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Abstract 22 

The W-Au, Pb-Zn-Ag, and Sb-Ba mineralizations of the polymetallic Tighza-Jbel Aouam district 23 

(central Meseta, Morocco,), are hosted in Paleozoic rocks surrounding late-Carboniferous granitic 24 

stocks. The Pb-Zn-Ag Tighza deposit formed at 254 ± 16 Ma, and is clearly disconnected from the 25 

late-Variscan W-Au deposit (295-280 Ma). The Pb-Zn-Ag mineralization precipitated from a complex 26 

hydrothermal fluid. It displays air-normalized 3He/4He ratio (0.018-0.103) typical of the upper crust. 27 

This crustal component is confirmed by the oxygen and carbon isotope compositions (δ
18O = +19 to 28 

+25 ‰; δ13C  = -3.6 to -11.2 ‰) and the ɛNd values (-4.84 to -9.01) of gangue carbonates, which show 29 

mixing of (i) fluids that have interacted with late-Carboniferous magmatic rocks, and (ii) fluids in 30 

equilibrium with the Paleozoic metasediments. In addition, the Pb-Zn-Ag mineralization has 31 
40Ar/36Ar values in the range 284-315 typical of a meteoric fluid. The radiogenic Pb isotopic 32 

compositions (207Pb/204Pb = 15.70-15.80 and 206Pb/204Pb = 18.30-18.50) suggest leaching of Pb from 33 

the surrounding Paleozoic metasediments and late-Variscan granites, whereas the low radiogenic 34 

signatures (207Pb/204Pb = 15.40 and 206Pb/204Pb = 18.05) provide evidence of a deeper source attributed 35 

to the lower crust.  36 
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Crustal thinning related to extensional tectonics in late-Permian and Early-Triassic lead to high-K 37 

calc-alkaline to alkaline magmatic activity, which is evidenced by a dense SW-NE-trending dike 38 

network that pre-dated the Atlantic Ocean opening (early Liassic times). This magmatic event induced 39 

a regional heat flux increase that triggered the circulation of a complex hydrothermal fluid, which has 40 

a strong crustal component, but also a meteoric and a lower crustal components. The polymetallic 41 

district of Tighza-Jbel Aouam thus results from superposition of an intrusion related porphyry-gold 42 

mineralization (W-Au, 286 Ma) followed by a Pb-Zn-Ag epithermal mineralization (254 Ma), during 43 

two distinct magmatic-hydrothermal events.  44 

The proposed metallogenic model for the Pb-Zn-Ag Tighza-Jbel Aouam deposit provides new 45 

constraints for the Pb-Zn-Ag exploration in the Moroccan Meseta. Exploration targets must take into 46 

account the following geological features: (i) Permo-triassic high-K calk-alkaline to alkaline dikes, (ii) 47 

extensional tectonics and reactivation of ancient crust-scale faults and shear zones, and (iii) Paleozoic 48 

series containing organic matter (e.g., black shales) subjected to low grade metamorphism (e.g., 49 

greenschist facies). 50 

 51 

Keywords : Pb-Zn-Ag deposit, Permian-Triassic extensional tectonics, Tighza-Jbel Aouam district, 52 

Central Morocco, lead and fluid sources, isotopic (O-C, Sm-Nd, Ar-He, Pb-Pb) data 53 

 54 

1. Introduction 55 

West European and Moroccan Paleozoic formations hold numerous volcanogenic massive sulphide 56 

(VMS), Mississippi Valley type (MVT), sedimentary exhalative (SEDEX) as well as vein-types Pb-57 

Zn-Ag deposits (e.g., Arribas and Tosdal, 1994; Guilbert and Park, 1999; Marignac and Cuney, 1999; 58 

Bouabdellah et al., 2009; Subías et al., 2015, and references therein). Dating of the mineralizing events 59 

as well as characterization of the fluid and metal sources are usually difficult to obtain because of fluid 60 

mixing, secondary remobilization, and the absence of suitable minerals for dating. As vein deposits 61 

frequently occur in close association with late Variscan granites they have long been considered being 62 

genetically related to them. 63 

The polymetallic Tighza-Jbel Aouam district (TJAD; central Meseta, Morocco) displays two main 64 

types of mineralization, W-Au and Pb-Zn-Ag, hosted in Paleozoic rocks surrounding late-65 

Carboniferous high-K calc-alkaline granitic stocks (Agard et al., 1958; Cheilletz, 1984; Jébrak, 1984; 66 

Nerci, 2006; Marcoux et al., 2015; Rossi et al., 2016). It has long been considered to have a single 67 

magmatic-hydrothermal origin due to the spatial zoning of mineralization around a supposed hidden 68 

batholith (Agard et al., 1958; Desteucq, 1974). The W-Au mineralization and related potassic 69 

alteration from the “Mine Granite” are coeval and dated at 286 ± 0.4 Ma (Cheilletz et Zimmermann, 70 

1982; Nerci, 2006; Watanabe, 2002). Based on field observations and isotopic studies, Agard et al. 71 

(1958), Cheilletz (1984), Jébrak (1984) and Marcoux et al. (2015) suggested that the Pb-Zn-Ag ore 72 

was emplaced after the W-Au deposit without further precision on the time gap. However, Marcoux et 73 
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al. (2015) consider the Pb-Zn-Ag mineralization to be the last stage of a reduced intrusion-related gold 74 

deposit, with fluid focusing at the top of the solidified and cold intrusion. The hydrothermal activity 75 

associated with the Pb-Zn-Ag deposit was recently dated at 254 ± 16 Ma (Tarrieu, 2014; Cheilletz et 76 

al., 2015; Rossi et al., 2016), demonstrating the disconnection between the Pb-Zn-Ag mineralization 77 

and the W-Au mineralization. A new metallogenic model, based on the disconnection from spatially 78 

associated granites, needs to be considered for the TJAD. This model could be applied to other Pb-Zn-79 

Ag deposits in similar geological context.   80 

The source of the W-Au mineralization is strongly constrained by field geology, geochemical changes 81 

related to K-alteration, fluid inclusions analysis and Pb-Pb isotopes (Cheilletz, 1984; Nerci, 2006; 82 

Marcoux et al., 2015). However, only scarce fluid inclusion, Sr-Nd and Pb-Pb isotopic data are 83 

available for the Pb-Zn-Ag deposit (Nerci, 2006; Castorina and Masi, 2008; Marcoux et al., 2015). 84 

This paper aims to to better constrain the fluid and the lead sources of the Pb-Zn-Ag mineralization, by 85 

combining rare earth elements (REE) data and C-O, Sm-Nd, Ar-He and Pb-Pb, isotopes. The isotopic 86 

signatures of gangue carbonates and galena are used as tracers of the crustal, mantellic and meteoric 87 

reservoirs. The mineralizing events are finally integrated into the late-Variscan to Permo-Triassic 88 

geodynamic framework, in order to propose an updated metallogenic model and new exploration 89 

guides. 90 

 91 

2. Geological setting and deposit geology  92 

2.1. Geology of Central Morocco 93 

The Tighza-Jbel Aouam district (TJAD) belongs to the central Meseta of Morocco, which is composed 94 

of an early to middle Paleozoic basement intruded by late Carboniferous granites (Gasquet et al., 95 

1996; Michard et al., 2008) as well as by numerous Permo-Triassic intermediate to felsic dikes 96 

(Gasquet and Bouloton, 1995) and Permian volcanic rocks (Youbi et al., 1995; Figure 1). The 97 

Paleozoic rocks are covered by Mesozoic-Cenozoic sedimentary formations. The felsic intrusive rocks 98 

are spatially associated with W, Sn, F, Sb and Pb-Zn-Ag deposits (Agard et al., 1958; Cheilletz, 1984; 99 

Jébrak, 1984; Boutaleb, 1988; Giulani et al., 1989; Boushaba and Marignac, 2009). The Meseta 100 

domain corresponds to a complex collage of terranes representing several Variscan tectonic phases 101 

since Devonian times (Figure 1; Michard et al., 2008; Murphy et al., 2016). The main Variscan 102 

collisional events resulted in crustal thickening, folding and Variscan granite emplacement. The latest 103 

collisional phase involved NW-verging fold, duplexes and nappes (Michard et al., 2008, and 104 

references therein). Late-Carboniferous and Permian transtensive events followed, as evidenced by 105 

intra-continental basins that have been moderately deformed before the Atlasic cycle. These basins are 106 

opened by reactivation of old Variscan faults due to crustal thinning (El Hadi, 2006). The Permian 107 

sedimentary sequence is characterized by detrital sedimentation (conglomerates, sandstones and 108 

argillites) with interbedded volcanic rocks and associated dikes that crosscut the sedimentary pile 109 

(Piqué et al., 2011). Finally, the extensive tectonic regime develops during Triassic, with the opening 110 
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of large sedimentary basins that preceded the Atlantic Ocean opening and related CAMP activity 111 

(Mahmoudi and Bertrand, 2007; Vérati et al., 2007). 112 

 113 

2.2. Geology of the Tighza-Jbel Aouam district (TJAD) 114 

The TJAD has long been known for its W-Au mineralization, as well as for major Pb-Ag-Zn and 115 

minor Sb-Ba mineralizations, hosted in Paleozoic metasediments (Agard et al., 1958; Desteucq, 1974; 116 

Cheilletz, 1984; Jébrak, 1984; Wadjinny, 1998; Nerci, 2006; Tarrieu, 2014; Marcoux et al., 2015). 117 

Upper Visean (Mississippian) limestones and schists unconformably overlie Ordovician siliceous 118 

schists and quartzites, Silurian black shales, and Devonian siliceous limestones. These Paleozoic 119 

metasediments are deformed into a succession of SW-NE-trending anticlines and synclines, and are 120 

metamorphosed up to greenschist facies. The TJAD is localized between two crustal-scale E-W shear 121 

zones that controlled the opening of tension veins and dikes during late and post-Variscan time 122 

(Figures 1 and 2). 123 

The Paleozoic formations are crosscut by microgranite and micogranodiorite dikes, and by four 124 

monzogranite stocks named, from South to North, Kaolin, Mine, Mispickel, and Tighza peaks. The 125 

high-K calc-alkaline signature of all of these intrusive bodies is observed in most Moroccan Variscan 126 

granites and reflects either an enriched mantle or a lower crustal component (Gasquet et al., 1996; El 127 

Hadi et al., 2006). The monzogranite stocks have been dated at 320-300 Ma  by Tarrieu (2014) and 128 

Rossi et al. (2016).The three southernmost stocks are surrounded by a large and well-delimited biotitic 129 

alteration halo related to the W-Au mineralizing event (Figure 2; Cheilletz, 1984; Cheilletz and Isnard, 130 

1985). The gravimetric study of El Dursi (2009), carried out on the TJAD, suggests that this 131 

hydrothermal alteration halo is associated with a hidden thin and shallow intrusive pluton. The W-Au 132 

mineralization thus results from a second magmatic stage at 295-280 Ma. It can be considered as a 133 

porphyry-type deposit based on (i) the genetic link with calc-alkaline magmatic activity (Cheilletz, 134 

1984; Marcoux et al., 2015), (ii) potassic alteration related to a hidden pluton (Cheilletz and 135 

Zimmermann, 1982; Cheilletz, 1984), (iii) high temperature hydrothermal fluids that have a magmatic 136 

signature (Nerci, 2006; Marcoux et al., 2015), and (iv) the occurrence of disseminations, W-rich 137 

skarns, stockworks, sheeted veins and large veins. The large E-W-trending veins formed during a 138 

dextral transpressive regime (Cheilletz, 1984).  139 

The currently mined Pb-Zn-Ag mineralization, which crosscuts the W-Au ore (Figure 3), has been 140 

dated at 254 ± 16 Ma (Tarrieu, 2014; Cheilletz et al., 2015; Rossi et al., 2016). It developed during a 141 

magmatic-hydrothermal episode associated with emplacement of a dense network of late-Permian 142 

dikes, found throughout the Moroccan Meseta (Bouloton and Gasquet, 1995; Gasquet and Bouloton, 143 

1995; Rossi et al., 2016). The Pb-Zn-Ag mineralization is filling NE-SW transtensive tension-gashes 144 

that developed during a NW-SE compression. The old dextral E-W shear zones are reactivated with a 145 

sinistral component during this tectonic event. Fluid inclusions analyses and calculated isochores 146 
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allowed Nerci (2006) and Marcoux et al. (2015) to constrain minimum trapping P-T conditions (see 147 

2.3.). 148 

The polymetallic TJAD thus results from two successive magmatic-hydrothermal events that produced 149 

first the W-Au mineralization followed by the Pb-Zn-Ag mineralization (Tarrieu, 2014; Rossi et al., 150 

2016).  151 

 152 

2.3. Geology of the Pb-Zn-Ag mineralization 153 

The Pb-Zn-Ag mineralization has been mined since 1930 from several large extensional veins with 154 

N25°E to N75°E orientations (Figure 2). In most cases, the veins display a “Y” shape, showing a 155 

connection between two veins, which suggest fracture opening as part of a conjugate strike-slip fault 156 

system (see Cheilletz 1984 for details; Figure 2). The main Pb-Zn-Ag veins are, from North to South: 157 

Filons Parallèles and Filon Nord, Filon Signal and Structure 18, Structure II, Sidi Ahmed, Ighrem 158 

Aousser and Iguer Oujna. Only Filon Signal, Structure 18, Sidi Ahmed and Ighrem Aousser are 159 

currently being mined, allowing extensive observations and sampling of fresh rocks.  160 

The Pb-Zn-Ag mineralization comprises sulphides (galena + sphalerite) in a gangue of carbonates 161 

(calcite ± siderite and ankerite) ± quartz (or red chalcedony). Development of the deposit was 162 

associated with weak carbonate alteration of the Paleozoic country rocks. Analyses of fluid inclusions 163 

trapped in calcite from Sidi Ahmed vein indicate that the Pb-Zn-Ag mineralization formed at a 164 

minimum temperature of 230°C, from Na-Ca brines and a complex fluid with organic compound. 165 

Calculated isochores indicate hydrostatic pressures of at least 30 MPa (Nerci, 2006; Marcoux et al., 166 

2015).  167 

The paragenetic sequences are slightly different among the different veins. In Filon Signal and 168 

Structure 18, the mineralization is typically banded and rather symmetrical: vein minerals grew from 169 

the edge of the vein towards its center (Figure 4). These large veins display a succession of four 170 

paragenetic assemblages (Figure 4 and Figure 5): (P1) quartz + siderite, (P2) galena + calcite ± 171 

sphalerite, (P3) galena + sphalerite + siderite, and (P4) calcite + quartz + pyrite. As shown in Figure 4, 172 

the early barren P1 assemblage is not present everywhere. The Pb-Zn-Ag mineralization is associated 173 

with P2 and P3 assemblages (Figure 4 and 5). The latest hydrothermal phase (P4) is barren. 174 

In Sidi Ahmed and Ighrem Aousser, the four hydrothermal successive events (pulses) display slightly 175 

different paragenetic assemblages than in Filon Signal and Structure 18 (Tarrieu, 2014; Rossi et al., 176 

2016, Figure 5): (P1) hydraulic fracturing and precipitation of siderite + quartz, (P2) banded galena + 177 

ankerite ± sphalerite, (P3) brecciation and precipitation of galena + sphalerite, and (P4) calcite + 178 

quartz + pyrite. Jébrak (1984, 1985) noted that gangue carbonates are REE-rich. 179 

 180 

3. Sampling and analytical methods 181 

In order to provide insights into the lead and mineralizing fluid sources of the Pb-Zn-Ag 182 

mineralization, various complementary isotopic studies have been performed on sulphide minerals 183 
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(He-Ar on pyrite and sphalerite, Pb isotopes on galena) and on gangue siderite, ankerite and calcite 184 

(O-C isotopes, Sm-Nd, REE content). Most samples were collected within the three main Pb-Zn-Ag 185 

veins, Filon Signal, Sidi Ahmed and Ighrem Aousser veins. They were collected underground in order 186 

to provide unweathered rocks. Some additional samples were also collected from drill cores from 187 

Filon Nord and Filons Parallèles, i.e., from the northernmost veins (Figure 2). 188 

 189 

3.1. REE content of carbonates 190 

Four siderite (P1), six ankerite (P2) and thirteen calcite (P4) concentrates sampled in the various Pb-191 

Zn-Ag veins were analyzed by ICP-MS at the SARM-CRPG in Nancy, France. The minerals were 192 

concentrated by handpicking. The analytical results are presented in Table 1 and Figures 6 and 7. 193 

 194 

3.2. Stable isotopes (O, C) 195 

Carbon and oxygen isotope analyses were carried out at the stable isotope laboratory of Géosciences 196 

Rennes (France). Analyses were performed on separated siderite, ankerite and calcite crystals sampled 197 

in Signal, Sidi Ahmed and Ighrem Aousser veins. Carbonate materials were reacted with anhydrous 198 

H3PO4 at 50°C during fifteen hours. Isotopic measurements on the liberated CO2 were made using a 199 

VG SIRA-10 triple collector mass spectrometer. Isotopic compositions are quoted using the δ notation 200 

with respect to SMOW for δ18O and PDB for δ13C. Measured carbonate δ18O - δ13C values have been 201 

corrected using the NBS19 international and Prolabo Rennes in-house standards values. Analytical 202 

precisions are estimated to be ±0.1‰ and ±0.15‰ respectively for the δ13C and δ18O in carbonates. 203 

Results are presented in Table 2 and Figure 9.  204 

 205 

3.3. Sm-Nd 206 

In order to complete the data obtained by Castorina and Masi (2008) on siderites from Signal and Sidi 207 

Ahmed, Sm and Nd isotope analyses were performed in CRPG Nancy on ankerite and calcite from 208 

from Sidi Ahmed and Ighrem Aousser. After addition of a mixed 150Nd-147Sm spike, samples were 209 

digested in HF + HNO3, and Sm and Nd were extracted by chromatographic techniques adapted after 210 

those of Pin et al. (1997) using TRU spec and LN spec resins. Sm and Nd isotopic compositions were 211 

determined by MC-ICP-MS (Neptune). During the period of analysis the JNdi-1 Nd standard yielded 212 

0.512095 ±0.000014 (2σ, 11 analyses) Analytical blanks represented <1% of the total amount of Nd 213 

analyzed in all cases and are thus negligible. Results are reported in Table 3 and Figure 10. 214 

 215 

3.4. Rare gases Ar-He 216 

Sulphides from the W-Au (2 As-pyrite and 1 pyrite) and Pb-Zn-Ag mineralization (2 pyrites and 1 217 

sphalerite from Sidi Ahmed) were carefully selected under a binocular microscope to eliminate 218 

alteration and inclusions, and then crushed. The analyses were performed by P. Burnard at the CRPG 219 

–CNRS (Nancy, France) following the analytical procedure of Marty and Zimmermann (1999). The 220 
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amounts and the isotopic ratios of helium and argon were analyzed with a VG 5400 rare gas mass 221 

spectrometer. Results are reported in Table 4 and Figure 11. 222 

 223 

3.5. Lead isotopes  224 

Six ore samples were selected from the three main veins for in-situ Pb isotope analysis on galena (ngn) 225 

and sphalerite (nsph) individual grains. 32 galena and 32 sphalerite crystals were analysed from Signal 226 

vein: ngn = 3 and nsph = 12 in Tz10/39; ngn = 25 and nsph = 10 in Tz11/42; ngn = 4 and nsph = 20 in 227 

Tz10/43). 7 galena crystals were analysed in sample Tz10/35 from Sidi Ahmed vein.  8 galena and 11 228 

sphalerite crystals were analysed from Ighrem Aousser vein: ngn = 5 in Tz10/30; ngn = 3 and nsph = 112 229 

in Tz10/31. Measurements were performed in CRPG-CNRS (Nancy, France) by ion microprobe 230 

following Deloule et al. (1986), using the Cameca IMS 3F for Tz10/30 at a mass resolution of 800, 231 

and the Cameca IMS 1270 in monocollection mode to a mass resolution of 4000 for the other samples. 232 

All data are reported in Table 5 and Figure 12. 233 

 234 

4. Results and interpretation 235 

4.1. REE content of carbonates 236 

The total REE content of siderite, ankérite and calcite from the Tighza Pb-Zn-Ag veins ranges 237 

between 45 and 4041 ppm (n=44, Figure 6 and Table 1; Jébrak, 1985; Castorina and Masi, 2008; this 238 

study). About 50% of the analysed carbonates have rather low total REE content (< 300 ppm), but 14 239 

samples are significantly REE-rich and contain more than 900 ppm REE (up to 4000 ppm). Such 240 

content is unrelated to the mineralogy or to the paragenetic stages considering that the most enriched 241 

carbonates are a P2-ankerite (4041 ppm) and a P4-calcite (2702 ppm) in Ighrem Aousser, a P3-siderite 242 

crystal in Sidi Ahmed (2385 ppm; Castorina and Masi, 2008), and a P2-ankerite crystal in Signal vein 243 

(2400 to 2700 ppm; Jébrak, 1985). Changes in REE content might reflect changes in growth or fluid 244 

flow rates (Möller et al., 1991) or changes in temperature (Möller et al., 2004). As P4-calcite crystals 245 

cover a large REE range within a single vein, this scatter is unlikely due to variation of the fluid 246 

temperature but rather to changes in fluid-flow rates, thus on fluid-rock ratios, depending on variable 247 

degrees of vein opening. 248 

PAAS-normalized REE+Y patterns of gangue carbonates allow identification of two distinct groups. 249 

Most carbonates from the Signal, Sidi Ahmed and Ighrem Aousser lodes have similar PAAS-250 

normalized REE+Y patterns (Group 1), characterized by (La/Sm)N lower than 1 (0.06 to 0.60), 251 

(Gd/Lu)N higher than 1 (1.25 to 13.52), and positive EuN anomalies (1.5 to 3.0; Figure 7, Table 1). 252 

Whatever the vein, the carbonate (siderite, ankerite or calcite) or the paragenetic sequence, all 253 

carbonates from group 1 display similar REE+Y patterns, suggesting that they crystallized from a 254 

unique hydrothermal fluid. The various paragenetic sequences reflect the evolution of the reactive 255 

fluid composition due to fluid-rock interaction. Regardless of mineralogy and paragenetic sequences, 256 

half of group 1 carbonates have (La/Lu)N lower than 1 (0.1 to 1.0), and half have (La/Lu)N higher than 257 
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1 (1.0 to 5.6). Different pH conditions (Castorina and Masi, 2008) or changes in temperature could 258 

explain these differences. The upward-convex shape REE+Y patterns are typical of hydrothermal 259 

fluids and carbonates that precipitated from hydrothermal crustal fluids in various geological contexts 260 

(e.g., Michard, 1989; Lüders et al., 1993; Hecht et al., 1999; Torres-Ruiz 2006, Margoum et al., 2015, 261 

and references therein). Therefore, the REE+Y patterns of gangue carbonates are representative of the 262 

hydrothermal fluid, so that it not possible to discriminate among the possible crustal sources of REE 263 

(local sedimentary and magmatic host-rocks, or other crustal sources) based on REE+Y patterns only. 264 

As already discussed by Castorina and Masi (2008), the slight negative CeN anomaly, which is typical 265 

of marine carbonate, likely reflect fluid-carbonate interaction or a slight contribution of seawater. The 266 

positive EuN anomalies could either reflect (i) REE mobilization at high-temperature, and precipitation 267 

at lower temperature (> 200-250°C) under reducing and mildly acidic conditions (Bau 1991; Bau and 268 

Möller, 1992), (ii) inheritance from host-rock alteration, or (iii) chemical complexation reactions or 269 

sorption effects. As fluid inclusions indicate that the Pb-Zn-Ag mineralization precipitated at a 270 

minimum temperature of 230°C (Nerci, 2006; Marcoux et al., 2015), the observed positive EuN 271 

anomalies most likely result from temperature conditions of REE mobilization and precipitation (Bau 272 

1991; Bau and Möller, 1992). Finally, the hydrothermal fluid probably has interacted with upper 273 

crustal rocks and marine carbonates, under rather high temperatures in order to mobilize REE+Y, and 274 

then precipitated at temperature higher than 230°C.  275 

Two P4-calcite crystals sampled in late-calcite veins show different PAAS-normalized REE+Y 276 

patterns (Group 2), with (La/Sm)N lower than 1 (0.33 and 0.45), (Gd/Lu)N lower than 1 (0.32 and 0.61), 277 

and negative Eu anomalies (0.46 and 0.59; Figure 11). The HREE enrichment, as well as the strong 278 

positive YN anomalies are similar to those found in marine carbonates (Hu et al., 1988; Nothdurft et al., 279 

2004), suggesting these two calcites might have precipitated either from a fluid with a rather strong 280 

seawater component, or that interacted mostly with marine carbonates.  281 

The high REE content of gangue carbonates results from microscopic solid inclusions of REE-rich 282 

minerals evidenced from SEM observation (Figure 8). More than 95% of the analyzed REE-rich 283 

crystals are La-rich synchysite (i.e., Ce-Y-Nd-La-bearing fluorocarbonate; Figure 8). Destabilisation 284 

reaction of rare xenotime and monazite into synchysite has been observed (Tarrieu, 2014), suggesting 285 

that at least some of the synchysite crystals are secondary phases. The mineralogical reaction follows 286 

the equation: 287 

(Ce, La, Nd)-monazite + xenotime + calcite + H2O-CO2-F-rich fluid =>  288 

(Ce, La, Y, Nd)-synchysite + acidic-PO4-rich fluid 289 

According to this equation, circulation of a H2O-CO2-F-rich fluid is required, and REE+Y remain 290 

immobile. The occurrence of these REE-bearing minerals explains most of the total REE content of 291 

gangue carbonates. Indeed, Ce accounts for 24 to 40 % of the total REE content of carbonates, Nd for 292 

about 20 % and La for 5 to 20 %. Yttrium is also quite abundant and represents 15 to 25 % of total 293 
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REE+Y content (Table 1). Such Ce:La:Nd:Y ratios are in the same range than in the synchysite 294 

composition.  295 

In the TJAD, the high REE contents of gangue carbonates from the Pb-Zn-Ag mineralization is mainly 296 

due to the occurrence of abundant solid inclusions of (Ce, La, Y, Nd)-rich synchysite micro-crystals 297 

that precipitated from the hydrothermal fluid.  298 

 299 

4.2. Stable isotopes (O, C) 300 

No systematic difference between the stages of carbonation is evidenced from table 2, regardless the 301 

nature of the gangue carbonate. Rather, each carbonate mineral tends to display specific carbon 302 

isotope composition: siderite crystals range between δ13C = -5.12 ‰ and -4.15 ‰, ankerite crystals 303 

range between -3.6 ‰ and -5.1 ‰, whereas apart from one sample (δ13C = -2.5 ‰), calcite crystals are 304 

more depleted in 13C and range between -11.2 ‰ and -5.7 ‰. With the exception of two calcite 305 

crystals (δ18O = 11.9 ‰ and δ18O = 16.1 ‰), carbonate grains display similar and homogeneous δ18O 306 

values, in the 19-25 ‰ range.  307 

Figure 9 indicates that gangue carbonates plot in the range of hydrothermal carbonates. Calculation of 308 

the isotopic composition of the hydrothermal fluid in equilibrium with gangue carbonates is required 309 

in order to determine the origin of the hydrothermal fluid. Based on fluid inclusion analysis performed 310 

on galena from Signal vein, Nerci (2006) and Marcoux et al. (2015) estimated a minimum trapping 311 

temperature of about 230°C for the Pb-Zn-Ag veins. The oxygen isotope composition of the fluid in 312 

equilibrium with gangue carbonates was calculated for the range 230°C-300°C using the temperature-313 

dependent calcite-H2O fractionation factors of Zheng (1999). The carbon isotope composition of CO2 314 

was calculated for the same temperature range using the temperature-dependant calcite-CO2 315 

fractionation factors of Chacko et al. (1991), assuming a similar fractionation for siderite and ankerite. 316 

The δ18O values of the hydrothermal fluid are consistent with those of a fluid in equilibrium with the 317 

surrounding shales (Tartèse et al., 2012; Figure 9). The calculated δ18O compositions of fluids in 318 

equilibrium with calcite crystals show significant variability. Indeed, two calcite samples display low 319 

oxygen isotope compositions, which likely reflect crystallization at higher temperature, from a low-320 

δ
18O fluid component and/or variable fluid–rock ratios. The carbon isotope compositions of the 321 

hydrothermal fluid cover a wide range, between -9.6 ‰ and -2.1 ‰. As calcite-CO2 carbon 322 

fractionation is rather limited at 230-300°C, this large interval is unlikely the result of crystallization at 323 

variable temperature. It most likely reflects mixing between two end-members. The enriched 13C end-324 

member could either be attributed to seawater-derived fluid or to a fluid that underwent interaction 325 

with ancient marine carbonates. The occurrence of carbonate-rich crustal rocks in Devonian and 326 

Visean metasediments (sandy limestone and limestones + calcschists respectively) of the TJAD, and 327 

their possible occurrence in some underlying Cambrian and Proterozoic rocks (Gasquet et al., 2008; 328 

Pereira et al., 2015; and references therein) is consistent with the latter hypothesis. The depleted 13C 329 

end-member has δ13C values typical of fluids with some organic carbon, regardless of their origin. It 330 
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would be hazardous to specify the exact source of fluid on the basis of the δ13C signature considering 331 

that (i) Pb-Zn-Ag mineralization is coeval with magmatic activity, (ii) the surrounding Paleozoic 332 

metasediments contain some organic matter, especially the Siluro-ordovician black shales and schists, 333 

and (iii) the 40Ar/36Ar ratios of sulphide crystals provide evidence of the infiltration of meteoric fluids.  334 

Therefore, the carbon and oxygen compositions suggest that gangue carbonates precipitated from a 335 

H2O-CO2-rich fluid, with a strong crustal component, that equilibrated with the Paleozoic 336 

metasedimentary pile hosting the Pb-Zn-Ag mineralization. 337 

 338 

4.3. εNd results 339 

Calcite and ankerite samples have rather similar Sm/Nd ratios and Nd isotopic compositions to those 340 

of siderites from Castorina and Masi (2008; Table 3), with 147Sm/144Nd = 0.1381 to 0.2532 and ɛNd = -341 

4.84 to -9.01. ɛNd values were calculated at the age of Pb-Zn-Ag ore formation (about 255 Ma; Rossi et 342 

al., 2016). Results are presented in Table 3 and Figure 10. All carbonates display ɛNd-255Ma values of -4 343 

to -8. This range lies between the Paleozoic schists and the late-Carboniferous granitic stocks values 344 

(Schaltegger et al., 1994; Castorina and Masi, 2008; Marcoux et al., 2015), suggesting Nd could derive 345 

from these two crustal reservoirs. Permian rocks overlying the paleozoic schists at the time of the Pb-346 

Zn-Ag hydrothermal event, and deeper crustal rocks could also be taken into consideration. As these 347 

rocks are not cropping out in the Central Meseta, there is no geochemical data available, so that their 348 

contribution is not being discussed below. The contribution of the two assumed local crustal reservoirs 349 

seems to be variable considering that some siderites have ɛNd values similar to those of some granitic 350 

stocks from the district, whereas calcites display values close to those of Paleozoic basement rocks.  351 

Castorina and Masi (2008) estimated a contribution of about 50 % for each reservoir, but they 352 

considered leaching to have occurred at 280 Ma. Considering that Pb-Zn-Ag ore formed at 255 Ma 353 

(Rossi et al., 2016) the basement contribution was estimated for each sample, using the equation below 354 

with average ɛNd-255Ma values of -2.32 for the granitic stocks and of -10.21 for basement schists 355 

(Castorina and Masi, 2008; see Table 3):  356 

   % basement = (ɛNd sample - ɛNd granite)/(ɛNd sample - ɛNd granite)  357 

Nd from Paleozoic schists would thus contribute 58-71 % in calcite, 44-64 % in ankerite, and 22 to 358 

59 % in siderite (using data from this study and from Castorina and Masi, 2008). 359 

 360 

4.4. Rare gases Ar-He 361 

The W-Au and Pb-Zn-Ag mineralizations have rather similar 40Ar/36Ar ratios, ranging between 284 362 

and 328 (Figure 11), with the exception of one data point. Such values are similar to meteoric Ar 363 

(40Ar/36Ar = 295.5; Steiger and Jäger, 1977), providing evidence of infiltration of a meteoric and/or 364 

air-equilibrated fluid for both mineralization. On the contrary, two distinct signatures are evidenced 365 

from He isotopes (Figure 11): (i) the W-Au mineralization displays rather high air-normalized 3He/4He 366 
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ratios, ranging from 1.083 to 1.814, whereas (ii) the Pb-Zn-Ag mineralization displays very low air-367 

normalized 3He/4He ratios, in the range 0.018-0.103.  368 

Possible artifacts such as cosmogenic production of 3He, nucleogenic production of 3He from reaction 369 

with a Li-rich crustal fluid, and isotopic fractionation during He-leakage have been discarded to 370 

explain the measured 3He/4He ratios because:  all samples were collected several hundred meter below 371 

the surface or from drillcores, so they cannot be affected by cosmogenic radiation; Li does not 372 

substitute for Pb in galena (Kendrick et al., 2005) and fluid inclusion studies provided no evidence of 373 

interaction with a Li-rich fluid (Marcoux et al., 2015); and if fractionation occurred during leakage, 374 

preferential escape of 3He over 4He from galena would have produced 3He/4He ratios lower than 375 

crustal values, which has not been observed (Kendrick et al., 2005; Bouabdellah et al., 2015). The 376 

measured 3He/4He ratios are thus assumed to reflect mixing between atmospheric, crustal and mantle-377 

derived He (3He/4Heatmt = Ra = 1.39x10-6; 3He/4Hecrust = 0.01-0.05 Ra; 
3He/4Hemantle = 6-9 RA; Andrews, 378 

1985; Porcelli et al., 1992, Burnard et al., 1999; Burnard and Polya, 2004).  379 

Even though a sample has a 3He/4He ratio similar to atmospheric He, a contribution of atmospheric He 380 

is rather unlikely for the W-Au ores. Considering a 3He/4Hemantle ratio of 6 RA, more than 95 % of He 381 

from the W-Au ores would derive from atmospheric He, which is very unlikely considering that the 382 

W-Au mineralization is genetically related to late-Variscan calk-alkaline magmatic activity (Cheilletz, 383 

1984; Cheilletz and Isnard, 1985; Marcoux et al., 2015). Assuming atmospheric He contribution is 384 

negligible for the W-Au mineralization, and considering a 3He/4Hecrust ratio of 0.01 RA,18 % to 30 % of 385 

the 4He derived from the mantle and 70% to 82% derived from the crust. 386 

Sulphides from the Pb-Zn-Ag mineralization have air-normalized 3He/4He ratios in the same range as 387 

crustal He. 4He thus essentially has a crustal component and only exhibits very limited mixing with 388 

atmospheric He (< 5 %) or mantle-derived He (< 2%). 389 

 390 

4.5. Lead isotopes  391 

Lead isotope ratios from the Pb-Zn-Ag (galena) and the W-Au (mispickel and löllingite) ores as well 392 

as data from the outcropping granitic stocks (K-feldspar) are presented in Figure 12 and Table 5 393 

(Watanabe, 2001; Nerci, 2006; Marcoux et al., 2015; Tarrieu, 2015; Cheilletz et al., 2015). The lead 394 

isotope signatures of sphalerite crystals show huge dispersion so that it is impossible to interpret the 395 

data; they are thus not taken into consideration. Lead isotope data of galena samples spread between a 396 

highly radiogenic end-member (207Pb/204Pb = 15.70 to 15.80) and a much less radiogenic one 397 

(207Pb/204Pb = 15.40), thus suggesting mixing of distinct sources of lead. The dataset is bordered by 398 

two mixing lines corresponding to the ca. 320 Ma and the ca. 255 Ma geochrons (trends A and B 399 

respectively in Figure 12) that crosscut the crustal evolution curves of Stacey and Kramers (1975) and 400 

Ludwig et al. (1989). Galena samples following trend A plot between lead isotope ratios observed in 401 

K-feldspars from the outcropping stocks (207Pb/204Pb = 15.70 and 206Pb/204Pb = 18.30) and a less 402 

radiogenic composition (207Pb/204Pb = 15.55 and 206Pb/204Pb = 18.15). Galena samples following trend 403 
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B plot between highly radiogenic (207Pb/204Pb = 15.80 and 206Pb/204Pb = 18.50) and much less 404 

radiogenic values (207Pb/204Pb = 15.40 and 206Pb/204Pb = 18.05). Trends A and B are not associated 405 

with specific veins or samples. Indeed, galena samples from Signal vein (blue symbols), as well as 406 

from Sidi Ahmed (green symbols), plot on both trends. Furthermore, some galena crystals from 407 

sample Tz10/42 (Signal vein) plot along trend A, some along trend B, and the others plot between the 408 

two trends, suggesting remobilisation of lead from different sources. 409 

The least radiogenic ratios observed in the 207Pb/204Pb versus 206Pb/204Pb diagram suggest a deep 410 

source of lead such as the mantle or lower crust (e.g., Zartman and Haines, 1988; Figure 12). In 411 

contrast, the most radiogenic ratios clearly indicate leaching of lead from the upper crust. A possible 412 

source of radiogenic lead could thus be the outcropping granitic stocks. U-Pb dating of zircons from 413 

the magmatic stock indicates a crystallisation age of 320-300 Ma, whereas dating of monazite hosted 414 

in gangue carbonate yields an age of 254 ± 16 Ma for the Pb-Zn-Ag ore (Rossi et al., 2016). As 415 

leaching of magmatic lead occurred several million years after the stocks crystallization, radiogenic 416 

ingrowth of Pb in U-rich magmatic crystals must be considered in order to determine the isotopic 417 

composition of the granitic stocks at the time of galena formation. Considering K-feldspar recorded 418 

the magmatic isotopic composition at the time of crystallization (ca. 320 Ma), the lead isotope 419 

signature of the granitic stocks at 255 Ma can be estimated at 207Pb/204Pb = 15.70 and 420 
206Pb/204Pb = 18.40, using a 238U/204Pb ratio of 9.735 (e.g., Faure and Mensing, 2005). Such ratios fit 421 

well with trend B (Figure 12), suggesting leaching at 255 Ma of lead from U-rich magmatic minerals 422 

formed at 320-310 Ma in the granitic stocks. As these stocks are rich in magmatic sulphides that 423 

contain traces of Pb but almost no U or Th, such as pyrite, sphalerite and chalcopyrite (Cheilletz, 424 

1984; Tarrieu, 2014), the most radiogenic ratios observed along trend A likely result from 425 

remobilisation of lead from these magmatic sulphides at 255 Ma. Concerning trend B, the most 426 

radiogenic Pb ratios (207Pb/204Pb = 15.80) likely, result from leaching of highly radiogenic upper 427 

crustal rocks. As the upper crust is mainly composed of Paleozoic formations (black schists and 428 

limestones) and Permian sediments at the time of the Pb-Zn-Ag ore precipitation, these rocks likely 429 

provide the high radiogenic lead isotope signature. Even thought, more data would be required in 430 

order to confirm this hypothesis, Pb inheritance from the country rocks has been evidenced in many 431 

Pb deposits (e.g., Marcoux and Moëlo, 1991). 432 

Pb isotope data thus indicate a complex system, involving a deep source of lead (mantle and/or lower 433 

crust) and remobilisation of Variscan lead at 255 Ma (trend A), together with mobilisation of more 434 

radiogenic crustal lead at 255 Ma (trend B).  435 

 436 

5. Discussion 437 

5.1. Metal and fluid sources 438 

Datasets obtained by combining various analytical methods indicate no crystallographic, paragenetic 439 

or vein control, suggesting that the Pb-Zn-Ag mineralization of the polymetallic Tighza district 440 
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crustallized from a single hydrothermal event, with the four paragenetic sequences highlighting the 441 

reactive fluid evolution in time. 442 

The geochemical data clearly indicate that the W-Au and the Pb-Zn-Ag ores precipitated from 443 

different fluid sources. The hydrothermal fluid related to the W-Au ores derived from coeval 444 

magmatism (e.g., Cheilletz and Zimmerman, 1982; Giuliani et al., 1987; Marcoux et al., 2015), with a 445 

contribution of 20 to 30 %, of mantle-derived fluids evidenced in this study from He isotopes, as well 446 

as mixing with some meteoric fluids (Ar isotopes; Figure 13B). On the contrary, all geochemical data 447 

from this study and from the literature converge and indicate that the Pb-Zn-Ag mineralization is 448 

associated with a complex hydrothermal system involving various lead and fluid reservoirs (Figure 449 

13C), with (i) an important crustal component evidenced by REE in gangue carbonates as well as He, 450 

O, C, Nd and Pb isotopes, (ii) a meteoric component evidenced by Ar isotopes, and (iii) a deep source 451 

(mantle or lower crust) evidenced by Pb isotopes. As shown from O-C, Nd and Pb isotopes, the crustal 452 

component likely reflects at least two crustal reservoirs with varying contributions: the late-453 

Carboniferous granitic stocks and the Paleozoic metasediments. Even though the involvement of the 454 

two crustal reservoirs and the meteoric source have already been proposed by Castorina and Masi 455 

(2000, 2008) using Sr and Nd analyses on siderites from Signal and Sidi Ahmed veins, this study 456 

confirms and strengthens the hydrothermal model and presents the first evidence for the implication of 457 

a deeper source (mantle and/or lower crust). Permo-triassic dikes have high-K calc-alkaline signature 458 

that reflects either an enriched mantle or a lower crustal component (Gasquet and Bouloton, 1995; 459 

Youbi et al., 1996), which is consistent with this deep reservoir being the source of Permo-triassic 460 

magmatism. However, as He data show no evidence of any significant mantle contribution for the Pb-461 

Zn-Ag mineralization, the deeper source evidenced from relatively unradiogenic Pb ratios in Figure 12 462 

most likely represent a contribution of lower crustal rocks. Therefore, the hydrothermal fluid 463 

associated with the Pb-Zn-Ag deposit has a strong crustal component and results from mixing of 464 

crustal fluids, magmatic fluids (likely derived from lower crust anatexis, see below) and meteoric 465 

fluids. The resulting complex reactive fluid is compatible with fluid inclusion data from Nerci (2006) 466 

and Marcoux et al. (2015) who evidenced Na-Ca brines as well as a complex fluid implying organic 467 

compounds. A more detailed study would be required in order to determine the importance of the 468 

Permo-triassic magmatic fluids relative to the other crustal fluids. 469 

The occurrence of late P4-calcite (group 2) with distinct REE+Y patterns than gangue carbonates of 470 

group 1 and the presence of synchysite as the main REE-bearing phase in gangue carbonates provide 471 

evidence of a later hydrothermal alteration of primary monazite and xenotime from H2O-CO2-F-rich 472 

fluids (Förster, 2001).  473 

 474 

5.2. Genetic consideration and geodynamic implications 475 

Rossi et al (2016) demonstrated that at least three successive magmatic-hydrothermal events occurred 476 

in the TJAD between late-Carboniferous and middle-Triassic (Figure 13):  477 
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1- Late-Carboniferous magmatic activity produced first the outcropping granitic stocks (320-300 Ma, 478 

Figure 13A; Tarrieu, 2014; Cheilletz et al., 2015; Rossi et al., 2016).  479 

2- The W-Au deposit results from a magmatic-hydrothermal event at 295-280 Ma (Cheilletz and 480 

Zimmerman, 1982; Watanabe 2002; Cheilletz et al., 2015; Marcoux et al., 2015; Rossi et al., 2016) 481 

that is related to the intrusion of a thin and shallow hidden pluton (Figure 13B; El Dursi, 2009). The 482 

related hydrothermal fluid has a strong magmatic origin (Marcoux et al., 2015), with a significant 483 

mantellic component, which is consistent with the late-Carboniferous high-K calc-alkaline magmatism 484 

having a deep source (Gasquet et al., 1996; El Hadi et al., 2006). This hydrothermal fluid was mixed 485 

with meteoric fluids (Figure 13B). The late-Carboniferous and Permian extensional tectonics induced 486 

a crustal thinning (Michard et al., 2008; and references therein) and melting of the underlying mantle 487 

and lower crust to produce calc-alkaline magmas (Gasquet et al., 1996; El Hadi et al., 2006). Magma 488 

emplacement generated high-temperature hydrothermal fluids that mobilized metals from the 489 

surrounding rocks (Marcoux et al., 2015), produced a hydrothermal alteration halo (Cheilletz, 1984; 490 

Cheilletz and Isnard, 1985) and lead to W-Au precipitation at high temperature. As proposed by 491 

Marcoux et al. (2015), the W-Au mineralization can thus be considered as an intrusion-related gold 492 

deposit. In addition, due to the occurrence of large dissemination patterns, W-rich skarn, stockwerks, 493 

sheated veins and large W-Au veins, this deposit can also be considered as a porphyry-type deposit, in 494 

an extensional context (e.g., Seedorff et al., 2005). 495 

3- Dating of the Pb-Zn-Ag mineralization at 254 ± 16 Ma indicate that this hydrothermal event is 496 

clearly disconnected with, but superimposed to the W-Au mineralization between late-Permian and 497 

Middle Triassic (Tarrieu, 2014; Cheilletz, et al., 2015; Rossi et al. 2016). During that period, the 498 

extensional tectonic regime and crustal thinning intensifies, and magmatic activity evolves from 499 

plutonic to hypovolcanic in the TJAD (Agard et al., 1958; Cheilletz, 1984; Youbi et al., 1995; Tarrieu, 500 

2014; Rossi et al., 2016). Reactivation of the old dextral crustal-scale shear zones in a sinistral tectonic 501 

regime leads to opening of SW-NE tension-gashes that channel magmas and hydrothermal fluids 502 

(Figure 2). The emplacement of a dense network of high-K calc-alkaline to alkaline dikes increases the 503 

regional heat flux, which triggers circulation of hydrothermal crustal fluids. During fluid flow, these 504 

fluids leached the upper crustal rocks, including the Paleozoic metasediments, late-Carboniferous 505 

granites and possibly the Permian detrital sediments (Figure 13C). Mixing with meteoric fluids 506 

occurred, as well as various degrees of mixing with Permo-triassic magmatic fluids. The Pb-Zn-Ag 507 

mineralization can be considered an epithermal vein-type as it developed in association to high-K calc-508 

alkaline to alkaline volcanic activity (Youbi et al., 1995; Tarrieu, 2014; Rossi et al., 2016), under 509 

rather low temperatures (T > 230°C; Nerci, 2006; Marcoux et al., 2015), at shallow crustal levels 510 

(Youbi et al., 1995), and mostly involved hydrothermal crustal fluids. 511 

The occurrence of a later hydrothermal event is evidenced in the TJAD by a change in REE+Y pattern 512 

of late calcite, and by the alteration of primary monazite and xenotime into synchysite. This reaction 513 

involves circulation of late H2O-CO2-F-rich fluids. Similar fluids have been described in the 514 
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neighboring El Hammam deposit (dated at 205 ± 1 Ma by Cheilletz et al., 2010; Zemri et al., 2015), 515 

the Zrahina deposit, which is assumed to be Permo-triassic in age from field observations (Jébrak, 516 

1982), and the El Aouli deposit (Margoume et al., 2015). The hydrothermal activity that developed 517 

during Triassic-Jurassic extensional tectonic regime thus likely affected the Tighza district. 518 

Sb-Ba mineralization is also present in the TJAD, though its age is poorly constrained. Its 519 

geochronological and genetic position relative to the two other mineralization events is not known 520 

with certainty but is probably younger (Agard et al., 1958).  521 

Radiometric ages of magmatic-hydrothermal activity from Tarrieu (2014) and Rossi et al. (2016) 522 

constrain the timing of the model proposed by Marcoux et al. (2015) for the TJAD: the Pb-Zn-Ag 523 

mineralization appears to be clearly disconnected from the W-Au mineralization, as it is about 30 Ma 524 

younger. Therefore, the model proposed in this paper diverges from Marcoux et al. (2015).  For these 525 

authors, the Pb-Zn-Ag mineralization is related to fluid focusing at the top of the solidified and cold 526 

intrusion that produced the W-Au mineralization. In our model, the Pb-Zn-Ag mineralization is 527 

triggered by Permo-triassic magmatic activity due to post-Variscan extensional tectonics. The ore 528 

deposits of the TJAD are thus spatially associated with multiple intrusions of Cordilleran-type calc-529 

alkaline magmatism (cf., Sillitoe 2010; Catchpole 2011). Fluid flow and related polymetallic 530 

mineralization were generated during a late-Variscan to Permo-Triassic transpressional regime 531 

(Michard et al., 2008) that favoured the development of mantle and crust-derived magmas. These two 532 

events belong to a key period between the end of the Variscan belt formation in Morocco and the 533 

beginning of the Atlantic Ocean opening in the region as highlighted by Liassic volcanism of the 534 

CAMP (Mahmoudi and Bertrand, 2007; Verati et al., 2007, Margoum et al., 2015).  535 

The occurrence of hydrothermal and magmatic activity during Permian and Triassic times was not 536 

limited to the Moroccan Meseta. The Aouli Pb-Zn veins from the Upper Moulouya district (Eastern 537 

Mesesta, Morocco) formed in a similar context to the Tighza Pb-Zn-Ag ore. According to Jébrak et al., 538 

(1998) and Margoum et al., (2015), lead was leached from neighbouring Variscan granites and from 539 

underlying Proterozoic rocks between 250 and 210 Ma. The Aouli deposit thus seems to be nearly 540 

contemporaneous with the Tighza Pb-Zn-Ag event. In the Central Pyrenees, several Pb-Zn-Ag vein-541 

type deposits are associated with Permo-Triassic hydrothermal activity that resulted in lead leaching 542 

from the surrounding bedrock and remobilization from previously formed Pb-rich ore deposits (e.g., 543 

Munoz et al., 2015; Subías et al., 2015; and references therein). As shown from Pb isotopic signatures 544 

of the Pb-Zn-Ag mineralization, similar remobilization of older Pb occurred in the TJAD. Permo-545 

Triassic Pb-Zn-Ag vein-type ores hosted in Variscan basement thus likely result from crustal thinning 546 

and resulting melting that preceded the Atlantic Ocean rifting. The occurrence of a deep source of lead 547 

has only been observed in the TJAD, probably because of its more westward location (Murphy et al., 548 

2016). Indeed, at 250-230 Ma, the continental crust was the most thinned in the vicinity of the future 549 

rift axis, so that melting affected deeper crustal levels (e.g., Tighza district) than further East (e.g., 550 

upper Moulouya in Central Morocco and Pyrenean deposits). 551 
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The model proposed for the TJAD is actually consistent with other Pb-Zn-Ag(-F) deposits of similar 552 

age or geological context (extensional and transcurrent tectonic regime, reactivation of crustal-scale 553 

faults and shear zones, etc.) that are hosted in Palaeozoic basement rocks such as Freiberg (Germany), 554 

Harz (Germany) and Coeur d'Alene (Idaho). As for the TJAD, the genesis of these deposits also 555 

involves fluid mixing of a deep-seated hydrothermal fluid, with crustal fluids and meteoric fluids 556 

under low temperatures (250-300°C), in disconnection with the local plutonic rocks (e.g., Beaudoin 557 

and Sangster, 1992; Paiement et al., 2012).  558 

 559 

 560 

6. Concluding remarks 561 

The combination of several isotopic methods provided key data to unravel the complexity of the 562 

hydrothermal system associated with the Pb-Zn-Ag mineralization of the TJAD. The multi-proxy 563 

approach better constrains the various lead and fluid sources for the Pb-Zn-Ag mineralization. Rare 564 

earth elements (REE) content of gangue carbonates, and C-O, Sm-Nd, Ar-He and Pb-Pb isotopic data 565 

indicate that the Pb-Zn-Ag mineralization likely resulted from mixing of (i) hydrothermal crustal 566 

fluids that interacted with the surrounding late-Carboniferous granites and Paleozoic metasediments, 567 

(ii) Permo-triassic magmatic fluids resulting from the melting of lower crustal rocks, and (iii) 568 

meteoritic fluids,. The hydrothermal activity and the associated base metal deposits were triggered by 569 

Permo-Triassic magmatism produced by the extensional tectonics that pre-dates the Atlantic Ocean 570 

opening, which is evidenced by a dense SW-NE-trending magmatic dike network. Therefore, the late-571 

Variscan intrusion-related model must definitively be abandoned to explain the Pb-Zn-Ag ore 572 

formation. The polymetallic Tighza-Jbel Aouam district results from the occurrence of a hydrothermal 573 

activity related to several magmatic episodes and geodynamic events during late Carboniferous to 574 

early Triassic times (Rossi et al., 2016; this study): (1) sterile late-carboniferous felsic intrusion, (2) a 575 

reduced intrusion-related W-Au mineralization in early Permian, (3) a Pb-Zn-Ag mineralization 576 

triggered by Permo-Triassic magmatic activity in an extensional tectonic regime, (4) later circulation 577 

of a H2O-CO2-F-rich, possibly late-Triassic in age. 578 

The metallogenic model proposed for the Pb-Zn-Ag Tighza-Jbel Aouam deposit provides new 579 

constraints for Pb-Zn-Ag exploration strategies in the Moroccan Meseta. Exploration targets must take 580 

into account the following discriminant geological features: (i) Permo-triassic high-K calk-alkaline to 581 

alkaline dikes, (ii) extensional tectonics and reactivation of ancient crust-scale faults or shear zones, 582 

(iii) Paleozoic metasediments containing organic matter (e.g., black shales) subjected to low grade 583 

metamorphism (e.g., greenschist facies).  584 
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Figure captions 832 

Figure 1. A) Simplified geological map of central Morocco (modified from Youbi et al., 1995). B) 833 

Structural map of the Azrou-Khenifra basin in the Central Meseta (modified from Saadi, 1982; 834 

Bouabdelli and Piqué, 1996; Bamoumen et al., 2008). 835 

Figure 2. Geological map of the polymetallic Tighza district in central Morocco. Modified from 836 

Agard et al. (1958), Cheilletz (1984), and CMT (pers. comm. 2013). 837 

Figure 3. Relationships between Pb-Zn-Ag and W-Au mineralization: Pb-Zn-Ag veins cut W-Au 838 

veins in the roof of Structure 18. 839 

Figure 4. A) Underground photograph showing banded mineralized vein from Filon Signal (sub-level 840 

13). B) Brecciated and banded Pb-Zn-Ag veins in Sidi Ahmed. P1, P2, P3 and P4 refer to the 841 

successive paragenetic sequences in Figure 5.  842 
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Figure 5. Paragenetic sequence of the Pb-Zn mineralisation. SA and IA stand for Sidi Ahmed and 843 

Ighrem Aousser veins respectively.  844 

Figure 6. REE total content of undifferentiated gangue carbonates from Tighza Pb-Zn-Ag veins. Data 845 

from this study, Jébrak (1985) and Castorina and Masi (2008).  846 

Figure 7. PAAS-normalized REE patterns of gangue carbonates from the main Pb-Zn-Ag veins of 847 

Tighza district. Magmatic rock data from this study and from Giuliani et al., 1987). REE patterns of 848 

carbonates from the El Hammam F-deposit are indicated for comparison (data from Cheilletz et al., 849 

2010; Zemri et al., 2015). PAAS normalization values from McLennan (1989).  850 

Figure 8. REE-bearing phases hosted in gangue carbonates. A) and B) SEM pictures of synchysite 851 

crystals hosted in gangue calcite. C) EDS spectra of synchysite. D) Ce-La-Y Ternary diagram showing 852 

the composition of some synchysite crystals hosted in P4 calcite from Sidi Ahmed (Tz10/25) and 853 

Ighrem Aousser (Tz10/32, Tz10/28). 854 

Figure 9. Carbon and oxygen isotopic signatures of gangue carbonates from the Pb-Zn-Ag 855 

mineralization (circles) and of a H2O-rich fluid in equilibrium with the carbonates at 230°C (squares; 856 

see text for explanation). The isotopic ranges of terrestrial reservoirs are reported from Field and 857 

Fifarek (1985), Rollinson (1993), Campbell and Larson (1998), Kharaka and Hanor (2003), Tartèse et 858 

al., (2012) and Jones et al. (2013). 859 

Figure 10. εNd of gangue carbonates, magmatic rocks and Paleozoic sediments at the time of Pb-Zn-860 

Ag ore formation (i.e., at 255 Ma; Rossi et al., 2016). εNd-255Ma values of local siderites have been 861 

estimated using data from Castorina and Masi (2008), εNd-255Ma values of magmatic rocks have been 862 

estimated using data from Castorina and Masi (2008) and Marcoux et al. (2015), and εNd-255Ma values 863 

of Paleozoic rocks have been estimated using data from Castorina and Masi (2008; local rocks) and 864 

Schaltegger et al. (1994; moroccoan Cambrian schists). εNd-255Ma of moroccoan Cambrian schists are in 865 

the same range as Paleozoic schists from the Tighza district.  866 

Figure 11. 40Ar/36Ar and 3He/4He (normalized to the atmospheric 3He/4He ratio) of sulphide minerals 867 

from W-Au (green) and Pb-Zn-Ag (red) deposits from Tighza district. Both deposits display meteoric 868 

Ar signatures but distinct He signatures: while Pb-Zn-Ag ores have crustal He, the W-Au ores 869 

evidence mixing with some mantle-derived He. Isotope ratios of the main geological reservoirs f from 870 

Steiger and Jäger (1977), Andrews (1985), Fontes et al., (1991), Porcelli et al., (1992), Burnard et al. 871 

(1999) and Burnard and Polya (2004). 872 

Figure 12. Pb/Pb isotopic signatures of Pb-Zn-Ag veins, W-Au disseminations and granitoids from 873 

this study, Watanabe (2001), Nerci (2006) and Marcoux et al. (2015). Note that the W-Au trend differs 874 

from that of Pb-Zn-Ag. 875 

Figure 6. Metallogenic model of the Tighza polymetallic district. The three main hydrothermal events 876 

have been identified using U-Pb dating of zircon and Th-U dating of monazite (Rossi et al., 2016). A) 877 

Crystallization of the outcropping granitic stocks at 320-300 Ma. B) Deposit of the W-Au ores in 878 
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relation with a hidden pluton at 300-280 Ma.. C) Deposit of the Pb-Zn-Ag ores in relation with 879 

Permian magmatism at 254 ± 16 Ma. SA, Sidi Ahmed; IA, Ighrem Aousser; S18, Structure 18; FN, 880 

Filons Nord; F.P, Filons Parallèles. 881 

 882 
 883 
Table captions 884 

Table 1. REE pattern of gangue carbonate from the different Pb-Zn-Ag veins. 885 

Table 1. C-O isotopic compositions of gangue carbonates from the Pb-Zn-Ag ore. C-O isotopic 886 

compositions of the fluid in equilibirum with gangue carbonates have been calculated using Zheng 887 

(1999) and Chacko et al. (1991) thermometers. 888 

Table 3.  Sm and Nd contents and ɛNd of the gangue carbonates from the Pb-Zn-Ag deposit of Tighza 889 

district. 890 

Table 4. Noble gas compositions of fluids trapped in sulphide minerals from the Tighza polymetallic 891 

district.  892 

Table 5. Pb-Pb isotopic ratios of galena. 893 

 894 
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Table 1. REE contents (ppm) in the carbonates from the Tighza district. Mineral abbreviations from Kretz (1983).
Nord 

vein

Signal 

vein
Tz11/13.2 Tz11/10 Tz11/13.1 Tz11/67 Tz11/47 Tz10/22 Tz10/17 Tz11/49 Tz11/48 Tz10/25 Tz11/53 Tz10/30.2 Tz10/33 Tz10/33 Tz10/30.1 Tz10/31 Tz10/28 Tz10/29 Tz11/58 Tz10/32 Tz10/34 Tz10/31

P1 P1 P2 P4 P4 P4 P4 P2 P2 P3 P4 P4 P4 P4 P4 P4 P4 P3

sid ank ank ank sid sid ank cal cal cal cal ankérite ankérite sidérite calcite calcite calcite calcite calcite calcite calcite calcite

La 6.67 11.22 12.34 11.19 95.94 32.52 14.75 105.20 47.60 107.50 36.23 665.60 12.87 5.22 140.10 132.30 61.47 127.60 38.27 448.40 133.20 322.80

Ce 17.72 56.70 60.37 45.51 174.60 65.15 59.83 138.60 83.85 218.10 61.61 1352.00 49.75 13.75 279.00 282.80 138.10 266.20 62.26 1020.00 275.90 727.00

Pr 2.72 11.45 11.74 8.35 20.42 7.97 9.70 15.29 9.59 28.24 7.19 174.00 8.07 1.92 34.41 36.43 18.74 33.40 6.84 132.40 35.02 92.76

Nd 11.44 55.42 54.99 38.87 87.39 34.63 45.42 65.08 45.58 132.80 34.24 742.70 43.61 9.95 147.60 159.50 91.33 142.40 33.74 538.80 151.90 372.60

Sm 3.64 26.27 24.46 16.19 22.50 9.63 19.31 16.01 13.97 35.53 9.71 262.10 19.50 3.31 44.79 54.37 27.39 41.76 9.17 158.60 50.46 112.00

Eu 1.74 11.99 13.09 7.79 7.98 5.13 6.47 6.66 5.98 4.76 4.22 152.80 8.35 1.89 23.94 29.74 3.01 21.17 5.18 55.98 27.57 42.85

Gd 3.39 25.21 23.61 15.87 21.30 9.07 19.39 20.77 15.17 41.16 10.42 306.70 20.17 3.20 48.24 60.42 34.70 43.15 11.55 162.40 55.69 113.50

Tb 0.52 3.66 3.40 2.18 2.96 1.20 2.63 2.40 2.25 6.65 1.48 41.91 2.73 0.48 7.11 8.41 6.54 6.11 1.57 22.01 8.09 15.29

Dy 2.69 17.44 16.13 10.12 15.69 5.88 11.89 11.11 11.33 41.06 7.30 196.60 12.15 2.41 37.19 40.39 46.54 30.01 7.76 99.44 40.57 66.53

Ho 0.46 2.61 2.41 1.48 2.87 0.96 1.64 1.84 1.87 8.49 1.22 29.08 1.70 0.38 6.27 6.14 11.21 4.87 1.28 13.96 6.57 9.08

Er 1.16 5.94 5.44 3.22 8.60 2.39 3.44 4.27 4.82 23.29 3.04 62.53 3.61 0.92 15.97 14.13 38.44 12.17 3.01 27.83 16.19 18.12

Tm 0.17 0.77 0.71 0.40 1.70 0.36 0.43 0.51 0.69 3.14 0.40 7.37 0.44 0.13 2.33 1.83 7.14 1.68 0.36 2.97 2.29 2.01

Yb 1.19 5.06 4.68 2.61 17.18 2.58 2.79 3.13 4.76 18.84 2.53 42.71 2.88 0.92 16.36 12.65 59.08 11.54 1.98 17.28 16.21 12.88

Lu 0.17 0.71 0.65 0.35 3.22 0.37 0.38 0.48 0.72 2.50 0.36 5.40 0.40 0.13 2.40 1.77 10.13 1.75 0.27 2.30 2.40 1.86

Y 13.31 76.59 70.07 50.44 81.69 28.89 58.38 93.59 64.59 307.8 43.03 1117 57.65 11.83 230.3 239.2 430.2 202.6 50.46 545.5 239.7 391.6

ΣREE 54 234 234 164 482 178 198 391 248 672 180 4041 186 45 806 841 554 744 183 2702 822 1909

Eu/Eu* 2.34 2.19 2.56 2.29 1.72 2.59 1.57 1.72 1.93 0.59 1.98 2.54 1.98 2.73 2.43 2.44 0.46 2.35 2.37 1.64 2.45 1.79
(La/Yb)N 0.41 0.16 0.19 0.32 0.41 0.93 0.39 2.48 0.74 0.42 1.06 1.15 0.33 0.42 0.63 0.77 0.08 0.82 1.43 1.92 0.61 1.85

ΣREE+Y 67 311 304 215 564 207 256 485 313 980 223 5158 244 56 1036 1080 984 946 234 3248 1062 2301

% Y 19.9 24.6 23.0 23.5 14.5 14.0 22.8 19.3 20.7 31.4 19.3 21.7 23.6 21.0 22.2 22.1 43.7 21.4 21.6 16.8 22.6 17.0
% Ce 26.5 18.2 19.9 21.2 31.0 31.5 23.3 28.6 26.8 22.3 27.6 26.2 20.4 24.4 26.9 26.2 14.0 28.1 26.6 31.4 26.0 31.6
% Nd 17.1 17.8 18.1 18.1 15.5 16.8 17.7 13.4 14.6 13.6 15.4 14.4 17.9 17.6 14.2 14.8 9.3 15.0 14.4 16.6 14.3 16.2
% La 10.0 3.6 4.1 5.2 17.0 15.7 5.8 21.7 15.2 11.0 16.2 12.9 5.3 9.2 13.5 12.2 6.2 13.5 16.4 13.8 12.5 14.0

%REE+Y 73.4 64.3 65.0 68.0 77.9 78.0 69.6 83.0 77.3 78.2 78.5 75.2 67.2 72.2 76.9 75.3 73.3 78.1 79.0 78.6 75.4 78.8

Sidi Ahmed veinParalleles veins Ighrem Aousser vein
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Stage Mineral Sample δ
18

OSMOW δ
13

CPDB δ
18

OSMOW δ
13

CPDB δ
18

OSMOW δ
13

CPDB

T = 230°C T = 230°C T = 280°C T = 280°C

Sidi Ahmed vein

P1 siderite Tz10/23 21,3 -5,1 11.9 -3.6 14.0 -2.6

P1 siderite Tz10/22 21,1 -4,2 11.8 -2.6 13.8 -1.6

P2 ankerite Tz10/18 21,9 -3,6 13.1 -2.1 15.0 -1.0

P2 ankerite Tz10/23 24,0 -5,0 15.1 -3.4 17.1 -2.4

P2 ankerite Tz10/17 19,2 -4,0 10.4 -2.4 12.4 -1.4

P2 ankerite Tz10/36 20,2 -3,7 11.4 -2.2 13.4 -1.2

P2 ankerite Tz11/49 21,6 -11,2 13.3 -9.6 15.2 -8.6

P3 siderite Tz10/18 21,5 -4,5 12.1 -3.0 14.2 -2.0

P4 calcite Tz11/53 20,3 -8,3 12.0 -6.7 13.9 -5.7

P4 calcite Tz11/49 22,0 -8,7 13.7 -7.2 15.6 -6.2

P4 calcite Tz10/25 11,9 -5,7 3.6 -4.1 5.5 -3.1

Ighrem Aousser vein

P1 siderite Tz10/29 19,1 -4,5 9.7 -3.0 11.8 -2.0

P2 ankerite Tz10/30 23,0 -4,1 14.2 -2.6 16.2 -1.6

P2 ankerite Tz10/33 20,9 -3,8 12.0 -2.3 14.0 -1.3

P3 siderite Tz10/33 21,4 -4,7 12.1 -3.2 14.2 -2.2

P4 calcite Tz10/29 20,0 -6,2 11.7 -4.7 13.6 -3.7

P4 calcite Tz10/31 20,1 -6,2 11.8 -4.7 13.7 -3.7

P4 calcite Tz10/32 20,3 -6,0 12.0 -4.4 13.9 -3.4

P4 calcite Tz10/34 19,5 -6,4 11.2 -4.8 13.1 -3.8

P4 calcite Tz11/58 21,0 -7,3 12.7 -5.8 14.6 -4.8

Signal vein

P1 siderite Tz12/01 20,4 -5,1 11.1 -3.6 13.2 -2.6

P2 ankerite Tz12/02 24,2 -5,3 15.3 -3.8 17.3 -2.7

P4 calcite Tz10/09 19,0 -2,5 10.7 -1.0 12.6 0.1

P4 calcite Tz12/01 16,1 -5,8 7.8 -4.3 9.7 -3.2

Table 2. C-O isotopic compositions of gangue carbonates from the Pb-Zn-Ag ore. C-O isotopic compositions of the fluid in 

equilibirum with the carbonate have been calculated using Zheng (1999) and Chacko et al. (1991) thermometers.
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Stage Mineral Sample [Nd] ppm [Sm] ppm
143

Nd/
144

Nd (2σ)
a 147

Sm/
144

Nd εNd0
(143

Nd/
144

Nd)255 Ma
b

εNd255 Ma
b

% basement

Sidi Ahmed vein

P2 ankerite Tz10/17 30.64 11.94 0.512370 (5) 0.2353 -5.23 0.511977 -6.49 0.53

P2 ankerite Tz10/22 31.08 8.26 0.512256 (10) 0.1604 -7.45 0.511988 -6.28 0.50

P2 ankerite Tz11/49 67.11 15.78 0.512201 (2) 0.1419 -8.53 0.511964 -6.76 0.56

P3 calcite Tz10/25 80.98 23.96 0.512221 (4) 0.1785 -8.14 0.511923 -7.56 0.66

P3 calcite Tz11/48 46.48 13.55 0.512197 (2) 0.1759 -8.61 0.511903 -7.94 0.71

P3 calcite Tz11/53 170.91 49.24 0.512246 (4) 0.1739 -7.65 0.511956 -6.91 0.58

Ighrem Aousser vein

P2 ankerite Tz10/30.2 303.16 112.91 0.512390 (3) 0.2247 -4.84 0.512015 -5.76 0.44

P2 ankerite Tz10/31 154.32 48.90 0.512252 (3) 0.1912 -7.53 0.511933 -7.36 0.64

P2 ankerite Tz10/33.1 8.90 3.14 0.512343 (17) 0.2127 -5.76 0.511988 -6.28 0.50

P2 siderite Tz10/33.2 42.58 17.87 0.512374 (5) 0.2532 -5.15 0.511951 -7.00 0.59

P3 calcite Tz11/58 31.98 8.48 0.512206 (3) 0.1601 -8.43 0.511939 -7.24 0.62

P3 calcite Tz10/28 114.00 26.09 0.512176 (3) 0.1381 -9.01 0.511946 -7.11 0.61

P3 calcite Tz10/29 130.39 41.51 0.512246 (3) 0.1921 -7.66 0.511925 -7.51 0.66
a 

The figures in parentheses refer to uncertainties of the measurements on the last decimals.
b
 εNd0 refers to present day; ɛNd255Ma calculated at the age of the Pb-Zn-Ag formation (Rossi et al., 2016) using the following present-day values 

for CHUR: 
147

Sm/
144

Nd=0.1966 and 
143

Nd/
144

Nd=0.512638 (Jacobsen and Wasserburg, 1980).

Table 3.  Sm and Nd contents and ɛNd of the gangue carbonates from the Pb-Zn-Ag deposit of Tighza district.
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Table 4. Noble gas compositions of fluids trapped in sulphide minerals from the Tighza polymetallic district.

mineral vein mass g He x 10
-12

 mol/g
3
He/

4
He

40
Ar x 10

-12
 mol/g

40
Ar/

36
Ar

38
Ar/

36
Ar

W-Au

Tz11/23 As-pyrite W1N 0.500 7.41 ± 0.107 1.814 ± 0.097 7.33 ± 0.286 256 ± 10 0.189 ± 0.013

Tz10/07 As-pyrite Signal 0.300 8.17 ± 0.117 1.083 ± 0.069 4.08 ± 0.166 304 ± 12 0.181 ± 0.012

Tz10/01 Pyrite W1N 0.400 4.61 ± 0.069 1.658 ± 0.053 8.77 ± 0.215 328 ± 13 0.168 ± 0.012

Pb-Zn-Ag

Tz11/35 Pyrite Sidi Ahmed 0.305 16.3 ± 0.240 0.054 ± 0.005 20.2 ± 0.400 315 ± 12 0.180 ± 0.012

Tz10/53 Pyrite Sidi Ahmed 0.423 1.42 ± 0.021 0.018 ± 0.012 2.67 ± 0.125 299 ± 12 0.187 ± 0.013

Tz10/54 Sphalérite Sidi Ahmed 0.414 7.81 ± 0.112 0.103 ± 0.011 19.6 ± 0.750 284 ± 11 0.185 ± 0.013
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galènes
206

Pb/
204

Pb ± 2σ
207

Pb/
204

Pb ± 2σ
208

Pb/
204

Pb ± 2σ

Tz10.30_1 18,14 0,03 15,54 0,03 37,74 0,09

Tz10.30_4 18,13 0,02 15,54 0,02 37,78 0,06

Tz10.30_5 18,13 0,02 15,54 0,02 37,78 0,07

Tz10.30_6 18,16 0,02 15,56 0,02 37,60 0,05

Tz10.30_7 18,20 0,01 15,62 0,01 37,50 0,03

Tz10-31_8 18,23 0,01 15,57 0,01 38,34 0,03

Tz10-31_9 18,26 0,01 15,62 0,01 38,47 0,02

Tz10-31_10 18,27 0,02 15,57 0,03 38,42 0,04

Tz10-35_27 18,50 0,01 15,79 0,01 39,47 0,01

Tz10-35_29 18,40 0,02 15,72 0,02 39,10 0,05

Tz10-35_30 18,43 0,01 15,72 0,01 39,19 0,02

Tz10-35_31 18,38 0,01 15,69 0,01 39,10 0,02

Tz10-35_33 18,41 0,01 15,72 0,01 39,16 0,02

Tz10-35_34 18,47 0,01 15,75 0,01 39,42 0,03

Tz10-39_21 18,46 0,010 15,71 0,01 39,30 0,04

Tz10-39_23 18,38 0,016 15,68 0,01 39,08 0,04

Tz10-39_24 18,42 0,019 15,70 0,02 39,11 0,06

Tz11_42Bgal@11 18,127 0,007 15,48 0,01 38,089 0,01

Tz11_42Bgal@12 18,121 0,009 15,48 0,01 38,054 0,02

Tz11_42Bgal@13 18,122 0,007 15,48 0,01 38,089 0,01

Tz11_42Bgal@14 18,152 0,009 15,51 0,01 38,147 0,02

Tz11_42Bgal@15 18,14 0,009 15,51 0,01 38,141 0,02

Tz11_42Bgal@16 18,16 0,007 15,51 0,01 38,182 0,02

Tz11_42Bgal@17 18,14 0,008 15,49 0,01 38,14 0,02

Tz11_42Bgal@18 18,133 0,007 15,50 0,01 38,137 0,02

Tz11_42Bgal@19 18,137 0,007 15,51 0,01 38,15 0,02

Tz11_42Bgal@20 18,127 0,007 15,49 0,01 38,118 0,02

Tz11_42Bgal@21 18,125 0,007 15,49 0,01 38,104 0,02

Tz11_42Bgal@22 18,113 0,007 15,48 0,01 38,094 0,01

Tz11_42Bgal@23 18,127 0,006 15,49 0,01 38,114 0,01

Tz11_42Bgal@24 18,142 0,007 15,50 0,01 38,158 0,01

Tz11_42Bgal@25 18,125 0,006 15,48 0,01 38,081 0,01

Tz11_42Bgal@26 18,129 0,009 15,49 0,01 38,096 0,02

Tz11_42Bgal@27 18,163 0,018 15,55 0,03 38,285 0,10

Tz11_42Bgal@28 18,044 0,015 15,40 0,01 37,746 0,03

Tz11_42Bgal@29 18,082 0,016 15,43 0,01 37,752 0,04

Tz11_42Bgal@30 18,091 0,016 15,43 0,01 37,767 0,03

Tz11_42Bgal@31 18,084 0,011 15,42 0,01 37,73 0,02

Tz11_42Bgal@32 18,081 0,014 15,41 0,01 37,747 0,03

Tz11_42Bgal@33 18,055 0,012 15,40 0,01 37,74 0,02

Tz11_42Bgal@34 18,077 0,013 15,42 0,01 37,768 0,03

Tz11_42Bgal@35 18,06 0,012 15,41 0,01 37,752 0,03

Ighrem Aousser vein (3F)

Sidi Ahmed vein (1270)

Signal vein(1270)

Table 5. Pb-Pb isotopic ratios of galena.
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Tz10-43_12 18,23 0,012 15,58 0,01 38,37 0,03

Tz10-43_17 18,39 0,015 15,68 0,01 39,01 0,03

Tz10-43_18 18,40 0,013 15,73 0,01 39,12 0,03

Tz10-43_20 18,44 0,007 15,73 0,01 39,28 0,02
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Figure 2        Rossi et al. 
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M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Kaolin Mine Mispickel Tighza peaks

A) 320-300 Ma - Intrusion of Tighza granitic stocks

S N

Tighza fault 

S N

W-Au ores

B) 300-280 Ma - W-Au deposit and associated granites

W1N W6
W5

?

?

Meteoric
�uids

Mantle-derived
�uids

Crustal + magmatic �uids

K- rich
hydrothermal halo

~1 km

~1 km

Tighza fault 

S N

C) 280-240 Ma - Pb-Zn-Ag deposit and related magmatism

?

?

Meteoric
�uids

255 Ma assumed
topography

Present day
topography

Crustal �uids

FP

SA
IA Signal

S18 FN

Pb-Zn-Ag ores Pb-Zn-Ag ores

Lower crust-derived �uids
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Highlights Rossi et al. JAES  
 

� Pb-Zn-Ag vein-type mineralization disconnected from adjacent late-Variscan granites 
� Epithermal Pb-Zn-Ag veins related to Permo-Triassic extension and magmatic activity 
� Complex hydrothermal system resulting from mixing various crustal fluids 
� A new metallogenic model for Pb-Zn-Ag veins and new exploration guides 


