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Application of artificial intelligence for Euler solutions clustering

Valentine Mikhailov∗, Armand Galdeano‡, Michel Diament‡, Alexei Gvishiani∗,
Sergei Agayan∗, Shamil′ Bogoutdinov∗, Elena Graeva∗, and Pascal Sailhac‡

ABSTRACT

Results of Euler deconvolution strongly depend on the
selection of viable solutions. Synthetic calculations us-
ing multiple causative sources show that Euler solutions
cluster in the vicinity of causative bodies even when they
do not group densely about the perimeter of the bodies.
We have developed a clustering technique to serve as a
tool for selecting appropriate solutions.

The clustering technique uses a methodology based
on artificial intelligence, and it was originally designed
to classify large data sets. It is based on a geometrical
approach to study object concentration in a finite metric
space of any dimension. The method uses a formal defi-
nition of cluster and includes free parameters that search
for clusters of given properties.

Tests on synthetic and real data showed that the clus-
tering technique successfully outlines causative bodies
more accurately than other methods used to discriminate

Euler solutions. In complex field cases, such as the mag-
netic field in the Gulf of Saint Malo region (Brittany,
France), the method provides dense clusters, which more
clearly outline possible causative sources. In particular,
it allows one to trace offshore the main inland tectonic
structures and to study their interrelationships in the
Gulf of Saint Malo.

The clusters provide solutions associated with partic-
ular bodies, or parts of bodies, allowing the analysis of
different clusters of Euler solutions separately. This may
allow computation of average parameters for individual
causative bodies. Those measurements of the anomalous
field that yield clusters also form dense clusters them-
selves. Application of this clustering technique thus out-
lines areas where the influence of different causative
sources is more prominent. This allows one to focus on
these areas for more detailed study, using different win-
dow sizes, structural indices, etc.

INTRODUCTION

Euler deconvolution is a well-known method to determine
the shape of causative bodies from potential field data. It is
based on the approximation of the measured anomalous grav-
ity or magnetic field in a running window by the field of a
single elementary source of uniform density or magnetiza-
tion, characterizing the position and depth of the nearest or
largest causative source in the vicinity of the window. Hood
(1965) uses this method for aeromagnetic data interpretation
and demonstrates that the method is valid for point–pole and
point–dipole sources. Thompson (1982) elaborates applica-
tion of the method to 2D sources and derives structural in-
dices for several elementary bodies. Reid et al. (1990) extends
the method to three dimensions and discusses its applicabil-
ity to gravity anomalies of finite steps and magnetic anoma-
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lies of thin dikes and sloping contacts. Keating (1998) applies
the Euler approach to irregular 3D grids, using weights pro-
portional to station accuracy and interstation distance. Zhang
et al. (2000) use the method to interpret gravity gradient ten-
sor measurements. Their paper also contains a comprehen-
sive bibliography on the development and application of the
method.

Euler deconvolution is a powerful method to gain prelim-
inary information on position, shape, and depth of causative
bodies from gravity and magnetic fields. It is especially effec-
tive for isolated compact bodies restricted by vertical sides.
In such cases, Euler solutions cluster around the perimeter
of the bodies in a horizontal plane and provide estimates of
the depth of causative bodies. When anomalies are caused
by multiple bodies (including structural interfaces and com-
pact bodies of different size and depth), the method does
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not always provide easily interpretable results: Euler solutions
form broad clouds rather than dense clusters, making it dif-
ficult to outline side boundaries of causative sources. Often
interpretation can be improved by rejecting solutions with low
tolerance (Thompson, 1982), with large dispersion of depth
estimates, or with depths that are unreasonably shallow or
deep. Although effective for isolated anomalies, these crite-
ria sometimes are inefficient in complicated areas because
they are affected by noise, shallow sources, or neighboring
bodies.

In this paper we present a new technique for selecting the
best Euler solutions on the basis of artificial intelligence. Our
goal is to automatically (or semiautomatically) determine clus-
ters of Euler solutions that reliably outline the lateral extent of
causative bodies and provide more reliable estimates of their
depth (the latter also calls for correctly choosing the structural
index; see, e.g., Barbosa et al., 1999).

First, we discuss Euler deconvolution and introduce a new
method of cluster analysis based on a topological and geomet-
rical approach to object concentration in finite metric space.
Then we consider a synthetic example, focusing on the case
where nearby bodies cause interfering anomalies. Finally, we
apply the approach to magnetic anomalies from the Saint Malo
region (Brittany, France) and use it to infer relationships be-
tween a Precambrian high-temperature belt and later linear
and isometric magmatic intrusions.

THE METHOD OF EULER DECONVOLUTION

Euler deconvolution provides estimates of geometrical pa-
rameters for elementary causative bodies from gravity or
magnetic anomalies and their horizontal and vertical deriva-
tives (measured or calculated). This method assumes that the
anomaly is a homogeneous function of spatial coordinates. By
definition, a function is homogeneous of degree n when, for
any t ,

f (t x, ty, tz) = tn f (x, y, z). (1)

In this paper x, y, and z represent Cartesian coordinates with
the z−axis directed downward and the x-axis directed to the
north. For the 2D case, x is directed along the profile. Here
we discuss only the magnetic case, but similar results hold for
gravity.

Strictly speaking, the method is valid for magnetic or gravity
anomalies caused by bodies with positions characterized by a
single point—(x0, y0, z0) in three dimensions or (x0, z0) in two.
It can be point poles, point dipoles, lines of poles, and lines
of dipoles. Several elementary bodies obey the Euler equation
under specific conditions: for a dike (vertical or inclined), when
its thickness is considerably smaller than its depth; for a finite
step, when its step is considerably smaller than its depth; and
so on. For all of these bodies the Euler equation can be written
in the form

(x − x0)
∂ f

∂x
+ (y− y0)

∂ f

∂y
+ (z− z0)

∂ f

∂z
= A− N · f (x, y, z), (2)

where x0, y0, z0 are coordinates of the elementary source (the
object of the Euler solution); x, y, z are coordinates of the ob-

servation point; N is the structural index, which depends on
the shape of the body (N=−n) [structural indices for differ-
ent simple equivalent sources are listed in Thompson (1982)
and Reid et al. (1990)]; and A reflects a constant level in a
measured field to be determined.

Euler deconvolution consists of determining four unknown
parameters—x0, y0, z0, and A—in running windows (of a size
more than four field points) by solving a system of linear equa-
tions. This system assigns equation (2) to each window point.
By solving this system in the mean-square sense, dispersion of
unknown parameters can be also obtained.

The structural index is assigned a priori using additional in-
formation on the shape of causative bodies. Typically, several
indices are used, and the one that provides the best fit to known
superficial geological structure, seismic data, boreholes, etc., or
the one having good clustering properties is accepted. [On a
possibility to estimate structural index, see Slack et al. (1967),
Steenland (1968), Barbosa et al. (1999), and Martelet et al.
(2001)].

Even for synthetic examples computed for a single elemen-
tary body, when the anomalous field and its derivatives contain
no errors, not all Euler solutions cluster around the perimeter
of the causative body in the (x,y) plane. Standard Euler de-
convolution (Thompson, 1982) uses different criteria to select
the solutions. A solution can be rejected because of its low
tolerance [z0/N · σz<TOL, where σz is the dispersion of the z0

estimate (Thompson, 1982)], or because its dispersion is higher
than a given value σmax, or because it is unreasonably shallow
(z< zmin) or deep (z> zmax). Our synthetic calculations show
that the distance from an Euler solution to the center of the win-
dow from which the solution was obtained is also an important
characteristic. We suggest rejecting solutions located at a dis-
tance several times larger than the window radius. (Depending
on the structure of the anomalous field and the size of the win-
dow, this ratio ranges between 2 and 10.)

Even though 3D Euler deconvolution is in valid for 2D bod-
ies, the method gives good results for a wide range of elongated
bodies. Synthetic calculations for parallel dikes having a width
up to 25 times less than their length with the window size equal
to or less than the dike width showed that Euler solutions clus-
ter well along the four side boundaries of the dikes. Parame-
ters of this test were chosen similar to the magnetic field of the
Saint Malo region, discussed later in this paper. In particular,
the difference between the angle of dike strike and declination
of magnetization was as small as 5◦. When the window size is
smaller than the dike width, Euler solutions outline both long
sides of the dikes; when the window is wider, solutions cluster
along the central line of each dike.

Practical implementation of Euler deconvolution can pose
additional problems. In large areas, the size of causative bodies
may differ considerably. The window size will then appear to
be too small for large bodies (providing small singular values
and, as a consequence, large standard deviation of solutions)
and too large for small bodies (failing to outline or even discern
them). Because of interference of anomalies, Euler solutions
do not cluster sharply around perimeters of causative bodies.
This interference and high-frequency noise in the data can also
hamper the use of criteria based on singular value or disper-
sion of z0. Indeed, they increase the gradient of the anomalous
field and its derivatives within the window and, as a result,
they increase singular values and decrease the dispersion of
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parameter estimates. Thus, a solution with good tolerance in
fact can be ill posed.

To overcome these difficulties in selecting good Euler so-
lutions, we developed and tested a new technique based on
artificial intelligence. The results of our numerical calculations
for synthetic examples using multiple bodies showed that even
if Euler solutions form broad clouds, the density of the clouds is
not uniform and more dense nuclei tend to outline the perime-
ter of causative bodies. This new method of cluster analysis
helps us extract these nuclei.

RODIN—NEW METHOD OF CLUSTER ANALYSIS

The proposed approach to clustering objects follows dy-
namic pattern recognition ideas discussed by Gvishiani et al.
(1995) and Dubois and Gvishiani (1998). The Rodin clustering
algorithm has been designed by A. Gvishiani and S. Agayan
(personal communication, 2002) to tackle problems of clas-
sifying large data sets in finite metric space. The main feature
distinguishing this algorithm from the usual clustering methods
is that Rodin investigates geometrical and topological features
of an object’s concentration. Correspondingly, it gives much
less weight to analyzing of the object parameters. Therefore,
Rodin is relevant for problems where calculated solutions (and
not original objects that possess measured parameters) must
be clustered. Following this line, here we apply Rodin to cluster
synthetic and real calculated Euler solutions.

Rodin is based on a formal definition of cluster, which lets
us construct an effective numerical algorithm. To introduce
the method, we use an analogy with light propagation. Sup-
pose that we have a lamp at each point of a given set C. To
describe the light propagation, we introduce any nonnegative,
descending function ϕ(t) that has unit amplitude at the origin
[i.e., ϕ(t)≥ 0 for all t , ϕ(0)= 1 and ϕ(t1)<ϕ(t2) when t1 > t2].
Using this function, we determine the basic function L(x) of
the algorithm, which is the total illumination from a set A of
any point x. Another important value that Rodin uses is av-
erage illumination l (x) (as illumination divided by number of
light sources). The latter lets us define cluster.

Definition of a cluster

A subset A in a given set of points C is considered to be a
cluster if the average illumination of any point x ∈ A produced
by other points inside A is larger than the average illumination
of x produced by points outside A. In other words, cluster A
is a subset of C that produces the highest average illumina-
tion of any x ∈ A among all possible extensions A+ B, where
B is a subset of C having no common points with A. Thus,
by adding new elements to A, we decrease the average illumi-
nation of point x. It follows from this definition that average
illumination of all points in A increases when rejecting points
that have the least average illumination, and this is the basis
on which Rodin selects clusters A from a given set of points C.
The formal detailed description of the algorithm is given in the
appendix.

Herein, we search for r -clusters of Euler solutions (also
described in the appendix). The idea of r -clustering deals
with calculating average illumination from a given point x to
other points of cluster A, taking into account only points of

cluster A with a distance from x less than a given radius r .
Other clustering algorithms tend to find compact clusters of
isometric shape. The r -algorithm, on the other hand, lets us
find clusters of complicated irregular shape (e.g., elongate or
toroidal with empty center).

The Rodin algorithm has two free parameters: α controls
cluster density and their minimal average illumination, and r
controls cluster shape. Running calculations for different val-
ues of free parameters enables one to find clusters which satisfy
a priori information on their properties (e.g., their structure,
size, and position) or to find clusters which fit best to geo-
logical and geophysical data. Sensitivity to the choice of free
parameters is discussed below.

Rodin helps locate dense clusters using not only the posi-
tion of points in the x,y plane (can be done visually) but also
the density of their depth distribution. Another advantage of
our clustering approach is that it separates Euler solutions
originating from different causative bodies or from their parts
(if causative bodies are large enough compared with the win-
dow size). Thus, Rodin lets us analyze separate clusters (de-
termining their average depth, for example). Besides, points of
an anomalous field that produce particular clusters also often
form dense clusters themselves. Such a field cluster outlines
an area where the influence of a particular causative body (or
of its part if the body is large enough) is more prominent. We
illustrate these statements with a synthetic example.

FIG. 1. Total magnetic field anomaly (nT) caused by four rect-
angular prisms denoted A–D. Prism A possesses magnetization
parallel to the earth’s field. The other prisms possess differ-
ent magnetizations as shown in Table 1 (x-axis directed to the
north). The distance along the axes is in meters.
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SYNTHETIC EXAMPLE

We consider in the following synthetic example an anomaly
of total magnetic field 1T caused by four rectangular prisms,
positioned in the x,y plane as shown on Figure 1 and with
parameters listed in Table 1. The prisms have different sizes,
depths to their tops, and magnetizations. The largest prism A
has magnetization parallel to earth’s field of 0.4 A/m. The
other prisms possess magnetizations and inclinations as shown
in Table 1. The resulting total-field anomaly (Figure 1) shows
that prisms B and C do not produce strong anomalies. They

Table 1. Parameters of the four prisms used for the synthetic example.

Prism x0, x1 (km) y0, y1 (km) z0 (m) |J| (A/m) I (◦) D(◦)

A 1.0–3.0 1.75–2.0 150 0.4 70 5
B 1.5–1.75 0.75–1.25 400 1.0 30 55
C 2.25–2.5 0.75–1.25 450 1.0 50 55
D 4.0–4.25 1.0–2.0 200 0.5 50 55

(x0, x1)—coordinates along the x-axis to the north
(y0, y1)—coordinates along the y-axis to the east
z0—depth to the top boundary (depth to the bottom for all prisms was 1000 m)
|J|—modulus of magnetization vector
I —inclination
D—declination

FIG. 2. Results of Euler deconvolution. (a) Euler solutions having singular values more than 0.01. (b) Results of clustering Euler
solutions using the Rodin algorithm. (c) Depth distribution of clustered Euler solutions. To construct Figure 2c, points from Figure 2b
were projected on the x,z plane (viewed from the east). Cluster 7 is an artifact.

are smaller and have deeper upper boundaries in comparison
with prisms A and D. Figure 1 also shows that anomalies from
prisms B and C are disturbed by the anomaly from prism A.

The total field anomaly and its derivatives were computed
on a regular grid measuring 6 by 3 km. The number of points
along both axes was 50; so sample intervals were 122.4 and
61.2 m, respectively (we used a rectangular grid because it is an
ordinary feature of aeromagnetic data). Euler solutions were
calculated with running windows, five points on each side, and
with a structural index N= 3 (point dipole). In comparison with
smaller structural indices, a value N= 3 usually provides denser
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clusters of points (Fairhead et al., 1994) grouped mainly at the
depth between the top boundary and the center of a prism. To
demonstrate an advantage of the clustering approach, we used
a very complex synthetic example: the distance between body
A and bodies B and C is 0.5 km, while the width of bodies B
and C is also 0.5 km, a value close to the depth to the top
of bodies B (0.4 km) and C (0.45 km). In this particular case
calculations with structural index N< 3 provide absolutely no
interpretable results. By the same reason we did not add any
noise for the synthetic magnetic field. The given grid gener-
ated 46× 46= 2116 Euler solutions. This number was reduced
to 985 by rejecting solutions with very low minimal singular
values. Horizontal locations of these solutions are shown on
Figure 2a.

For prism A, having magnetization directed approximately
northward (D= 5◦), Euler solutions cluster around the north-
ern and southern boundaries. Because the horizontal deriva-
tive ∂T /∂y in the central part of body A is close to zero, few
solutions have nonzero singular values along the western and
eastern boundaries of A. Euler solutions outline the southern
boundary of prism A and are shifted to the north from its north-
ern boundary due to the influence of prism D. Shallow points
(z0 < 600 m) coincide better with the northern and southern
boundaries. If prism D were an isolated body, the calculations
with the window size being two times larger than dimension of
the prism along the x-direction would provide an elongate clus-
ter aligned along the axis of the prism from west to east. Here,
neighboring bodies disturb the true picture. Thus, Euler solu-
tions of prism D are shifted southward. Figure 2a also shows
that the distance of shifting varies: robust solutions located
close to the eastern and western boundaries are less shifted
than weak solutions, which are located far from the axis of the
prism. Distribution of the solutions in the vicinity of prisms B
and C gives no way to outline these bodies.

Classical criteria for selecting solutions improve the reso-
lution of solutions in the vicinities of southern and north-
ern boundaries of prism A and in the vicinities of western
and eastern boundaries of prism D. However, having higher
dispersion and lower tolerance, all points around bodies B
and C were rejected and, as a result, these bodies were not
discerned.

Figure 2b shows the result obtained by applying the r -cluster
Rodin algorithm dealing with three coordinates (x0, y0, z0) with
α= 0.02 and r = 0.4 km (see the appendix). Seven clusters have
been identified (Figure 2b). Clusters 1 and 2 clearly outline
northern and southern boundaries of body A, while clusters 5
and 6 group densely around the eastern and western bound-
aries of prism D. Cluster 3 is less dense, marking an area larger
than prism B. Nevertheless, this cluster also provides some in-
formation on the position of prism B. Cluster 4 marks prism C,
being shifted slightly to the north from its center. Cluster 7 ap-
pears to be an artifact. It exhibits low tolerance in comparison
to other clusters; so we reject it, applying convenient crite-
ria or taking into account that every solution of cluster 7 is
situated far from the center of the windows which produced
these solutions. We made several calculations to find the val-
ues ofα and r , which provide more dense and localized clusters.
Results of clusterization appeared to have little sensitivity to
these parameters, being similar when parameter α ranged be-
tween 0.018 and 0.022 and parameter r ranged between 0.35
and 0.45 km. It is worth noting that the search of the optimal

values of parameters α and r in the Rodin algorithm can be
done quite efficiently because clusterization takes a very short
time (about 3–4 s for the synthetic example using a standard
personal computer).

Figure 2c shows the depth distribution of the dipoles. To
construct this figure, we projected all points on the x,z plane
(viewed from the east). The clusters provide correct relative
depths for four causative bodies. Clusters 1 and 2 clearly show
that prism A is shallower than other prisms. Prism D also ap-
pears to be shallower than bodies B and C (clusters 3 and 4,
respectively).

As we mentioned above, cluster analysis enables one to sep-
arate solutions linked with different bodies. This provides es-
timates of the average depth of every cluster. Clusters 1 and 2
have an average depth zav= 320 and 420 m, which is between
the depth to the top of prism A (z1= 150) and the depth to
its center (zc= 575 m). Clusters 5 and 6 show that prism D
is deeper than prism A (zav= 523 and 545 m when z1= 200
and zc= 600 m, respectively). The depth of clusters 5 and 6
is noticeably larger because when prism size is comparable to
the size of the running window, Euler solutions cluster closer
to the center of a prism. For prism B, zav= 620, z1= 400, and
zc= 700 m. For prism C, zav= 674, z1= 450, and zc= 725 m.
Because the structural index is 3, both estimates are within the

FIG. 3. Areas of an anomalous field for which the influence of
a particular body or parts of it (if the body is large enough in
comparison with window size) is more prominent. Symbols at
grid points indicate which cluster an Euler solution belonged
to when the center of the running window was on this grid data
point. Data from these areas can be analyzed separately using
different window sizes and structural indices.
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interval from the top to the center of the prisms, being closer to
the center since prisms are small in comparison to the window
size. Cluster 7 has an average depth as large as 1280 m; this is
another indicator of its poor reliability.

Now we proceed with the question of which data points of
the measured field1T were actually used in forming each clus-
ter. Figure 3 shows the data points (from the original grid) with
different symbols. These symbols indicate to which cluster an
Euler solution belongs when the center of the running window
was on this grid data point. Remarkably, window centers also
form dense clusters. Thus, application of our cluster analysis al-
lows one to outline areas of the measured fields for which the
influence of a particular body or parts of it (if the body is large
enough in comparison to the window size) is more pronounced
and clear. We can speculate that this opens new ways in separat-
ing anomalous fields and finding parameters of causative bod-
ies. It allows one to subdivide the original anomalous field into
smaller areas that may be specifically studied, e.g., using differ-

FIG. 4. Tectonic map of the Gulf of Saint Malo region (Chantraine et al., 2000). MCC—Main Cadomian Contact. PC—
Cancale–Plouer fault.

ent window sizes or structural indices. However, this statement
calls for more detailed investigation.

APPLICATION TO REAL FIELD DATA

We used the method to analyze a portion of the aero-
magnetic map of the Armorican massif in France (Galdeano
et al., 2001). The study area includes the eastern part of the
Saint Malo Gulf and the inland area to the south. Figure 4
shows the main tectonic units of the region (Chantraine et al.,
2001): the Guingamp and Saint Malo units. They form a
high-temperature belt bounded by the main Cadomian con-
tact (labeled MCC on Figure 4) to the north and by the
Cancale–Plouer fault (labeled PC on Figure 4) to the south
(Chantraine et al., 1988; Brun and Balé, 1990). According to
seismic data (Bitri et al., 1997), MCC and PC faults dip to the
north. Thrusting at these faults was accompanied by left lateral
movements.
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The evolution of this region had been mainly controlled by
subduction in the process of the Celtic ocean closure. The
Guingamp–St. Malo high-temperature belt was formed 600–
540 Ma during the Cadomian orogeny, a late Precambrian tec-
tonic event which resulted here in obduction of a back arc basin
over a continental margin (Balé and Brun, 1989). Later this belt
was moderately affected by Hercynian deformations and meta-
morphism. The belt is comprised of micaschists, paragneisses,
and migmatites. In the Saint Malo unit migmatites occupy the
core of an asymmetric metamorphic dome, on which anatectic
granites were dated at 541± 5 Ma (Brun and Balé, 1990).

A distinctive feature of the geological structure of the re-
gion is a swarm of doleritic dikes. The dikes were intruded
in Precambrian basement and later were truncated and meta-
morphosed by Hercynian granites (Vidal, 1980). According to

FIG. 5. Results of Euler deconvolution for the central part of the study area (its position in the study area is shown by a box on
Figure 6). Shaded relief and isolines show amplitude of magnetic anomaly. (a) All points used in the analysis. (b) Results of selection
using standard criteria (Thompson, 1982). (c) Results of clustering Euler solutions. Note that southwest–northeast linear clusters
in the bottom right side of the figure are better established on this plot. Clusters on this plot also better outline possible sources of
isometric anomaly at the top of the map, showing that depth of sources increases to the north.

Lahaye et al. (1995), the Saint Malo dikes are typical continen-
tal tholeites. Emplacement of the dikes corresponds to an ex-
tensional (pull-apart) tectonic phase. Paleomagnetic and K/Ar
data give an age of dikes of 330 ± 10 Ma, i.e., of the Lower
Carboniferous age (Perroud et al., 1986). Onshore dikes have
a small thickness (5 m on average), and their strike ranges
from north–south to north-northeast–south-southwest. Linear
magnetic anomalies in this area are considerably wider, prob-
ably indicating that dikes fan from wider, deeper magmatic
bodies.

Aeromagnetic measurements were carried out at a flight al-
titude of 350 m. Flight lines were oriented 48◦N with 500 m
line spacing, which let us interpolate data on a north–south
grid with step 250× 250 m in both directions (Galdeano et al.,
2001). This aeromagnetic map demonstrates a good correlation
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with known geological structures. The long-wavelength anoma-
lies outline the arcuate structure of the Cadomian belt. Short-
wavelength anomalies in the Saint Malo region are mainly
associated with dikes exposed onshore and extending off-
shore. In the Saint Malo region, magnetic anomalies are
oriented north–south, whereas in the Gulf of Saint Malo
their strike changes to northwest–southeast. These anoma-
lies exhibit quasi-linear structure. Their relationship with the
Guingamp–Saint Malo belt is unclear, since the structure of the
magnetic anomalies close to their intersection is complicated.
The main purpose of the application of Euler deconvolution
and cluster analysis was to investigate the structure of quasi-
linear magnetic anomalies onshore and offshore and their re-
lationship with the Guingamp–Saint Malo high-temperature
belt.

Figure 5a shows the total magnetic anomaly for a small part
of the region by shaded relief and isolines, as well as Euler
solutions obtained with window size 9× 9 points (2× 2 km)
and structural index N= 3. About 40% of Euler solutions
were rejected because of their extremely small singular values.
Obviously, it is too difficult to use these results to analyze the
geological structure of the region.

We first selected Euler solutions using different standard
criteria. Solutions with low tolerance, situated at depths>2 km
and located at a distance five times larger than the window size
from the center of window, were rejected. Results are shown
in Figure 5b. In comparison with Figure 4, the Euler solutions
now outline isometric and linear bodies. However, the position
of possible causative sources remains unclear.

Figure 5c shows the result of clustering. The Rodin algorithm
was applied to the original set of Euler solutions using α= 0.8
and r = 0.3 km (see the appendix). The result is stable in the
sense of possible changes of these parameters, i.e., close pic-
tures were obtained for α ranging from 0.78 to 0.82 and for
r ranging from 0.25 to 0.35 km. The algorithm found dense
clusters that more clearly outline possible causative sources.
Indeed, an isometric cluster is evident in the northern part of
the map, as are linear clusters stretching from southwest to
northeast in the lower half of the map, marking the Cadomian
high-temperature belt.

Figure 6 presents the results of clustering of Euler so-
lutions for the Saint Malo region with the same parame-
ters as Figure 5c. The initial set of Euler solutions included
34 500 points. The clustering algorithm rejected almost
7000 points, finding dense clusters that outlined isometric and
linear structures of the region. In particular, isometric clusters
outlined the lateral extent of possible causative bodies in the
central parts of isometric anomalies marked on Figure 6 by
numbers 1, 2, and 3. The linear clusters extending southwest–
northeast to the south of body 1 can be considered the east-
ward continuation of the Main Cadomian fault, since trac-
ing the eastward prolongation of the Cancale–Plouer fault is
problematic.

A distinctive feature of the Euler solutions in Figure 6 is
the linear clusters lineated north–south in the southern part of
the map and northwest–southeast in its northern part. Inland,
they coincide with the strike of doleritic dikes. Clustering so-
lutions in the vicinity of the Main Cadomian fault show that
besides north–south trending dikes, there is probably another
dike swarm striking approximately northwest–southeast. Us-
ing Euler solutions, the later dikes can be followed across the

fault, and further they can be correlated with an offshore dike
swarm of northwest–southeast direction. At the intersection
with the Main Cadomian fault, the structure of the possible
causative sources is unclear, even though linear clusters cross-
ing the fault show that the dikes are younger than this thrust
zone. Less regular linear structure of clusters in the vicinity of
the fault can indicate a rejuvenation of the Main Cadomian
contact thrust zone after doleritic dyke emplacement. Most of
the Euler solutions to the south of the fault show shallow depth
of the possible causative sources. Depth of the solutions in the
northwest–southeast linear clusters to the north of the main
Cadomian contact is not uniform: in the central part of the area
solutions are situated at shallow depth, becoming deeper when
moving southwest to body 1 and northeast to bodies 2 and 3.

A more detailed analysis of the results of our application
to the data in the Saint Malo region is beyond the scope of
this paper and is the subject of a separate one. Comparison of
Figure 5b and Figure 5c shows that on real data our cluster-
ing technique was more efficient than standard approaches for
selecting Euler solutions.

CONCLUSION

Results of Euler deconvolution strongly depend on the qual-
ity of the solution selection. A clustering technique based on
topological analysis of solution concentration can efficiently
extend methods routinely used for this purpose. Our synthetic
calculations based on multiple causative sources showed that,
even where Euler solutions do not group densely around the
lateral extent of the bodies, the density of their distribution
appears to be higher in the vicinity of the causative bodies,
suggesting that clustering techniques hold promise.

We applied a new method of clustering called Rodin to select
dense clusters of Euler solutions. The method is based on a
formal definition of cluster, which enables one to construct an
effective clustering algorithm. Thus, we proceed from informal
to formal selection of Euler solutions. This is an important step
toward automating the selection procedure.

On synthetic and real data, Euler solutions from our cluster-
ing technique appeared to successfully outline causative bod-
ies. An advantage of the clustering method application is that
clusters thus determined provide solutions associated with par-
ticular bodies or with their parts, making it possible to analyze
different clusters of Euler solutions separately. This may al-
low, for example, computing average parameters for individ-
ual causative bodies. Another advantage is that data points of
anomalous fields responsible for different clusters also form
dense clusters themselves. Thus, the clustering technique en-
ables one to outline areas where the influence of different
causative sources is more prominent. This opens the possibil-
ity for more detailed interpretation of the data in areas using
different window size and structural indices.
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3D-Armor): C. R. Acad. Sci., Paris, 325, 171–177.
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APPENDIX

DESCRIPTION OF THE RODIN ALGORITHM

To describe the method we use a simple physical analogy with
light propagation. Suppose that in every point of a metric space
X there is a source emitting light. (Below we follow basic nota-
tions of functional analysis listed in Table A-1, e.g., Kirillov and
Gvishiani, 1983). We call by metric space a pair (X, d), where X
is a set and d is a function, such as d(x, y)= d(y, x); d(x, y)≥ 0;
d(x, y)= 0 if and only if x= y; and d(x, z)+ d(z, y)≥ d(x, y)
for ∀x, y, z⊂ X. To describe the decrease of the light intensity
away from the source, we can choose any arbitrary descen-
ding on [0, +∞) nonnegative functions ϕ(t) of the unit ampli-
tude [i.e., ϕ(t1)>ϕ(t2)≥ 0 for all t1 < t2, ϕ(0)= 1].

To describe how a given point is illuminated by all other
points, we define the illumination of a point x by a point y
as a function δx(y)=ϕ[d(x, y)]. Here, d(x, y) is the distance
between the two points. In a metric space, by reciprocity
δx(y)= δy(x).

Two natural and often used examples of the functions ϕ(t)
and δx(y) are

ϕ(t) = 1
1+ t

and δx(y) = 1
1+ d(x, y)

(A-1)

ϕ(t) = e
−t/r and δx(y) = e−d(x,y)/r . (A-2)

In our method, we use this illumination as the major char-
acteristic of a given point x ∈ X: the most highly illuminated
points will be more active and important in our analysis, while

poorly illuminated points will not be active, being isolated
in X.

The method

Now we can introduce illumination and averaged illumina-
tion of a point x by a set of light sources A. We define Ax as a
set A without element x if it belongs to A, i.e.,

Ax =
{

A if x /∈ A

A− x if x ∈ A
. (A-3)

Definition 1.—We define the illumination of the point x by
the set A as L A(x)= ∑

y∈Ax

δy(x).

Definition 2.—We define the averaged illumination of the
point x by the set A as l A(x)= L A(x)/|Ax|. In the case when A
contains only one element x, l A(x)= 0.

It is clear from the definition that by adding elements to the
set A, we enhance the illumination L A(x) (additional elements
give additional light). But this is not necessarily true for the
averaged illumination, because it is not directly dependent of
number of elements |Ax|. In fact, the important property of the
averaged illumination is that it is quasi-linear. In other words,
if A ⊆ X and B ⊆ X, then for all x ∈ X the following equation
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is valid:

l A∪B(x) = L A∪B(x)
|A∪ B|x =

|A|x
|A∪ B|x l A(x)+ |B|x

|A∪ B|x l B(x)

− |A∩ B|x
|A∪ B|x l A∩B(x). (A-4)

In particular, if A∩ B= ø, then

l A+B(x) = |A|x
|A|x + |B|x l A(x)+ |B|x

|A|x + |B|x l B(x). (A-5)

In addition, when x ∈ A,

l A+B(x) = |A| − 1
|A| + |B| − 1

l A(x)+ |B|
|A| + |B| − 1

l B(x).

(A-6)

Equation (A-6) provides the relation between the averaged
illumination in the case when x ∈ A⊂C ⊆ X:

lC(x) = |A| − 1
|C| − 1

l A(x)+ |C| − |A||C| − 1
lC−A(x). (A-7)

It follows from equation (A-7) that lC(x) is always sit-
uated on the segment between l A(x) and lC−A(x) because
min(l A(x), lC−A(x))≤ lC(x)≤ max(l A(x), lC−A(x)). Equation
(A-7) provides the necessary and sufficient condition for an
inequality lC(x)> l A(x) or lC(x)< l A(x).

Statement 1.—Let x ∈ A⊂C ⊆ X; then lC(x)> l A(x) when
lC−A(x)> l A(x) and lC(x)< l A(x) when lC−A(x)< l A(x).

Thus, an inequality lC(x)> l A(x) means that the set C con-
tains points that are closely located to x and do not belong to
A(Figure A-1).

Definition of a cluster

If the condition lC(x)< l A(x) is satisfied for all subsets C ⊆ X
that contain A (∀C⊃ A) [i.e., if l A(x)≥ l A+B(x) for ∀B, B ∩
A= ø], then the averaged illumination of any point x ∈ A from
the subset A is not less than its averaged illumination from the

Table A-1. Symbols and definitions.

Symbol Definition

x ∈ A Element x belongs to set A
x /∈ A Element x does not belong to set A
A ⊂ B Subset A is included in set B but is not

equal to set B
A ⊆ B Subset A is included or equal to set B
ø Empty set
A∩ B Intersection of sets A and B is equal to

the set of elements, which belong to
both sets A and B at the same time

A∪ B or A+ B Union of sets A and B is equal to the set
of elements, which belong to at least
one of the sets A or B

|A| A number of elements in set A
∀a For every element the same condition

takes place
arg min

x∈A
s(x) Equal to those values of argument y at

which function s(x) reaches its minimal
value ∀x∈A

whole set C. In other words, there are no elements close to x
in the subset C − A.

Definition 3.—A subset A ⊆ X is a cluster in X if

∀x ∈ A, ∀B ⊆ X, B ∩ A = ø ⇒ l A(x)≥ l A+B(x).

(A-8)

In other words, A is a cluster if A is a subset of higher illumi-
nation than any of its possible extensions A+ B.

If subset B contains only one element B={y}, then taking
into account the quasi-linearity of the averaged illumination
[equation (A-6)], we arrive at the following inequality that is
equivalent to equation (A-8):

∀x ∈ A, ∀y ∈ X − A lA(x) ≥ δy(x). (A-9)

Inequality (A-9) allows us to describe a cluster as a subset of X
where any point has greater inner averaged illumination than
the illumination from any outer source coming to this point. It
is expressed by the following formula:

∀x ∈ A, ∀y ∈ X − A ⇒ 1
|A| − 1

∑
z∈Ax

δz(x) ≥ δy(x).

(A-10)

By definition, a cluster contains at least two points.
To construct the algorithm we introduce the notion of a clus-

ter quality, defined as definition 4.

Definition 4.—Let A be a cluster in X and x ∈ A⊂C. We
define the quality of the cluster A as

N(A) = min
x∈A

l A(x). (A-11)

Let’s suppose that x ∈ A, |A| > 2 and ϕ(d(x, y)) is a poten-
tial function (for example, equation (A-1) or (A-2)). Then the
following two statements are true.

Statement 2.—l A(x) is a uniformly continuous function on
the set A.

Statement 3.—If x ∈ A, then ∀y∈ Ax ; l A(y)< l Ax
(y) when

δx(y)< l A(y); and l A(y)> l Ax
(y) when δx(y)> l A(y). These

statements are true for any descending nonnegative functions
ϕ(d(x, y)). In particular, statement 3 can be easily verified
for functions given by equations (A-1) and (A-2). Also, from
statement 3, it follows that the averaged illumination of all

FIG. A-1. The definition of cluster. A is not cluster because
lC−A(X) > l A(X).



Euler Solutions Clustering 179

points in A [and, as a consequence, the quality N(A)] increases
when the points with the least averaged illumination are
removed from A.

Description of the algorithm

Statements 2 and 3 provide a constructive algorithm for re-
jecting points that do not obey the definition of cluster. Thus,
we can remove from a cluster all the excess points just as a
sculptor cuts off the excess parts from a stone to create a sculp-
ture. That is why we named our algorithm after Rodin.

The flowchart of the Rodin algorithm is shown in Figure A-2,
where Ak denotes the current version of the searched cluster A.

r-clusters

The basic algorithm described above has several exten-
sions that make it possible to find clusters with some special
properties. For example, to find clusters with some sophisti-
cated shape (linear, for example) we introduce the concept of
r -clusters.

FIG. A-2. Flow diagram of the Rodin algorithm.

Let us consider a subset A and the function ϕ given by for-
mula (A-1). We define the subset SA(x, r )={y∈ A, d(x, y)≤ r }
and define the local r -averaged illumination of a point x ∈ X
as l A,r (x)= l SA(x,r )(x). For a given subset A and a point x, the
function l A,r (x) decreases when r increases. Therefore, if A is
a cluster in X, A⊂ B ⊆ X, and x ∈ A, then l A,r (x)≥ l B,r (x). It
is easy to verify that the latter statement is valid for a function
ϕ given by formula (A-1). The former statement enables us to
introduce definitions of a local r -cluster.

Definition 5.—A ⊆ X is a local r -cluster if

1) l A,r (x)≥ l B,r (x) ∀x ∈ A and ∀B ⊃ A and
2) ∀x ∈ A SA(x, r ) is a cluster in SX(x, r ).

The algorithm of the r -cluster Rodin can be obtained from
the algorithm by replacing the local average illumination by the
r -local one. The results presented in this paper were obtained
using the r -cluster Rodin algorithm with the function ϕ given
by equation (A-1).
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Choice of free parameters

As are most pattern recognition algorithms, Rodin is an auto-
mated (but not an automatic) procedure. Therefore, the choice
of its free parameters (α and r ) must be made by the algo-
rithm’s users. However, there are different systems of necessary

conditions, following which concrete values of free parameters
can be established. In this study we required clustering sta-
bility. Indeed, for the chosen values α and r in synthetic and
real examples (Figures 2, 5, and 6), obtained pictures of clus-
tering remain stable for parameter variations in the range of
±10%.


