C2H5N,	 the	 N-methylmethylenimine	 (green	 markers),	 C-

methylmethylenimine	(red	markers)	54	and	ethylenimine	43	(blue	markers).	

The analysis of our PES spectrum obtained for the ion at m/z 44 indicates the possible presence 

of acetaldehyde (CH3CHO), propane (CH3CH2CH3) and ethylene oxide (C2H4O), as illustrated in 

red, green and blue, respectively on the PES of Figure 8.  However, this three species do not 

describe the whole PES spectrum obtained in this work, for example for the structures observed 

around 11 eV binding energy, so other unidentified species contribute to this channel. The 

presence of vinyl alcohol (CH2CHOH) 56, methyl diazene (CH4N2) 40 and the three C2H6N 

isomers dimethyl amidogen 57, CH3CHNH2 58 and CH2NHCH3 58 can be discarded due to their 

lower ionization energy. 

10.410.09.69.28.88.48.07.67.2
Binding Energy (eV)

 PES from m/z 43 at hν=10.5 eV (this work)
 N-Methylmethylenimine  (Bock et al 1987)
 Ethylenimine (Bieri et al 1982)
 C-Methylmethylenimine  (Bock et al 1987)
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Figure	8	:	Photoelectron	spectrum	for	ion	at	m/z	44	obtained	in	this	work	at	(a)	hν	=	10.5	eV	and	(b)	hν	=	11.5	eV	(black	

line)	 and	 photoelectron	 spectrum	 for	 acetaldehyde	 (CH3CHO)	 obtained	 by	 Tam	 et	 al	 (red	 line)	 59,	 for	 propane	

(CH3CH2CH3)	 by	Bieri	 et	 al	 (resolution	between	60	 and	 100	meV)	 (green	 line)	 60	 and	 for	 ethylene	 oxide	 (C2H4O)	by	

Corderman	et	al	(resolution	25	meV)	(blue	line)	61.	

Figure 9 (a) and (b) present the isomers identification conducted for the ion at m/z 45. Despite 

the difference in resolution and in the photon energy between our spectra and the He I and He II 

ones, the very satisfactory matching between the cation’s electronic footprint of ethylamine 

(C2H7N) and formamide (HCONH2), and our recorded spectra shows unambiguously that these 

two molecules are present in the vaporized fraction of the tholins, with formamide being the 

most abundant by far.  
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Figure	 9:	 Photoelectron	 spectra	 obtained	 in	 this	 work	 (black	 line)	 and	 He	 I	 and	 He	 II	 photoelectron	 spectra	 (red	

markers	and	red	line)	found	in	the	literature.	The	black	lines	correspond	to	the	photoelectron	spectra	for	ion	at	m/z	45	

obtained	from	vaporized	tholins	at	9.5	eV	(a)	and	10.5	eV	(b)	photon	energies	while	the	red	markers	represent	(a)	the	

He	I	 (21.21	eV)	photoelectron	spectra	obtained	for	the	ethylamine	(C2H7N)	(resolution	60	meV)	by	Maruyama	et	al	 62	

and	(b)	the	red	line	for	formamide	(HCONH2)	by	Asbrink	et	al.	
63.		

For medium-sized ions that can be studied with the OHR-MS technique (m/z > 50) but that are 

small enough to have a manageable number of possible isomers, it is interesting to compare the 

information obtained with the OHR-MS and VUV-MS analysis.  

 

For instance, for the ion at m/z 56, the aminoacetonitrile (AAN) is the only candidate offered by 

the OHR-MS studies 12. Several isomers with known electronic footprints have been considered 

here to model the PES associated with this mass (Figure 10), including AAN. However, 

although the subsequent least squares fit predicts the presence of some amount of 2-propenal 

(C3H4O) and AAN, it is clear that most of the obtained PES is not well fitted or explained, 

including the region where AAN would contribute, and the binding energies above 11 eV. 

Expanding further on the presence of AAN, Bellini et al. (55) recently recorded the 

9.59.08.58.07.57.0
Bindng Energy (eV)

11.010.510.09.59.08.58.07.5
Binding Energy (eV)

 PES from m/z 45 at hν=11.5 eV (this work)
 He I PES of formamide (Asbrink et al)

(b)

 PES from m/z 45 at hν=9.5 eV (this work)
He I PES of ethylamine (Maruyama et al.)

(a)
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fragmentation pattern of AAN+ and found that, at the photon energy of 11.5 eV, the main 

fragment ion would be m/z 29 (around 25%), which it is not in agreement with our VUV-MS 

recorded at this energy, where we found a branching ratio of around 11%. Assuming that ion at 

m/z 29 comes exclusively from dissociative ionisation of AAN places an upper limit of 44% to 

the contribution of AAN to the m/z 56 channel. Of course, m/z 29 could come from dissociation 

of other parent ions (although not from HCO or C2H5 since the presence of radicals is ruled out), 

and indeed the least squares fitting provides a AAN contribution well below 44 %. We note that 

AAN is highly thermolabile as reported by Bellini et al. (55), and decomposes at room 

temperature in a matter of hours so that not all of the AAN might survive the vaporization 

temperatures used in this work, while the softer electrospray method used in the OHR-MS is 

more favorable for fragile molecules, provided they are soluble. We cannot explain, however, 

why McGuigan et al. 18 using a high temperature pyrolysis found AAN to be a major species, 

while in our work it represents a minor fraction of the m/z 56 channel. Other structures like 2-

propenal (C3H4O) and cyclobutane (C4H8) are likely, but a large portion of the PES remains 

unexplained so that other isomers than the ones named in Figure 10 must be present. 
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Figure	10:	(a)	Photoelectron	spectrum	for	ion	at	m/z	56	obtained	in	this	work	at	hυ	=	11.5	eV,	along	with	those	for	the	

possible	 isomers	 found	 in	 the	 literature.	 64-69.	 The	 curves	 have	 been	 normalized	 to	 their	 integral	 over	 the	 displayed	

ionization	 energy	 range.	 (b)	 Experimental	 PES	 (black	 circles)	 and	 least	 squares	 fit	 of	 the	 linear	 combination	 of	 all	

isomers	shown	in	panel	(a)	to	the	data.	The	contributions	of	each	isomer	to	the	data	are	shown	in	the	inset.	

In the same manner, ions at m/z 58 and 59 have been assigned by OHR-MS to acetamidine 

(C2H6N2) and guanidine (CH5N3), respectively. This cannot be fully verified in our PEPICO data 

since no information whatsoever was found on the photoionization of acetamidine, and only 

ionization energies exist for guanidine. From Figure 11, we find, however, that several other 

isomers can contribute to the PES of m/z 58, without any species being predominant. Indeed, we 

succeeded in obtaining a quite satisfactory fitting of the PES by a by a linear combination of all 

possible isomers. The departure from a perfect fitting, indicates that other molecules apart from 
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 m/z 56 This Work
 1-Butene (White 1974)
 1-Butene (Van der Meij 1988)
 cis-butene (White 1974)
 trans-butene (White 1974)
 isobutene (Kimura 1975)
 cyclobutane (Bischof 1970)
 2-propenal (von Niessen 1980)
 propargyl alcohol (von Niessen 1980)
 AAN (Lacombe 1989)

PointPerc (%) Isomer
0 ± 5 1-Butene_1974
6 ± 4 1-Butene_1988
0 ± 5 cis_butene_1974
0 ± 4 trans_butene_1974
2 ± 3 iso_butene_1975

29 ± 1 2-propenal_1980
0 ± 6 propargyl_OH_1980

28 ± 6 AAN_1989

(a)

(b)
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the ones tried here may contribute to the signal. In order to test for the presence of acetamidine, 

we have calculated its adiabatic ionization energy at the PBE0/aug-cc-pvdz DFT level, and 

obtained a value of 8.47 eV. The geometry change upon ionization is slight (less than 5 % for 

chemical bands and less than 6 % for angles), so one would expect a marked adiabatic transition. 

As seen in Figure 11, this value is far from the main experimental band starting at 9.4 eV, but 

could be in agreement with the weak structure observed around 8.5 eV. Although more 

information than just one theoretical point is needed to corroborate its presence, we can 

nevertheless conclude that if acetamidine is present, it is only in very small concentrations. Since 

this molecule is predicted in the OHR-MS, the disagreement could be attributed to thermal 

decomposition. Note that the measured vapor pressures at 25°C by the ACD (176 torr) and 

EPISuite (22 torr) are relatively high so that, barring decomposition, we would expect a strong 

signal at our working temperatures. Indeed, acetamidine has been reported to decompose at 95°C 

to yield 70% of acetonitrile 70, which is consistent with both the fact that acetamidine is not 

present (or in trace quantities) in our measurements, and that acetonitrile is detected in the 

measurements performed at 12.5 eV (see Figure 5b). 
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Figure	11:	(a)	Photoelectron	spectrum	for	m/z	58	obtained	in	this	work	at	hυ	=	11.5	eV,	along	with	those	for	the	possible	

isomers	 found	 in	 the	 literature.	 40,	 60,	 65,	 71-75	 The	 curves	 have	 been	 normalized	 to	 their	 integral	 over	 the	 displayed	

ionization	energy	range.	The	calculated	adiabatic	ionization	of	acetamidine	(see	text	for	details)	has	been	marked	with	

an	arrow.	(b)	Experimental	PES	(black	circles)	and	least	squares	fit	of	the	linear	combination	of	all	 isomers	shown	in	

panel	(a)	to	the	data.	The	contributions	of	each	isomer	to	the	data	are	shown	in	the	inset.	

For the ion at m/z 59 (PES shown in Figure 12), which dominates our VUV-MS (low mass side) 

at all temperatures (see Figure 1), a good fit of the PES could be achieved with the available 

isomers, and acetamide (C2H5NO) is found as the most abundant contribution. Although the 

presence of acetamide is in agreement with the OHR-MS data, it was found to be minor 

compared with the main species at m/z 59, guanidine (CH5N3). However, guanidine is totally 

absent from the PES spectra. The experimental electron impact ionization energy of guanidine is 

9.10 eV 76, and its recently calculated adiabatic and vertical first ionization energies are 8.48 and 
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 m/z 58 This Work
 butane (Bieri 1980)
 azomethane (Frost 1976)
 isobutane (Murrell 1972)
 2-propenol (Mines 1973)
 acetone (Kimura 1975)
 cyclopropanol (Bombach 1983)
 methyloxirane (Stranges 2005)
 ethylvinylether (Mines 1973)
 oxetane (Roszak 1992)
 propanal (Kimura 1975)

PointPerc (%) Isomer
23 ± 26 butane_1980

2 ± 2 C2H6N2_1976
0 ± 23 isobutane_1972
4 ± 2 2-propenol_1973

10 ± 1 acetone_1975
34 ± 4 cyclopropanol_1983
0 ± 2 MOX_2005
0 ± 1 ethylvinylether_1973
11 ± 2 oxetane_1992
11 ± 1 propanal_1975

(a)

(b)



 22 

9.09 eV respectively 77. As in the case of AAN, the reason for this discrepancy is found in the 

extraction methods. Guanidine is a fragile molecule which decomposes at temperatures above 

160°C 78. The present thermal extraction method is therefore inappropriate for the detection of 

this specific molecule.  

 
Figure	12:	(a)	Photoelectron	spectrum	for	ion	at	m/z	59	obtained	in	this	work	at	hν	=	11.5	eV,	along	with	those	for	the	

possible	 isomers	 found	 in	 the	 literature	 63,	 79-81.	The	curves	have	been	normalized	 to	 their	 integral	over	 the	displayed	

ionization	 energy	 range.	 (b)	 Experimental	 PES	 (black	 circles)	 and	 least	 squares	 fit	 of	 the	 linear	 combination	 of	 all	

isomers	 shown	 in	 panel	 (a)	 to	 the	 data.	 The	 contributions	 of	 each	 isomer	 to	 the	 data	 are	 shown	 in	 the	 inset.	 	 The	

dashed	lines	represent	the	range	of	energies	where	signal	from	guanidine	should	be	seen	according	to	literature	76-77.	

Figure 13 shows the PES corresponding to ions at m/z 69. The lack of sharp structure in our 

experimental PES—a result of the limited experimental resolution and/or the congestion due to 

the presence of different molecules and/or conformers and/or vibrational congestion—and the 
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number of possible isomers make the identification challenging. It is nevertheless clear that all of 

the experimental PES can be modeled with the 1H-1,2,4-triazole isomer, which is in agreement 

with the OHR-MS experiments that establish the molecular composition as C2H3N3. The VUV-

MS data rule out the presence of another possible isomer, the 1H-1,2,3-triazole.  

 
Figure	13:	(a)	Photoelectron	spectrum	for	ion	at	m/z	69	obtained	in	this	work	at	hν	=	11.5	eV,	along	with	those	for	the	

possible	isomers	found	in	the	literature	54,	63,	82-87.	The	curves	have	been	normalized	to	their	integral	over	the	displayed	

ionization	 energy	 range.	 (b)	 Experimental	 PES	 (black	 circles)	 and	 least	 squares	 fit	 of	 the	 linear	 combination	 of	 all	

isomers	shown	in	panel	(a)	to	the	data.	The	contributions	of	each	isomer	to	the	data	are	shown	in	the	inset.	

Discussion	

The Aerosol Collector and Pyrolyser-Huygens instrument detected ammonia (NH3, m/z 17) and 

hydrogen cyanide (HCN, m/z 27) as the main released molecules by pyrolysis at 600°C of the 

aerosols in the atmosphere of Titan. In Coll et al 88 it was shown that Titan’s tholins produced in 

11109876

 m/z 69 This Work
 1H-1,2,4-Triazole (Guimon 1980)
 Butyronitrile (Ohno1984)
 Isobutyronitrile (Ohno 1984)
 Isoxazole (Kobayashi 1982 )
 Propiolamide (Asbrink 1981)
 1H-Pyrrole,2,5-dihydro (Morishima 1975)
 1-pyrrolin (Bock 1987)
 1H-1,2,3-triazole (Cradock 1973)
 1H-1,2,4-triazole (Cradock 1973)
 Vinyl isocianate (Kirby 1978)
 Oxazole (Kobayashi 1982)
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73 ± 8 1H-1,2,4-Triazole_1980
0 ± 21 butyronitrile_1984
0 ± 6 isobutyronitrile_1984
0 ± 4 isoxazole_1982
0 ± 8 propiolamide_1981
0 ± 1 Pyrrole_1975
0 ± 5 pyrrolin_1987
0 ± 4 1H-1,2,3-triazole_1973

27 ± 8 1H-1,2,4-triazole_1973
0 ± 4 vinyl_isocianate_1978

(a)
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“cold plasma” conditions, such as in the PAMPRE reactor, provided the best possible analogues 

to reproduce the volatiles released with the ACP experiment. Our work, focused on the light 

species extracted from PAMPRE tholins through soft pyrolysis conditions (T<240°C), provides 

further insights on this in-situ thermal extraction of light molecules and on the possible presence 

of larger structures in Titan’s aerosols.  

The ions detected at m/z ≤ 69 in this work are summarized in Table 1. Eleven ion signatures with 

one to five heavy atoms were detected. Most of them could be firmly identified with their 

corresponding PES. A few oxygen-bearing compounds, NO, CH2O (formaldehyde), C2H4O 

(acetaldehyde and ethylene oxide), HCONH2 (formamide) and CH3CONH2, are reported, 

confirming the oxygen content of the samples 37. The O-bearing molecules are always found in 

these kinds of laboratory analogues 21. Pyrolysis process is discarded as the oven is under 

vacuum. A recent chemical analysis of the samples by XPS highlights that the O-bearing 

molecules are only present in the external layer of the solid sample, not in its core 89. They are 

produced when the sample is exposed to ambient air. High resolution mass spectrometry shows 

that the O-bearing molecules have a similar mass pattern to the rest of the sample 12. Those are 

therefore no atmospheric volatile organic compounds adsorbed on the sample during the transfer, 

but result from an oxidation process. As they are considered as a contamination, we did not 

discuss further their formation in the manuscript. 

The strong signature of ammonia in our analysis (Figure 3) is in agreement with the ACP data. 

Ammonia is a volatile molecule, which possibly results from the pyrolysis of primary terminal 

amine functional group in the macromolecules composing tholins. Such an origin is consistent 

with the identification of light primary amines in our work. We detected the two simplest 

primary amines, methylamine and ethylamine at m/z 31 and 45, but also the amino-acetonitrile at 
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m/z 56. It is well known that the amine functional group plays a key role in prebiotic chemistry. 

The amino-acetonitrile molecule has moreover its amine-functional group in alpha-position 

regarding the nitrile group. The hydrolysis of this precursor leads to the formation of glycine, the 

smallest α-amino-acid. Amine functional groups can require specific targeted analytical 

techniques 90 and the present analysis appears to be efficient for their detection and suggests an 

amine-origin of the NH3 signature detected after pyrolysis of Titan’s aerosols by the ACP 

instrument.  

The second main molecule detected by ACP, hydrogen cyanide, could not be identified here 

because its ionization energy is higher than the photon energy used for this work. Tholins are 

known to bear nitrile functional groups through their mid-IR signature around ~2200 cm-1 3, 91. 

We have identified in this work at m/z 41 the presence of acetonitrile (CH3CN). A similar 

pyrolysis extraction from tholins was performed in 25 with a simple QMS analysis of the released 

molecules. No firm identification was possible in this case, but the m/z 27 ion signature could 

reasonably be attributed to HCN. The evolution of its ion intensity was monitored according to 

the increasing temperature, showing a progressive release of this molecule, actually negligible at 

soft temperatures (T<300°C).  

 

m/z Soft-Pyr-MS-PES Solvent-

OHR-MS 

17 NH3 - 

30 NO 

CH2O (formaldehyde) 

 

31 CH3NH2 (methylamine) - 
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41 CH3CN (acetonitrile)  

42 Cyclic CH2N2 (3H-diazirine) 

CN2H2 (cyanamide) 

C3H6 (propene) 

N3 (?) 

- 

43 C2H5N (C-methylmethylenimine)  - 

44 CH3H2CH3 (propane) 

C2H4O (acetaldehyde and ethylene oxide) 

+ Others 

- 

45 C2H5NH2(ethylamine) 

HCONH2(formamide) 

- 

56 NH2CH2CN(aminoacetonitrile) 

+ Others 

C2N2H4 

58 Mixture C2H6N2 

59 CH3CONH2(acetamide) 

CHONHCH3 

CH5N3 

69 1H-1,2,4-triazole C2H3N3 

Table 1: Volatile molecules with m/z ≤ 69 extracted from PAMPRE Titan’s tholins after a soft 

heating at ~230°C and identified by PES spectroscopy in this work (Soft-Pyr-MS-PES). 

Comparison with the elemental formula of the main species detected by OHR-MS at the same 

mass units, when possible (m/z > 50), and extracted from tholins in methanol.		

The molecules identified in this work are compared with the elemental formula of the main 

species detected by OHR-MS at the same mass unit for m/z > 50 in Table 1. First we notice that 

the species are mostly consistent in spite of the different extraction method, in agreement with 

the previous general comparison of the mass spectra (Figure 2).  

The main difference is for m/z 59, corresponding to acetamide in the case of the soft-pyrolysis-

MS-PES analysis and to CH5N3 in the solvent-OHR-MS analysis, strongly suspected to be 
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guanidine. Guanidine is a thermally fragile molecule that decomposes with pyrolysis-extraction 

methods even with the mild temperatures used here. This underlines the complementarity of 

OHR-MS and the resistive heating described here. Indeed species that are not seen in the former 

due to the lack of solubility can be observed by resistive heating combined with PES, and 

conversely, thermally fragile molecules that are not seen at high temperatures, are only seen in 

OHR-MS provided that they are soluble.  

For the other species, the elemental compositions obtained with OHR-MS are consistent with the 

structure extracted from the MS-PES. We confirm the putative attribution made for m/z 56 in 12 

as amino-acetonitrile. Moreover we highlight a N-aromatic structure for the species at m/z 69 

with a triazole ring. This cycle involves two adjacent double-bonded nitrogen atoms, which are 

also seen in diazirine, a smaller structure identified at m/z 42. Tetrazolo[1,5-b]pyridazine, a gas 

product with similar chemical properties was moreover previously detected in the plasma 

discharge where tholins are produced 92. This specific N=N pattern is possibly a marker of a 

direct incorporation of N2 (or N2
+) in the growing organic material composing tholins. This basic 

structure would deserve further investigation to interpret the N-aromatic signature globally 

detected in Titan’s tholins 22, 91 and to understand the role of nitrogen in the organic growth in the 

atmosphere of Titan. The present knowledge on gas-phase nitrogen chemistry representative of 

Titan’s atmosphere actually hardly explains the incorporation of two adjacent nitrogen atoms in 

the organic products 93. 

Conclusion and perspectives 

The chemical composition of the volatile fraction of Titan’s tholins was studied by means of 

electron/ion coincidence techniques coupled to tunable VUV synchrotron radiation. A large 

number of ions were detected in the mass spectra and for each of them a photoelectron spectrum 
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was obtained through the coincidence scheme. For some of the lighter ions (m/z ≤ 69), 

comparison with existing experimental PES yielded the structure, while for heavier ions no 

analysis was performed due to the lack of PES experimental data and the larger number of 

possibilities. This limitation highlights the importance of recording experimental data on the 

photoionization of isolated relevant molecules, such as electron spectroscopy, state-selected 

photodissociation and total ionization cross section for quantitative analysis. In addition, 

although thermolysis data could provide further speciation and also be invoked to explain the 

differences between HR-OMS and the resistive oven PEPICO experiments, the lack of literature 

on the subject and the expected overlap of the thermolysis products, especially at low masses, 

prevent us from attempting so. 

Crossed analyses, addressing complementary fractions of the material have to be used to fully 

understand the complex composition of tholins. The analytical methodology developed in this 

work was focused on relatively mild conditions in order to ensure that the molecules extracted 

and softly ionized are representative of the bulk material: a temperature lower than 230°C and 

ionizing energies lower than 12.5 eV.  

Beyond the present case of tholins analysis, the present methodology consisting in coupling a 

soft pyrolysis to an imaging PEPICO set-up associated to VUV synchrotron radiation could be 

extended to other solid materials, including organic powders, in a very complementary Way with 

other analytical techniques. 
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