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Tensor deconvolution: A method to locate
equivalent sources from full tensor gravity data

Valentin Mikhailov', Gwendoline Pajot?,

Michel Diament?,

ABSTRACT

We present a method dedicated to the interpretation of full
tensor (gravity) gradiometry (FTG) data called tensor decon-
volution. Itis especially designed to benefit from the simulta-
neous use of all the FTG components and of the gravity field.
In particular, it uses tensor scalar invariants as a basis for
source location. The invariant expressions involve all of the
independent components of the tensor. This method is a ten-
sor analog of Euler deconvolution, but has the following ad-
vantages compared to the conventional Euler deconvolution
method: (1) It provides a solution at every observation point,
without the use of a sliding window. (2) It determines the
structural index automatically; as a consequence, the struc-
tural index follows the variations of the field morphology. (3)
It uses all components of the measured full gradient tensor
and gravity field, thus reducing errors caused by random
noise. Itis based on scalar invariants that are by nature insen-
sitive to the orientation of the measuring device. We tested
our method on both noise-free and noise-contaminated data.
These tests show that tensor solutions cluster in the vicinity
of the center of causative bodies, whereas Euler solutions bet-
ter outline their edges. Hence, these methods should be com-
bined for improved contouring and depth estimation. In addi-
tion, we use a clustering method to improve the selection of
solutions, which proves advantageous when data are noisy or
when signals from close causative bodies interfere.

INTRODUCTION

The history of gravity gradiometry dates back to 1886 when
Lorand E6tvos constructed his first torsion balance gradiometer. It
was the first potential field measurement device widely used in oil
exploration (e.g. Bell and Hansen, 1998; Pawlowski, 1998). The first
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mapping of oil-bearing anticline structure was performed in Gbely,
Slovakia, in 1916 (Szabd, 1998). In the 1930s, gradiometers were re-
placed by gravimeters and gravity measurements became easier,
faster, and cheaper. Because gravity data were more easily interpret-
able in the precomputer era, this method was widely used.

The development of high-performance moving-platform full ten-
sor gradiometry (FTG) systems has led to the rebirth of gravity gra-
diometry. The first systems measuring all components of the gravity
gradient tensor (FTG) were developed in 1970s (Jekeli, 1993; Bell et
al., 1997). In the late 1980s, these instruments were, for the first time,
implemented in exploration geophysics (e.g. Bell and Hansen,
1998). Recently, many examples of successful applications of FTG
data in mineral exploration and oil prospecting have been reported
(e.g. Pawlowski, 1998; Zhdanov et al., 2004). Gravity gradiometry
applications, however, are not restricted to prospecting purposes. In-
deed, the European Space Agency is planning to launch the GOCE
(Gravity Field and Steady-State Ocean Circulation Explorer) satel-
lite in late 2007 with a gradiometer onboard (ESA, 1999). Tensor
data will then be used in combination with GPS tracking to improve
models of the global gravity field and geoid. This shall lead to un-
precedented accuracy and spatial resolution, thus allowing new re-
gional and local geodynamical studies.

In many studies, FTG data are used to calculate the enhanced
gravity field g., which contains shorter wavelength components in
comparison to gravimetry data. This allows a more detailed mapping
of subsurface structures, such as the lower boundary of salt domes
(Jorgensen and Kisabeth, 2000; Routh et al., 2001). Using the en-
hanced second vertical derivative of the potential U, calculated
from FTG data, joint inversion of seismic and FTG data is also per-
formed (e.g. O’Brien et al., 2005). Several new techniques for FTG
data processing and interpretation have been recently suggested
(e.g. Condi and Talwani, 1999; Jorgensen and Kisabeth, 2000;
Zhang etal., 2000; Li, 2001a, b; Routh et al., 2001; Lyrio et al., 2004;
Zhdanov et al., 2004; and While et al., 2006). However, theory and
methods for FTG data processing and interpretation that combine all
FTG components and the gravity field are still challenging. We be-
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lieve that new marine, airborne, and space FTG measurement tech-
niques call for the development of new methods of data processing
and interpretation. Indeed, even the transformation of FTG data into
enhanced gravity leads to the loss of useful information.

In this paper, we present a method to locate equivalent sources us-
ing FTG data. It is based on the same principles as Euler deconvolu-
tion, thus we call this method tensor deconvolution. It uses tensor
scalar invariants and, thus, should be robust to errors caused by im-
perfect orientation of the measuring device. Moreover, because it
uses the complete set of components of the FTG tensor, it is resistant
to random noise in the different measurement channels. Contrary to
the traditional Euler deconvolution method, it allows an automated
estimate of the structural index and does not require a sliding win-
dow. Moreover, although this is not the first attempt to enhance Euler
deconvolution by the use of gravity gradient data, this method differs
from the previously published work dedicated to this effort because
it uses all the measured values simultaneously, and only these val-
ues. (For example, Zhang et al., 2000, applied Euler deconvolution
to FTG data considering different lines of the FTG tensor compo-
nents separately. Their approach requires the calculation of the hori-
zontal derivatives g, and g, of the gravity potential U.)

After recalling the fundamentals of Euler deconvolution and de-
veloping the mathematical relationships on which the algorithm is
based, we present this algorithm and apply it to synthetic examples.
It appears that our method may be particularly efficient at resolving
the depths of multiple sources in the presence of noise.

TENSOR DECONVOLUTION

Mathematical background

Let us first briefly recall the principle of Euler deconvolution. By
definition, a real function f is a homogeneous function of degree n
when, for any ¢, it obeys the equation,

flex,ty,12) = £°f(x,y,2). (1)

According to this definition, the gravity and magnetic fields caused
by some simple sources are homogeneous functions of the spatial
coordinates. In particular, this equation is valid (see, for example,
Blakely, 1995) for gravity (and magnetic) anomalies associated with
point sources and lines of sources (or, in the magnetic case, point
poles and point dipoles and lines of poles and dipoles). The location
of a point source (&, 5,) in 3D, or the location of a line source (§,{)
in 2D, can be found from the following equation (Euler equation):

c-0Z v - L v 9L - - NGy - ),
dy oz

ox
(2)

where N = —n is the structural index, which depends on the type of
the body, and A is an unknown constant level in a measured field (Th-
ompson, 1982; Reid et al., 1990). To solve equation 2, the Euler de-
convolution method uses a sliding window of data points. At least
four data points are required in this window, because we are solving
for four unknown parameters: &, 7, {,and A (e.g., Reid et al., 1990).
Strictly speaking, line and point sources are the only causative
bodies that obey the Euler equation of homogeneity. Nevertheless,
Euler deconvolution can also be applied to a deep body of arbitrary
shape, where the anomaly is close to that of a point source or a line of
sources, with corresponding structural indices N = 2 or N = 1 (ex-
amples of the structural indices corresponding to different causative

sources are given by Stavrev, 1997). Moreover, Euler deconvolution
has proven successful for edge detection of real bodies, especially
simple ones having close to vertical sides. Furthermore, several bod-
ies may obey the Euler equation under specific conditions. For ex-
ample, equation 2 is valid for a dike (vertical or inclined) or a finite
step when its offset is considerably smaller than its depth (Li, 2003).
When the Euler method is applied to real 3D bodies, the obtained so-
lutions very often either trace near vertical edges of causative bod-
ies, or point to their center of mass.

Results of Euler deconvolution are sensitive to the choice of the
structural index, as well as of the size and location of the sliding win-
dows (Fairhead et al., 1994). In practice, several structural indices
are tried, and the one providing results fitting to known geological
and seismic data, or having good clustering properties, is kept (for an
exhaustive study of the discrimination techniques to use in Euler de-
convolution methods, see Fitzgerald et al., 2004). However, errors in
the estimated depth of the sources occur when the index is inappro-
priate, and the a priori choice of a single constant index is obviously
inappropriate when multiple sources with different geometries inter-
fere. The depth estimation can be improved using additional analyti-
cal constraints, namely the property of invariance under rotation of
homogeneous functions (Mushayandebvu et al., 1999). This pro-
vides additional equations and the so-called “extended Euler decon-
volution method” provides better depth estimation than traditional
Euler. Nabighian and Hansen (2001) mention that additional equa-
tions permit the elimination of the structural index N between pairs
of equations, yielding a system of two equations at each point, which
are still linear in &, 7, and s, do not contain N explicitly, but are bilin-
ear in the field variables. Discussions on methods to estimate the
structural index can be found, for example, in Slack et al. (1967),
Steenland (1968), Barbosa et al. (1999), and Martelet et al. (2001).
Asrecalled by Li (2003), most methods to determine the geometry of
the source (without deducing it from geology) and, thus, to guide the
choice of an adequate structural index, are based on computing de-
rivatives, and this calculation is well known to be numerically unsta-
ble, especially in the presence of noise. On the synthetic examples
below, we compare our suggested tensor deconvolution method with
different versions of the Euler technique, even though the compari-
son of extended and conventional Euler deconvolution is beyond the
scope of this paper. When applying the conventional and extended
Euler method we assigned the correct structural index correspond-
ing to synthetic sources used. We believe that in this case (contrary to
realistic exploration situations where the structural index is un-
known) extended Euler methods provide results close to the ones ob-
tained by conventional Euler.

Zhang et al. (2000) adapted the extended Euler deconvolution
method to gravity gradient data. This allows the use of measured
rather than computed derivatives, but their method requires the cal-
culation from g, of derivatives g, and g, of the gravity potential along
two horizontal coordinate lines, which is also known to be numeri-
cally unstable, especially in the presence of regional long-wave-
length components. We hereafter describe a method to use the gravi-
ty tensor invariants computed from measured gravity gradients. Un-
like previous methods, it combines the following advantages:

* Instead of a priori choosing a constant structural index, the index,
which is related to the geometry of the source, is computed at ev-
ery point directly from the data. The constraint brought by the
knowledge of the geometry of the source to aid its localization is
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therefore deduced from the data and suitable for large data sets
where the structural index is likely to vary.

e Itdoes notrequire the use of a sliding window or the computation
of derivatives, and, thus may be less sensitive to numerical insta-
bilities caused by noise.

Let us now recall some fundamentals about the gravity gradient
tensor. We use a Cartesian system of coordinates (x,y,z) with the
z-axis directed downwards and the x-axis directed northwards. The
gravity gradient tensor in the (x,y,z) frame can then be written in the
form,

Uxx Xy sz
T= ny Uyy Uyz > (3)
Uy Uzy U,

where U is the gravity potential, and for all pair («, B) in {x,y,2} U,g
= U/Jadp. In the following text, we denote by g, the first deriva-
tive of the gravity potential U along direction «. Traditionally, gradi-
ents U,gare expressed in E6tvos unit E, with 1E = 10~ s72,and g, in
mGal, with 1 mGal = 10-> ms=2. Because gravity is a conservative
field and because of the commutability of the differential operators,
the tensor is symmetric (U, ap=U, ﬁa) and its trace is equal to zero out-
side of the causative sources. Thus, in free space, the tensor has only
five independent components. Current commercial gradiometers,
such as the Bell Geospace FTG, provide all off-diagonal and two di-
agonal components of the upper triangle of the gradient tensor, the
third diagonal component being calculated from the two others
(While et al., 2006). The tensor is fully defined from these five mea-
surements.

Following Pedersen and Rasmussen (1990), we now investigate
the scalar invariants of the tensor. Let us consider the eigenvectors v;
and the eigenvalues A; of the tensor T. Being real and symmetric,
tensor T can be written in the form (Pedersen and Rasmussen, 1990,
equation9):

VTV = A, (4)

where V = [v,,v,,v3] is a matrix, the columns of which are eigen-
vectors of T, and A is a diagonal matrix containing the three eigen-
values of the tensor. The superscript ¢ denotes the transposition of
tensor T. Physically, with the origin of the coordinate system at the
observation point, equation 4 means that one can find three princi-
pally different possible orthogonal rotations of the initial system of
Cartesian coordinates (x,y,z), such that in the new coordinate sys-
tem all off-diagonal elements vanish. The eigenvectors v; determine
the axes (known as the principal axes) of the new coordinate system.
By definition, the tensor eigenvalues are the roots of the characteris-
tic equation:

/\3—10/\24'[1/\—12:0, (5)

where the /; coefficients are the scalar invariants of the tensor T, the
expressions of which involve only the tensor eigenvalues.

Pedersen and Rasmussen (1990) introduced the dimensionless in-
variant ratio / associated with tensor T that we call hereafter the in-
variant ratio:

I=—(L12)*1L13)30=IT=<1. (6)

The invariant ratio / is equal to zero when the field is invariant along
some direction (2D causative source) and equal to 1 for radially sym-
metric fields (e.g., a point source, see below).

We now develop the main relationships that allow us to compute
the coordinates of a point source and a line source using the invariant
ratio and eigenvalues.

Point source

The gravity potential that is associated with a point source is U
= GM/R, where G is the gravitational constant, M is the mass of the
point source, R = V(£ — x)> + (7 — y)2 + (s — 2)%,(x,y,z) are the
coordinates of the observation point, and (&, 7,s) those of the point
source. We denote by A; the maximal by absolute value eigenvalue
of the tensor, and v, the corresponding eigenvector. Following Ped-
ersen and Rasmussen (1990) we get, with our sign convention,

M =2GM/R*and v, = (£ - x,p—-y,s - 2)/R, (7)

where v, is directed from the observation point towards the source.
Thus, the eigenvector components assign the three directional an-
gles to the source, but because v, is a unit vector, they do not assign
the distance to it. To find the three coordinates of the source, we can
use the formula for the gravity anomaly g. (measured or enhanced/
calculated, see the introduction), which is equal to

g.= GM(s - 2)/R>. (8)

Thus, using equations 7 and 8, we compute the depth to the point
source:

s —z=2g./A4, 9)

and the remaining (£ — x, 7 — y) coordinates can now be found from
the components of vector v,. As a result, using all values of the full
gradient tensor to compute A; and knowing the value of the gravity
anomaly in one point, it is possible to find the position of an equiva-
lent point source.

Moreover, the eigenvector v, determines a new Cartesian frame
(01,x1,y1,21), whose origin O is at an observation point and where
the z;-direction coincides with v,. Thus at the origin O, (former
(x,y,z) point) we have:

)ll =U

792

g., = GMIR?, (10)
and equation 9 transforms to:
(21 =9, = - 28, (11)

In the new coordinate system, derivatives U, . and U, . are equal to
zero. Therefore, equation 11 is equivalent to the Euler equation for a
point source with structural index 2.

For a line source directed along the x-axis

We denote by M the mass of the line source per unit length. Then,
the gravity potential is U = — 2GM In(R) (Telford et al., 1990) and
using the same notations as for the point source, and still following
Pedersen and Rasmussen (1990), we have

A =2GM/R* and v, = (0, — y,s —z)/R.  (12)

Unit vector v, is directed from the observation point to the nearest
point of the line source (it is obvious that all these relationships are
valid for an arbitrary orientation of the line source). As before, to find
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the coordinates of the source we use the gravity anomaly g, which is,
for a line source, g. = 2GM(s — z)/R?, and thus we find the depth of
the line source:

S —2z=gJ/A. (13)

Again, equation 13 is analogous to the Euler equation with the struc-
tural index equal to 1.

Extending formulas to real 3D bodies

Considering equations 11 and 13, we now suggest a general for-
mula valid for elongated and isometric bodies, as follows:

s=z+ (1 +Dg./A, (14)
or, equivalently,
s =2z+ Ng./A,. (15)

Indeed, according to Pedersen and Rasmussen (1990) a point source
has an invariant ratio / = 1, which provides the structural index N
= 2. For a line source, the invariant ratio / is zero, thus N = 1. Equa-
tion 14 thus links equations 11 and 13. For other sources, there is no
strict analog of the Euler formula, instead we check our equation 14
numerically using fields generated by different causative sources.
Because equation 14 is not the only way to relate the structural index
to the invariant ratio /, further numerical studies are, of course, nec-
essary. Using synthetic examples we investigated different power
functions N = 1 + I¥, but for k ranging from 1 to 10, results appeared
to be very close. Invariants of a tensor are, by definition, independent
of the vector basis where the components of the tensor are expressed.
Thus, we expect our method to be less sensitive than others to the

u
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Figure 1. FTG components U, (in E) and the gravity field g, (in
mGal) caused by 21 point sources situated, one per kilometer, below
the x-axis, betweenx = —10 km and x = 10 km, and all at a depth of
2 km. Because of symmetry, only the northern part (x=0) of the
resulting fields are shown. All distances are in kilometers. The indi-
vidual effects of the point sources cannot be seen in either the gravity
field or its derivatives.

problems of misorientation of the measuring device. However, we
do not investigate this question further in the present paper. We also
do not address here the problem that some measured FTG tensor
components are probably more noisy than others, as described by
While et al. (2006).This would be a subject for a separate detailed in-
vestigation. We can now present the procedure for contouring caus-
ative sources and estimating their depths from FTG data.

Algorithm for the tensor deconvolution

The algorithm for the tensor deconvolution includes the following
steps:

1) Calculation of eigenvalues, eigenvectors, tensor invariants,
and the invariant ratio / at every observation point and estima-
tion of the structural index according to equation 14

2) Calculation of the coordinates of an equivalent source using the
maximal by absolute value eigenvalue and corresponding ei-
genvector

3) Filtering the solutions using approaches developed for Euler
deconvolution (limits along coordinates, distance from obser-
vation point to the equivalent source etc)

At step 1 we used the standard procedure suggested in Press et al.
(1992). In our practical calculations, we also applied two additional
approaches for the step 3 of the algorithm: solutions are rejected
when their horizontal distance L from the observation point is K
times larger than their depth z (K is a user-determined parameter),
and we apply clustering of the solutions as suggested by Mikhailov
etal. (2003). The first criterion means that we are looking for solu-
tions situated below the observation point within the cone whose top
angle a is @ = 2 tan™'(K). This criterion appeared to be very effi-
cient. Different possible criteria to discriminate between the solu-
tions are widely discussed by Fitzgerald et al. (2004).

DISCUSSION

In this section, we discuss the efficiency of Euler and tensor de-
convolution in locating causative sources on synthetic examples.
Because for isolated bodies both Euler and tensor deconvolution
work well, we focus on examples of complex fields (extensive inter-
ference of signals, high noise level). For the first two examples, we
show the invariants of the tensor corresponding to the investigated
structures, as well as the three amplitudes of the analytic signal de-
rivatives (see Appendix) and discuss their contouring properties. We
then compare the efficiency of different versions of the Euler decon-
volution method and of our method to locate the causative sources.
The last example shows the ability of the algorithm to distinguish in-
terfering 3D sources which do not obey the Euler equation.

Example 1: Line of point sources

We consider the gravity anomaly caused by 21 point sources situ-
ated, one per kilometer, below the x-axis, between x = —10 km and
x = 10 km, and all at a depth of 2 km. On the figures illustrating this
example, only the x> 0 part of the plane is shown, because the gravi-
ty field is symmetrical with respect to the y-axis.

Figure 1 shows the components of the gradient tensor and the
gravity anomaly g, caused by these point sources. Figure 2 shows the
amplitudes of the analytic signal derivatives A, (Figure 2a), A, (Fig-
ure 2b) and A. (Figure 2c¢), the first (Figure 2d) and second (Figure
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2e) invariants of the tensor, and the invariant ratio (Figure 2f). Figure
3 shows the results of our method without (Figure 3a) and with (Fig-
ure 3¢) clustering, those of traditional Euler deconvolution with the
clustering selection criterion (Figure 3b), window size 3 X3 km,
and a constant structural index N =1 corresponding to a linear
source. Isolines of g are plotted in the backgrounds of Figure 3a—c.

The isolines of A, (Figure 2b) and A, (Figure 2c), as well as the
first invariant (Figure 2d) contour the set of the causative sources
(these functions are similar because the line of monopoles stretches
along the x-axis). Analytic signal A, (Figure 2a) and the second in-
variant (Figure 2¢) are maximal over the edge of the line of sources.
The invariant ratio 7 (Figure 2f) is close to 0 above the line of sourc-
es, and close to 1 far from it. Thus the structural index N = I + 1 var-
ies over the area. Being calculated with this varying structural index,
the tensor solutions from equation 14 (Figure 3a) cluster more
densely than the conventional Euler solutions computed with the
constant a priori structural index N = 1 (Figure 3b). Moreover, the
tensor solutions are located in a narrower depth range than the con-
ventional Euler ones. Thus, we conclude that in this example, our
method better localizes the sources than the conventional Euler de-
convolution method.

If, in addition, we use a clustering selection criterion of the tensor
solutions (Figure 3c), we can even isolate all point sources, but the
outermost solutions are slightly shifted toward smaller x (northing)
values, in comparison to the corresponding point sources. This is a
surprising result considering that the depth of the sources is twice the
distance between them. However, this result is achieved in absence
of any kind of noise.

Example 2: Noise sensitivity

In this example, we investigate a field corresponding to a rectan-
gular prism. This structure is far from geologically realistic, but has
the advantage of being a 3D isometric body that does not obey the
Euler equation. This example allows testing of equation 14. To apply

b) A,

X (km) X (km)

10 N 10
“ |
0 ‘ Y o i Yy oo
210 0 10(km)  ~10 0 10(km)  —10 0 10 (km)
=] e -] = i — —
—-1600 —1200 —-800 —400 0O —2000 2000 6000 10000 0 025 05 075 1

Figure 2. Amplitude of the analytic signal derivatives, invariants of
the gravity gradient tensor, and invariant ratio / for the example
shown on Figure 1. (a), (b), and (c) The amplitude of the analytic sig-
nals derivative A, A,, A, in E6tvos units; (d) and (e) show the first
and second nonzero invariants (in E? for I, and E? for I,); and (f)
shows the dimensionless invariant ratio /. Notice the selective sensi-
tivity of these various transforms.

the conventional Euler deconvolution method, we need to assess the
structural index corresponding to a prism. Zhang et al. (2000) men-
tions that before substitution of integral limits, the gravity field of a
rectangular block resembles a homogeneous function with the struc-
tural index N = —1. However, the full formula with integer limits
does not obey the Euler equation. Moreover, a negative structural in-
dex does not fit any potential function. Indeed, an index N = —1 cor-
responds to a function growing toward infinity.

Because at large distances the gravity effect of arectangular prism
is close to that of a point mass, its structural index approaches N = 2
as the distance tends to infinity. At shorter distances the structural in-
dex N =1 corresponding to a small-amplitude step can be used.
(Note that this supports the idea of an effective structural index
changing with the distance from a source). For this example, we
choose to apply the conventional and extended Euler deconvolution
method with a constant a priori structural index N = 2.

The gravity field and its derivatives are calculated for a rectangu-
lar body of 10 X 10 km horizontal dimensions, stretching down
from2 to 30 km and having a density contrastequal to 1 g/cm?®.

Figure 4 shows the tensor components and g, associated with this
structure. Figure 5 shows the amplitudes of the analytic signal deriv-
atives A, (Figure 5a), A, (Figure 5b), and A, (Figure 5c), the first
(Figure 5d) and second (Figure 5e) invariants of the tensor, and the
invariant ratio (Figure 5f). Figure 5a and b demonstrate the selective
directional sensitivity of the A, and A, components, which allows

a) Tensor solutions b) Euler + clustering
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Figure 3. Comparison of tensor and Euler deconvolution for the ex-
ample illustrated by Figures 1 and 2. (a) The results of tensor decon-
volution, (b) the Euler solutions after selection and clustering, and
(c) the tensor solutions selected by clustering. All figures are with the
gravity field g, in the background. Blue squares, red crosses, and
black triangles indicate different depth intervals in kilometers. No-
tice that Euler solutions (b) form a wider cloud than the tensor solu-
tions (a). Tensor solutions (a) are located close to the sources. After
the clustering of the tensor solutions (c) all point sources are recog-
nized, though the outermost solutions are shifted to smaller x values
with respect to the corresponding point sources. The depths of the
solutions are then very close to the real depth of 2 km.
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improved outlines of the different edges of the causative bodies. We
can also notice the variation of the invariant ratio / above the vertical
sides of the prism (Figure 5f).

First we add Gaussian random noise with zero average and stan-
dard deviations of 1 mGaland 1 E to the gravity field and to all FTG
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Figure 4. FTG components U,z (in E) and gravity field g, (in mGal)
caused by a rectangular body of horizontal dimensions 10 X 10 km.
The top is at 2 km and the bottom at 30 km, excess density is
1 g/cm?. The solid square on the plots shows the contour of the caus-
ative body.
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Figure 5. Same as Figure 2, except for the example shown on Figure
4. The solid square shows the contour of the causative body. Notice
that the transform A, outlines the boundaries that are perpendicular
to the x-axis and A, the ones perpendicular to the y-axis. Because the
gravity field is isometric, the behavior of the invariants is similar to
that of transform A_. As a result, the invariant ratio / is everywhere
closeto 1.

components, respectively (Figure 6). Then we investigate the effect
of noise with larger standard deviations, 3 mGal and 7 E, respec-
tively (Figure 7).

Figure 6 shows the results of our method (Figure 6a) and of
conventional Euler deconvolution (Figure 6b) with window size
3 X 3 km. For the tensor deconvolution, solutions were selected us-
ing two criteria:

1)  Solutions are required to have positive depth

2)  Solutions whose horizontal distance from the observation point
is K-times larger than their depth are rejected (we used K = 1,
thus looking for solutions situated below the observation point,
within the cone with top angle 90°)

For the low-noise example, we restricted the conventional Euler de-
convolution method, used as a comparison, by applying both routine
selection and clustering. This was necessary because Euler solutions
were more widely dispersed.

Figure 6a and b demonstrate that our method better locates the
center of the anomalous body, whereas conventional Euler solutions
better identify its edges. This suggests that these methods are com-
plementary and can be applied simultaneously to better locate caus-
ative bodies. The tensor solutions are, however, better at determin-
ing a more accurate depth for the causative body modeled here.

When the level of noise increases (Figure 7a-c) the depth accuracy
of the conventional Euler solutions increases drastically, and the
edges of the body are not well outlined (Figure 7b). Though almost
the same selection criterion are applied in the cases shown on Fig-
ures 6a and 7a, the tensor solutions remain very densely clustered in
the center of the body, being distributed in a narrow depth range. To
better outline the causative source by conventional Euler and clus-
tering, we applied stronger selection criteria, thus considerably re-
ducing the number of solutions (Figure 7b). Very strong selection
criteria applied to extended Euler deconvolution (LCT software,
structural index 2, and window size 36 X 36 points) result in a very
dense deep cluster situated within a narrow depth interval (Figure
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Figure 6. Results of tensor (a) and Euler (b) deconvolution of data in
the presence of noise. A random Gaussian noise with zero average
and standard deviation of 1 mGal and 1 E was added to the gravity
field and all FTG components. Color scales show fields without
noise [U.. on (a) and g. on (b)], whereas isolines show the noisy
fields. Colored symbols show the depth intervals for the solutions.
See the text for more details.
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7c¢). This example indicates that our method is robust to the noncova-
riant Gaussian noise, even when applied to structures that do not
obey the Euler equation. In this paper, we do not address the question
of a possible covariance of noise in the FTG components.

Example 3: Combination of interfering sources

We now show on Figure 8 a synthetic example involving three
bodies:

1)  Athindike at the top of the figure with its top at 0.5 km depth
2)  Arectangular block (bottom right) with its top at 1 km
3) Arectangular block (bottom left) with its top at2 km

The lower boundaries of the three bodies are at 10-km depth. The ex-
cess density of the dike is two times larger than that of the other
blocks, but its total mass is nearly three times smaller, so the anoma-
ly (image background) of the dike is considerably less prominent
than those of rectangular bodies. We can notice the coalescence of
anomalies from the rectangular blocks at the bottom.
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Figure 7. The same as Figure 6, but with a higher level of noise (ran-
dom Gaussian noise with zero average and standard deviation of
3 mGal and 7 E). (a) Tensor solutions 234 and (b) Conventional Eu-
ler solutions 93 after clustering. (c) The results of extended Euler de-
convolution after strong selection (only 36 solutions left). The depth
interval of the solutions is smaller than on Figure 6 because of the
strong selection.

Figure 8a and b show the results of the tensor deconvolution meth-
od, with the two following selection criteria:

1)  Figure 8a: rejecting solutions whose distances from the obser-
vation point are larger than twice their depth (a = 26°)

2) Figure 8b: rejecting solutions whose distances from the obser-
vation point are larger than their depth (« = 90°). For this ex-
ample, the clustering of the solutions method was also applied

Figure 8c and d show the results of the extended Euler deconvolution
method, with window size 5 km and structural index 1 and 2, respec-
tively. Note that the extended Euler depth estimations were per-
formed independently, and that no a priori knowledge of the source
body depth, shape, or distribution was provided.

Though different rejection criteria were used (even additional
clustering for Figure 8b case), the results presented on plots for Fig-
ure 8a and b are close to each other. Tensor solutions clearly show the
central parts of the rectangular blocks and demonstrate that they are
well separated. The thin dike at the top of the figure is also well out-
lined. Solutions also show that the dike is shallower than the blocks
and that the block to the right is shallower than its neighbor on the
left. The extended Euler solutions (Figure 8¢ and d) are more widely
dispersed, showing edges of the causative bodies. The position of the
thin dike at the top, as well as the separation of the two blocks at the
bottom, is less clear than in the tensor solutions case. This indicates
that the tensor deconvolution method may be more stable to the in-
terference of signals from close causative bodies.

60

40
20

0
0 0

Figure 8. (a) and (b) Results of tensor deconvolution with different
rejection criteria applied for the selection of the solutions; (c) and (d)
extended Euler deconvolution for a combination of three sources, in
the absence of noise. Square box legends with symbols indicating
the depth of the solutions in kilometers are given for each plot. The
colored backgrounds stand for g, in mGal. Though different criteria
were used for the selection of the solutions, the results of tensor de-
convolution on (a) and (b) remain close to each other; (c) and (d)
show solutions obtained using extended Euler deconvolution (LCT
software) with a window size of 5 X 5 points and a structural index of
1 (c)and 2 (d). The bodies are better separated by the tensor solutions
when their edges are better outlined by the traditional Euler solu-
tions, so these methods are complementary.
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CONCLUSION

We have described here our new method to locate causative sourc-
es from gravity gradiometry data. As it is analogous to the Euler de-
convolution method and uses all full tensor gravity gradient compo-
nents, we call it tensor deconvolution. It must be noted again that
several improvements of the traditional Euler deconvolution method
have been proposed, such as the extended Euler deconvolution
method or Euler deconvolution of the analytic signal. Our aim was
not to develop a method that improves Euler deconvolution, but to
develop a method suited to the interpretation of gravity gradiometry
data, and taking advantage of the complete set of components of the
gravity gradient tensor measured by a gradiometer. The tensor de-
convolution method is therefore complementary to the traditional
Euler deconvolution method rather than its enhancement. Several
differences between our approach and several routine Euler decon-
volution methods must, however, be outlined:

e Tensor deconvolution provides a solution at every observation
point, without using a sliding window, and thus is not sensitive to
the size or the location of such a window.

e It determines the structural index automatically from the data,
and as a consequence, the structural index follows the variations
of the field morphology.

e It uses the gravity field and all components of the measured full
gradient tensor. Because gravity gradiometry measurements are
performed independently from gravity ones, and because the ten-
sor components are considered simultaneously, errors caused by
any random noise are likely to be reduced. The robustness of ten-
sor deconvolution (compared with traditional Euler deconvolu-
tion), applied to increasingly noisy data has been demonstrated.

e The gravity field derivatives are used through the scalar invari-
ants of the tensor. Because the invariants are by definition inde-
pendent from the basis on which they are computed, the results
should be insensitive to the orientation of measuring devices.
Further work with real data will allow us to investigate this prom-
ising property of the invariants.

Note that even if sliding windows are not necessary, they could be
useful, especially in the presence of noise. The use of sliding win-
dows actually allows the introduction of an unknown constant in
equation 14, writing (g. — A) instead of g.. The possibility of intro-
ducing such a constant is useful because real measurements provide
relative values of the gravity anomaly. We do not recommend intro-
ducing independent constants for every sliding window, because in
this case, one subtracts, not a constant level, but some continuous
field component that changes (sometimes dramatically) from one
point to another. Introducing one constant for the whole study area or
for relatively large domains is therefore preferable. Moreover, if the
measured field contains components with different wavelengths, we
recommend prior simultaneous filtering of the gravity field and its
FTG components, allowing for the fact that they are derivatives of
the same potential function U. An equivalent sources technique may
be used for this filtering.

Lastly, clusters of tensor solutions localize the center of causative
bodies, whereas the Euler solutions traditionally better outline their
edges. Thus, these methods should best be combined to better identi-
fy the sources and estimate their depths. Clustering of solutions, as

proposed by Mikhailov et al. (2003), is indeed a powerful tool, espe-
cially useful for noisy data or if signals from various sources inter-
fere.
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APPENDIX A

RELATIONSHIPS BETWEEN THE TENSOR
INVARIANTS AND THE ANALYTIC SIGNAL

According to Roest et al. (1992), the gravity analytic signal is

A(x,y,2) = g€, + g,&, + ig.e,, (A-1)

where i is the complex unit, and (e,,e,,e,) are unit vectors in direc-
tions x, y, and z respectively. The amplitudes of the directional deriv-
atives of the analytic signal are

E—
2 2 2
VUL + ny + U,

) 2 2
y ny + Uyy + Uyz,

R
A, =\U, + U, + U:

2z’

e
=
Il 1l

(A-2)

and, thus, may be calculated using rows of the full gravity gradient
tensor. Those amplitudes possess a selective sensitivity in different
directions, and can be used for tracing faults or close to vertical sides
of causative bodies.

Considering the expressions of the three amplitudes A,, A, and
A, given in equation A-2, we infer from equation 10b by Pedersen
and Rasmussen (1990) that the first nonzero scalar invariant can be
written as

I = - (A] + A} + AD)12. (A-3)

The synthetic examples in the text illustrate the contouring proper-
ties of the derived transforms. We give a comparative analysis of the
morphology of the three amplitudes of the directional derivatives
of the analytic signal and of the invariants when discussing these
examples.
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