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SUMMARY

Rheological parameters describe properties of the lithosphere, but it is generally
impossible to measure them in situ. Thus a model has to be developed to relate
parameters to observables. We consider flexure of the oceanic lithosphere. A
quantitative representation of a brittle-elastic-ductile rheology is based on a
semi-empirical model. The non-linear problem of plate flexure is solved by the
multiple-shooting algorithm using a Runge-Kutta procedure from analytical solu-
tions for an elastic model. The bending moment and its derivatives have been
deduced analytically to improve the accuracy and speed of computations. A family
of numerical solutions was built that describes flexure of the oceanic lithosphere at
subduction zones for various ages, strain rates, and activation energies. Relative
contributions of rheological parameters are discussed. The model is then used to
evaluate rheological parameters of the Kuril trench from gravity data. The strain
rate estimates are found to be about 3-10 "**Ps~! assuming creep activation
energies between 520 kJ/mole and 550 kJ/mole for lithospheric age ranging from
90 Ma to 110 Ma.

Key words: flexure, gravity, oceanic lithosphere, rheology.

INTRODUCTION

Various observable features in the ocean, such as outer rises
on the oceanic sides of deep-sea trenches or moats flanking
seamount chains, are explained by flexure of the oceanic
lithosphere (Vening-Meinesz 1941; Gunn 1943). Many
studies showed that flexure of the lithosphere depends on
whether the lithosphere is elastic (e.g. Vening-Meinesz
1941; Gunn 1943; Hanks 1971; Watts & Talwani 1974;
Parsons & Molnar 1976; Caldwell et al. 1976), viscous (De
Bremaecker 1977), viscoelastic (Melosh 1978), perfectly
plastic (Lobkovsky & Sorokhtin 1976), or elastoplastic
(McAdoo, Caldwell & Turcotte 1978; Turcotte, McAdoo &
Caldwell 1978; Bodine & Watts 1979; Chapple & Forsyth
1979). Thus rheological parameters describe mechanical
properties of the lithosphere (Kirby 1977; Goetze & Evans
1979; Brace & Kohlstedt 1980; Kirby 1983; Kirby &
Kronenberg 1987; Ranalli & Murphy 1987). In fact,
rheology controls stress and deformation of the lithosphere
subjected to external forces, such as loads, as well as the
evolution of deformations with time.

* Presently at Institut de Physique du Globe de Paris, Laboratoire
Gravimétrie et Géodynamique, Case 89, 4 Place Jussieu, F-75252
Paris 03, France.

On the basis of the realistic brittle-elastic-ductile rock
rheology of the oceanic lithosphere, Goetze & Evans (1979)
suggested a multiple-layer model represented in terms of the
yield stress envelope (YSE). The model was used by many
authors (e.g. Bodine, Steckler & Watts 1981; McNutt &
Menard 1982; McAdoo, Martin & Poulouse 1985;
Chamot-Rooke & Le Pichon 1989). This model appears to
explain successfully flexure observations as well as to
overcome limitations of the purely elastic model (Deplus
1987) that fails to predict steep bathymetry slopes for many
trenches (Caldwell et al. 1976) and generally requires stress
in rocks which is too high based on experimental data on
rock mechanics.

According to the model, in particular, flexure of the
lithosphere is controlied by creep laws that act in the ductile
part of the lithosphere and involve strain rate, physical state
(temperature) and properties (creep-activation energy) of
the rock. The thermal structure of the oceanic lithosphere
has been widely discussed (e.g. Turcotte & Oxburgh 1967,
Parker & Oldenburg 1973; Parsons & Sclater 1977,
Cazenave 1984; Denlinger 1992; Stein & Stein 1992) and
seems rather well evaluated. Creep activation energy is
known from laboratory experiments (Goetze & Evans
1979). Finally, difficulty in measuring in situ does not permit
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us to obtain directly present values of strain rate, but several
authors have estimated them (Goetze & Evans 1979,
Chapple & Forsyth 1979; Bodine et al. 1981; McNutt &
Menard 1982).

Nevertheless, no complete analysis of the trade-offs
between these parameters has been carried out previously.
Our goal in the paper is to develop a numerical method to
compute flexure of the oceanic lithosphere in order to better
address this question and to investigate if in situ estimations
of these parameters could be obtained by studying flexure.

RHEOLOGY MODEL

To treat the brittle-elastic-ductile rheology, we reduce it to
the multiple-layer elastoplastic model described by means of
YSE (e.g. Goetze & Evans 1979; McNutt & Menard 1982;
McAdoo et al. 1985). Corresponding values of the highest
permissible  difference  of the principle stresses,
A0 = (0, — 03)mayx OF rather its signed modification Ao,
as determined by semi-empirical laws, are assigned to each
lithospheric level for both compression and tension.

Upper layers of the oceanic lithosphere are exposed to
brittle failure and to frictional sliding on fault surfaces. The
process is controlled by Byerlee’s laws (Byerlee 1978)
(following Byerlee, we treat compressive stress as positive):

7=0.850, at o,=<0.2GPa (1a)
7=0.60,+0.05GPa at 02GPa<o,<2GPa (1b)

where o, is the normal {confining) stress, and 7 is the
highest permissible tangent (breaking) stress. Using Mohr’s
circle diagram it is possible to show that the result is nearly a
linear dependence of Ao, on depth (see Appendix A for
details).

Following McAdoo et al. (1985), we describe Ao, in the
upper oceanic lithosphere by means of two vertical gradients
only: ypc=066-10°Pam™ for compression and
ypr=—022-10°Pam™" for tension. This approach does
not take into account explicitly the sea-water loading and
gives absolute values of Ao, somewhat smaller than those
from more accurate formulae derived in Appendix A.
However, both descriptions seem to be more or less
adequate, since water can penetrate into the upper layers of
the oceanic lithosphere. The possible resulting serpentiniza-
tion and filling of pores by fluids may then substantially
decrease the strength of rocks (Kirby & Kronenberg 1987).

In general, rheology of the upper oceanic lithosphere is
defined by lithostatic pressure only. It depends on the depth
and, to some extent, on the specific vertical density
distribution.

Lower layers of the oceanic lithosphere obey the
power-creep law (2b) and its modification at higher
differences of the principle stresses in Peierl’s region (2a)
(Goetze & Evans 1979):

- 2
é=Clexp[—&<l——U' 0-3)],
RT i
at o, ~c3>02GPa (2a)
é=C2(01—03)"exp<—%>, n =3,

at o,—0,<02GPa (2b)

where T is absolute temperature in K, & is strain rate in s~ ',

R=8314)/(K -mole), C,=57-10"s"", C,=7.0-107"
s 'Pa?, 0,=85GPa; Q,=536k)/mole and Q,=
523 kJ/mole are respective activation energies. o, and o,
are the maximal and the minimal principle stresses
respectively so that always o — o, =0. Unlike Byerlee’s
laws (1), there is no dependence on . As a result, relative
to compression and tension the laws (2) are symmetrical.

The relations (2) are obtained from experimental studies
of dunites containing dry olivine that represent the upper
mantle rocks. According to (2), the relationship between £
and o, — o, strongly depends on temperature, hence on
depth below the surface of the plate and on the lithospheric
age.

The temperature distribution with depth is computed
using cooling models of the oceanic lithosphere. Since recent
studies note opposing effects that can place standard
isotherms both shallower (Stein & Stein 1992) and deeper
(Denlinger 1992) than generally accepted cooling models
predict, we adopt, following McAdoo et al. (1985), the
simple half-space model (Turcotte & Oxburgh 1967; Parker
& Oldenburg 1973) for ages 80 Ma or less:

T =Tyerf{z/[2(kt)'*]}, t<80Ma (3a)

and for ages greater than 80Ma we use the following
first-order approximation of the plate model (Parsons &
Sclater 1977):

2 .3 2kt
Tzﬁ)l:§+—sin<42)exp(—xz)], 1>80Ma  (3b)
a " a a

where T is temperature, °C, T; is zero-age temperature, k is
thermal diffusivity, ¢ is age, z is depth, a is thermal plate
thickness. We use 7,=1300°C, a=125km, and
k=10"°m’s™".

We deal with lithospheres older than 30 Ma, so we do not
need to distinguish the young lithosphere cooling regime
(Cazenave 1984) as well as formation processes of the
lithosphere in the vicinity of mid-ocean ridges. We perform
computations to an age of 160 Ma.

To constrain YSE, we fix different strain-rate distributions
with depth in the lower oceanic lithosphere (e.g. Goetze &
Evans 1979; Bodine et al. 1981; McNutt & Menard 1982;
McAdoo et al. 1985; Chamot-Rooke & Le Pichon 1989).
Each distribution is considered to be the limit of the elastic
stress and the border between elastic and plastic regimes,
such that the strain rate and the temperature of a layer are
unequivocally associated with Ao,. We varied the strain rate
from 107'°s™" to 107 s™’; assuming that strains of a few
per cent develop over 107yr, a simple kinematic scheme
(e.g. Goetze & Evans 1979) gives ¢ = 107'°s™!, whilst more
elaborate estimates provide strain rate from 10~ '¥s™! or
107" 57" under seamounts and up to 107 '®s~ " or 107'%s7!
at subduction zones {Bodine e a/. 1981; McNutt & Menard
1982). Other authors (e.g. Chamot-Rooke & Le Pichon
1989, and McAdoo et al. 1985, for the lower oceanic
lithosphere; Fadaie & Ranalli 1990, for the continental one)
usually assume strain rate to be of the order of 107'®s™! or
107357 to model rheology.

A change in the strain rate by an order of magnitude
makes a noticeable effect on YSE that is larger than the
error introduced by the approximation of YSE (see Fig. 1).
The depth where the linearized Ao, equals zero is
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Figure 1. YSE for the oceanic lithosphere, i.e. Ao, (see text and
Appendices), 10* Pa, horizontal axis, versus depth from the top of
the lithosphere, km, vertical axis. Curves are shown for 90 Ma old
lithosphere. Byerlee’s laws I(1a) and 11(1b) are shown for the upper
lithosphere as deduced in Appendix A, eq. (A12), in as much as the
linear approximation after McAdoo et al. (1985) was used for
computation (dashed lines). Three values of the lower lithosphere
strain rate are shown: 10 '®s™', 105", 107 s™". The linearized
Aw, arc also shown with dashes. Difterences of the principle stresses
Ao in the intermediate elastic layer are shown by dotted line. T,
denotes the thickness of the mechanical lithosphere, zy and zp
designate the upper and the lower depth borders of the elastic layer,
z, shows the neutral plane that does not coincide generally with the
middle plane of the plate due to the asymmetry of YSE. The
vertical gradients of Ac, are denoted by vy (brittle compression),
vor (ductile tension), ygr (brittle tension), and ypc (ductile
compression).

considered to be the base of the mechanical oceanic
lithosphere, z,,. The thickness of the lithosphere above this
level corresponds to the thickness of the mechanical
lithosphere, T,,,. As a result the lower part of YSE can be
described by means of two values: 7, and the absolute value
of the vertical gradients of Ao, y; =|yprl =|ypd). Since
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Figure 2. Absolute value of the vertical gradients of Ao, in the
lower ductile part of the oceanic lithosphere, y,, 10°Pam "', as a
function of the strain rate & log;, [¢(s™') - s], horizontal axis, and

the lithospheric age, Ma, vertical axis.
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the upper part of YSE has a constant description, 7, and y,_
are the only variable parameters of the model.

The 2-D distributions of values of 7, and vy, with the
lithospheric age and with the strain rate were computed.
Figs 2 and 3(a) show that (and how) ancient oceanic
lithosphere subjected to slow deformations (low strain rate)
at its base has the same strength properties as the younger
oceanic lithosphere subjected to faster deformations. This
tendency was previously noted by Bodine ef al. (1981).

QOur computations show that the temperature at the base
of the plate (depth z,) depends on strain rate at a given
activation energy (Table 1): if the strain rate is higher, then
warmer zones of the lithosphere are included in 7. It

Logl0 (StrainRatexs)

519 -18 -17 -16 -15 -14 -13
B— : . —1 2
g @) \ \ @
- N \ \ \
< \ N\ Y o
= N N\ \ NEE
Q A N\ \ A =]
21 \\ \ S N2
o N AN \ N\
R \ PR
e “ . N N \\\ N s
o . N . " o
i D ;\\ 8 0‘\ \\\ N =
=8 o S o 18 ¢
5o \ N o g
o] . N S S a
- . .
3 T~ ~. S s
. ; _
e
(=)
w
o
3
o)
g
™ - g
-19 -18 -17 -16 -15 -1y ~-13
LoglQ (StrainRatexs)
Logl0 (StrainRatexs)
519 -18 -17 -16 -15 -14 -13
C : - 3
2 \ G
B \ E
81 \\ \ =
o \ [}
= &
- N -
il ; 6\0 \ ; @
= E q + 9 =
E”%l \ 2
o o
@ o
R \ \\ bR
o 5 ™~ ~
2 0\ \\\ &
S 40 ~ ~t S
\\\ \\*—\,,\\
3 —_— . T . g
-19 -18 -17 -16 -15 ~14 -13

LoglO (StrainRatexs)

Figure 3. T, (see text), km, as a function of the strain rate &
log,[£(s™') - s]. horizontal axis, and the lithospheric age, Ma,
vertical axis. Two sets of activation energies arc represented: (a)
Q,=536kl/mole  and  Q,=523kl/mole; (b) @, =(0:=
550 kJ/mole.

9102 ‘€2 13NBnY U0 SYND-1SIN| I /Bio'seuinolpioixor1[6;/:dny wouy pepeojumoq


http://gji.oxfordjournals.org/

212 A. N. Panteleyev and M. Diament

Table 1. Temperature at the base of the mechanical occanic
lithosphere, z,. as the function of the strain rate (see text).
Computation was done assuming activation energy values after
Goetze & Evaus (1979): Q, = 536 kJ/mole and Q, = 523 kJ/mole.

Strain rate, s-> 10712 10718 10717 10716 10715 10714 10713

Temperature, 'C 64514 67014 700+4 735%4 77015 810f5 850%5

follows that T, depends on both the strain rate (that defines
temperature at depth z,) and the lithospheric age (that
defines vertical temperature distribution). More accurately,
there is also a slight decrease of temperature at depth z,
with age, in particular for the younger lithosphere, higher
strain rates and activation energies. As a result temperatures
for the lithospheric age of 30 Ma are about 10 °C higher than
those shown in Tables 1 and 2. Results shown in Tables 1
and 2 appear to be constant for ages ranging from 50 Ma to
160 Ma. Tables 1 and 2 indicate that an increase of
activation energies by an order of 4 per cent increases the
temperature at depth z, by 30+ 5°C that conforms to an
increase of T, by 2.1+09km (larger increases of
temperature and 7, correspond to higher strain rate; a
larger increase of T, is also associated with older ages).

We use activation cnergies given by Goetze & Evans
(1979): Q,=536k]/mole and Q,=523kJ/mole. An in-
crease of them by roughly 4 per cent for young, slowly
deforming lithosphere or up to 10 per cent for the old,
rapidly deforming lithosphere is nearly equivalent to flexure
of the lithosphere at a strain rate increased by an order of
magnitude (Fig. 3). On the other hand, a 4 per cent increase
of the two activation energies gives rise to changes of the
flexural properties of the lithosphere that are similar to
those arising when the lithosphere grows old by
approximately one eighth of its age (Fig. 3).

Clearly strain rate, creep-activation energies, and thermal
structure of the lithosphere together affect mechanical
properties of the lithosphere so that it is very difficult to
separate their contributions. However, they may be
estimated from studying flexure of the lithosphere in view of
additional considerations.

MECHANICAL MODEL

Flexure of the oceanic lithosphere can be studied beneath
seamounts or in the vicinity of subduction zones. We chose
to model the subducting lithosphere in order to avoid
complexities arising from poor knowledge of shape of weak
flexure, peripheral basin infilling, and deep heterogeneities,
as well as from rejuvenation of the lithosphere at hot spots.
The subducting oceanic lithosphere is taken as a thin plate
overlain by sea water and underlain by heavy liquid as dense
as upper mantle rocks (Fig. 4). Assuming no horizontal
external forces which might be important only for very thin
lithosphere (e.g. Turcotte & Schubert 1982), the equation of
equilibrium is
da’M

e +(Pm —Pwigw =0 4)

Table 2. Same as Table 1 but with larger activation-energy values:

0,=0,=550kI/mole.
Strain rate, s~ 10719 10718 10737 10716 10715 30714 10713

Temperature, “C 670+3 700+4 7304 765%5 80015 840+5 885+5

:

u z

Figure 4. Mcchanical model of the subducting plate:

bending moment M—positive counterclockwise;

z-axis, deflection w—opositive downward, wg-the outer-rise height;
x-axis-—positive oceanward, w(xg) = wg;

sea-water density p,, < mantle-rock density p,,..

We sclect the coordinate-axes start point so that w}x,.vﬂ=0. It is
treated as the ‘zero point™ at the trench axis x <0, at the outer rise
x>0

where M is the flexural moment (counterclockwise positive),
x is horizontal coordinate, positive oceanward, p., and p,,
are densities of the upper mantle rock and of the sea water
(we later used p,, —p, =2.30-10°kgm™), g=98m s s
gravity acceleration, and w is vertical deflection of the plate.
Eq. (4) is valid for any kind of rheology. In our case we
deduce the non-linear ordinary differential equation in the
complete form.

We do not allow any total compressive or tensile force
along the plate, so we define ‘the bending stress’ as
Ao(x,z)=0,,.(x,2)— 0, (x,2). It is well known for the
elastic layer (Turcotte & Schubert 1982) that

(z — 2 Ed’w(x)

A -
ol 2) 1-v?  dx?

&)
where z is depth counted down from the top of the
lithosphere, z;, is depth to the neutral plane, E is Young’s
modulus, and v is Poisson’s ratio. In the elastic layer we set
E =7-10'""Pa and v =0.25. From (5), the bending moment
for the purely elastic layer is
d*w(x ET?
M) =) i p=—tle (6)
dx 121 — v*)

where D is rigidity, and 7, is thickness of the elastic layer.
Substitution of (6) in (4) gives a linear differential equation.
Its solution is

w(x) =e *"*[C, cos (x/A) + C,sin (x/A)]
+€e"*[Cy cos (x/A) + C,sin (x/A)] )

where A =[4D(p,, — p.,)” ' g~']' is the flexural parameter;
C,, C,, C;, C, are constants defined from boundary
conditions, as a rule C; = C, =0 to prevent any exponential
growth of the solution (7) at x — . By selecting the starting
point of the horizontal coordinate, another constant is
excluded, for instance, w(x) = C,e ™ sin (x/A).

The vertical gradient of stress in the elastic layer as
derived from (5) is

_dAo(x,z) E d*w(x)
az 1-v2 dx®

y(x) ®)

The eq. (4) is written assuming that thickness of the plate is
neglible as compared to the flexure radius. Thus we have a
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physical restriction for (8) in our approach:

E |dw(x)] 7-10Pa B
= c107°m™!
=TT e | 120292
=0.8MPam .

It is also possible to show that this restriction prohibits
considering cases in which the intermediate elastic layer
between the brittle and ductile zones somewhere is less than
about 3 km.

In addition we assume also that the upper and lower
bounds of the intermediate elastic layer lie respectively in
the brittle and ductile portions of the YSE. If the plate is
convex upward, the last condition is always satisfied due to
lvecl > lverl and ype=—7vpr<7yer<0 (see Appendices
and results of computations of y; in Fig. 2). If the plate is
convex downward, it is possible to show that the condition
may be violated only by very strong flexure of the plate edge
upward: it requires a 5 km elevation of the relief in a2 100 km
horizontal distance due to the downward-convex plate
flexure only. Such flexure does not seem to occur in nature.

Using notations T, zg, 2p, and z, of Fig. 1, and assuming
zero horizontal external force, we get

Y3
ig=—"
Y~ Vs
that allows us to deduce
T

= T
and zp, = Y%~ Ypim
Y~ Yo

Zu(y) Zn(y)
Ao{x, z)dz =j Zyp dz +J (z —z9)vdz
o

(] Zy(y)

T
[ e-Tovds
Zp(y)

:Z.[ Yo (Tm“zo)z" ¥B 2(2)]20
2 Ly~ Yo~ Y

©
where yg and vy denote either yg and ypp, O Yyt and
Ype. We consider yg and vy, as independent from z and
later also from x. This assumption for upper brittle layers of
the lithosphere is a consequence of our model. As
concerning lower ductile layers, vy,, depends on strain rate
that changes along the plate and probably with depth. The
lower ductile layers represent a relatively thin part of the
lithosphere so that vertical distribution of strain rate there
seems to be quasi-constant (obviously we can neglect
changes substantially less than an order of magnitude of
strain rate). A relative distribution of strain rate along a
subducting plate perpendicular to the trench was obtained
by Chapple & Forsyth (1979). In particular, a pronounced
peak of strain rate was shown close to the trench. According
to estimations cited above, far from the trench the strain
rate is less about two or three orders of magnitude that
diminishes YSE, but plate curvature, bending stresses and
moment vanish much faster. In addition, far from the trench
radius of plate curvature is very large so that it is
comparable with the radius of the earth and we cannot
consider so fine effects in our plane 2-D model. Thus in our
approach it seems to be natural to treat YSE as constant.

From (9) we have immediately

T
Zly(0)] = = (10)
Yp Y~V

Influence of rheological parameters 213

The bending moment takes the following form:

Tm

M[y(x)] = A Aa(x, 2)[z — z(¥)] dz
Zy(y)

=f( Ye2 [z — z2o(y)]dz

)

zn(y)
+j y - [z = zo(¥)) dz

Zw(v)
Tm
+ j Yo (2 — Tullz — 20(y)] dz
Zn(y)

_ 7323(7) _ [yzoly) — YDTm]S__ ¥p
6(va—=7)  6(rp—7)° 6

It follows from (10) and (11) that at infinitesimal flexure

T3 (11)

lim zy(y) = T,/2,  lim M(y) =0,
y—0 y—0

and

lim M(y)/y=T2/12

y—0

so that, as compared to (6) and (8), the plate behaves like it
is purely elastic. On the other hand, for the upward convex
plate (10) gives

lim 20(¥) = T/ (1 + Vygr/ o)
y— -+

lim M(y)= —‘YBTT::’n/[6(1 + Vyar/ Yool

y— 4o

i.e. the permissible bending moment is substantially limited
(restrictions do also exist for the downward convex one but
may not be reached in fact). We note that the so-called
effective rigidity was used by many authors (e.g. Bodine et
al. 1981; McAdoo et al. 1985; Chamot-Rooke & Le Pichon
1989). Similar to (6) and using (8) it can be defined as
D 4(v) = M(y)E/[(1 — v*)y]. Obviously it depends on v,
i.e. on x, so that its using in (4) requires to take into account
also its derivatives.

We do not deal with the effective rigidity, but deduce
directly derivatives of the bending moment to present eq.
(4) in the complete form for our rheology. Implying that

,_dy(x) .
y'=——", we note:
dx
dzoly()] _dzo(y) ,__ ve'(¥s = ¥p)2oY’
dx dy 275 (v8 = V)T 20)Tn

that gives dM(x)/dx = y'F(y) where
Gys =Y 5, (vpln—72)°
6(rs -7 " 6(rp—7)
X[(y =3vp)zo+2yp 1)
YY" (Y8~ ¥Yp)Zo
4yp (v~ VATn— 2T
[ 722(2) _ (voTm— 720)2]
(re=v)°  (vo— )

F(y)=

(12)
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with z, from (10). Further,

d’M(x)
dx?

Y'F(y)+ y?F'(y)

where
_dF(y)_ v
Cody (e
L T = 720)7p
(vo— )
372')’%) “(ys— YD)Z?)
2(yg— 'Y)SYD (T, — 20T
(o T = Y20) Y8 (Y8 — Yo)Zo
20y = V) (vo = ¥’ v0 (T~ 20) T
X[2y* = yye ~ ¥8¥p)¥p T
- Q2yyo T ¥Ys ~3¥8Yn) Y20
e (¥~ ¥p)’%0
8(ye 7)47%) (T~ ZO)3T12n
Slﬂm___4_z() 22, Yol Y<o
ey " (o)

F'(y)

(Tm - Z())2

X(**ﬂ%+57%75+27oa7;*37nTiﬂ- (13)

Finally = we  define  another  function: B(x)=
Ew{x}/(1 —v?). We get by substituting (13) in (4) and
keeping in mind that 8" =1vy:

1-v2
BUF(B) +— g (pm = B
BP = p (14)
F(B")
where F and F’ are defined in (12) and (13). We obtain an
essentially non-linear differential equation of the fourth
order.

For the fourth-order eq. (14) the boundary problem
requires four boundary conditions. We showed that the
plate at infinitesimal flexure appears to be purely elastic. It

Trench
BRITILE SLIDINGJ

—

P

[
l
)
|

is obvious that the solution must be bounded at x — =, but
there is no general solution in the complete form for the
non-linear eq. (14) to put Cy=C,=0 similar to (7).
Nevertheless we can represent the same conditions in a
different form. By differentiating (7) for three times we
obtain a system of four linear equations. It is easy to show
that C,= C, = 0 is equivalent to

d 2 32
wix) + A O A dw)
dx 2 dx”
> 2 3 (15)
dW(X)+ d w(x) IV/\*a"w(x)_
dx dx? 2 dx®

taken at any point of the purely elastic plate. For our plate
these conditions should be assigned to some far point such
that x/A >> 1 where A may be defined analogous to (7). The
position of the point is to be controlled during the numerical
solution so that results of computations would remain stable.

Two other conditions can be assigned from mcasurements
near the trench:

{wh)=m

w'(x;) =w/

(16)

For instance, at the crest of the outer rise w, equals its height
wg (Fig. 4), and w;=0.

It is easy to see that eq. (4) in form (14) can be solved by
the Runge-Kutta procedure. We used such fourth-order
procedure within the framework of a multiple-shooting
algorithm. The shooting was realized from the purely elastic
solution derived analytically to the solution of the non-linear
problem by step-by-step increase in the non-linearity of the
problem.

RESULTS OF MODELLING

A family of numerical solutions has been built that describes
the flexure of the oceanic lithosphere at subduction zones.
Fig. 5 shows an example from the family. The oceanic part
behaves purely elastically since it is not flexed and A, is not
reached. Substantial changes in thickness of bnttle, ductile

Ocean

0

25
U

.

L

DUCTILE FLOW

Uepth, km
j 50
[ S

160 75

T T T T T T T

-125-100 -/% 50 -25 0 @25 50

T T T T T T T T T 1

/S 100 125 150 175 200 225 250 275 300

Distance, km

Figure 5. A computed structure of a 100 Ma old oceanic lithosphere exposed to the lower-lithosphere strain rate of 10 °s

571 which means

T, = 60km (an example from the family of solutions, sce text). An outer rise crest as high as jwy = 423 m is located at a distance of xg = 34 km

1o the right from the “zero point’ (sec Fig. 4). The most intensc flexure (corresponding to the minimal thickness of the intermediate elastic

layer) is obtaincd at a distance of [xyy| = 74 km to the left from the ‘zero point’. A dashed hine inside of the clastic layer shows the neutral plane.
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and intermediate elastic layers are observed. The intermedi-
ate elastic layer has a pronounced thickness minimum. As is
well known (e.g. Watts & Talwani 1974) the flexure induced
by the subduction results in an outer rise bulge. It is too
small to be observed in Fig. 5 simply because of the uniform
vertical and horizontal scales.

Figure 6 shows that for a given set of activation energies,
age and strain rate, our model can produce various
outer-rise heights and oceanic slopes in the trench while the
bulge length remains nearly constant. One would think slope
observations in addition to outer rise height data are
necessary to deduce 7. Nevertheless, it would be useful
only for a relatively weak fiexure, for instance, at
seamounts. Oceanic slopes in trenches are steep so that
strong flexure may only give rise to them. ‘Strong flexure’
means that the bending moment is close to being saturated,
the intermediate elastic layer is almost degenerated and the
outer-rise height reaches its maximum. In fact the outer rise
height of 90 per cent of its maximum makes the slope as
steep as 4° only. On the other hand, a 1 m increase of the
outer rise crest at strong flexure makes the intermediate
elastic layer 0.4km thinner with sharp steepening of the
slope. Thus the lithosphere flexure model for subduction
zones should imply outer-rise heights not less than about 99
per cent of their maximal allowed values.

The computations have shown that (and how) the height
(Fig. 7) and the location (Fig. 8} of the outer-rise crest, the
respective free-air gravity anomaly (Fig. 9) as well as the
location of the most intense flexure of the oceanic
lithosphere (Figs 10 and 11) depend on the lithospheric age
and the lithosphere strain rate, and hence on activation
energies in the manner discussed above. We note that the
most intense flexure area whose location is prescribed by
Figs 10 and 11 should contain extremely high vertical
gradient of difference of the principle stresses so that it may
be very active seismically.

A gravity effect of a flexed lithospheric plate was
computed by Parker’s algorithm (Parker 1972) which is very

Distance, km
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Figure 6. Outer-rise topography of 90 Ma old lithospherc exposed
to the lower-lithosphere strain rate of 10 s ', which means
T,, = 57 km. Solutions for the outer-rise crest heights jwg| of 400 m,
360m, and 320 m (99 per cent, 89 per cent and 79 per cent of the
maximal permissible height respectively) are shown. Coordinate
axes correspond 1o Figs 4 and 5. The vertical scale 15 150 times
greater than the horizontal one. The zero level is shown.

Influence of rheological parameters 215
Logl0 (StrainRatexs)
519 -18 -17 <16 -15 -4 .13,
2r— ' — 2
2 |2
g ]
% (ol
- il
$
8 K 8
= N o
9o “ o
S @ 8L
28 52
g 8
,(2 o
81 2
2 0 2
Q Q
- =
@ T el
-19 -18 17 -16,  -15 -1y -13

LoglC (StrainRatexs)

Figure 7. Maximal allowed outer-rise height |wy|, m, as a function
of the strain rate & log,[é(s ') -s], horizontal axis, and the
lithospheric age, Ma, vertical axis.

fast. Unlike geoid, free-air gravity anomalies are almost
insensitive to the way of modelling of the continental slope
of the trench. At the same time this algorithm is stable even
if steep slopes in trenches are present. In such cases it is
sufficient to take into account additional terms of expansion
(usually up to 8). The number of terms was determined by
comparison with the method of Talwani, Worzel &
Landisman (1959). Computations were made for an oceanic
lithosphere composed of three layers (crust sedimentary
rocks and basalts, then upper mantle rocks) of different
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Figure 8. Outer-rise crest location (to the right from the ‘zero
point’, see Fig. 4) xg, km, as a function of the strain rate é:
log,, [£(s') - 5], horizontal axis, and the lithospheric age, Ma,
vertical axis.
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densities. We assume density contrasts to be 1500kgm™

(sea water—crust sedimentary rocks) at the depth of 5km
beneath the ocean surface, 300kgm * (sedimentary
rocks—basalts) at the depth of 1km beneath the ocean
floor, and 500 kg m > (crust-mantle) at the depth of 7km
beneath the ocean floor.

Figures 7-11 also show that flexure of the young
lithosphere, less than about 70 Ma, is mainly controlled by
the age, while for the flexure of the older lithosphere, more
than 100 Ma particularly, the strain rate is more significant.
This result for an ancient lithosphere is illustrated in Fig. 12.
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Figure 10. Location of the most intense flexure of the oceanic
lithosphere (to the left from the ‘zero point’, see Fig. 4) |xy/, km, as
a function of the strain rate & log,, [£ (s ') - s], horizontal axis, and
the lithospheric age, Ma, vertical axis.
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Figure 12. Superposed free-air gravity-anomaly profiles. Broken
curve: interpolated shipboard data across the Kuril trench (100 Ma
old lithosphere) along an orthodromic line from the point 45°N,
151°E by the initial azimuth 142°.

Middle line: a model profile (lithospheric age 100 Ma, strain rate
10 '®s”', hence T,=60km) selected by minimization of rms
deflections from the shipboard data profile.

Two pairs of model profiles are shown (thin lines) to demonstrate
the influence of the strain rate and age variations:

(a) (the lower line) lithospheric age 100 Ma,

strain rates 107'®s™" and 107'*s™! (the upper line);

(b) (the lower line) strain rate 10 tog 1

lithospheric age 90 Ma and 110 Ma (the upper line).

The horizontal coordinate axes correspond to Figs 4 and 5.
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Figure 12. (Continued.)

Therefore, if the age of an ancient subducting lithosphere is
reasonably well known, i.e. with an accuracy of about
10 Ma, the modelling of flexure allows estimation of the in
situ strain rate in the lower lithosphere assuming values of
activation energies. Conversely, if the strain rate is known
(for instance, from subduction velocity data) it is possible to
evaluate activation energies using lithospheric age data.
Determination of joint influence of strain rate and activation
energies on flexure of the young lithosphere requires precise
knowledge of its age.

COMPARISON WITH DATA

Using developed theory we analysed data across the Kuril
trench where the subducting lithosphere presents age about
the border between the Upper and the Lower Cretaceous,
i.e. 100 Ma ranging between 90 Ma and 110 Ma (Nikolayev
1988) that is nearly constant along the trench. In addition,
this area does not contain too many seamounts, ridges or
fracture zones so that the analysis can be made using a large
set of unperturbed profiles. Moreover, the trench is straight
and long, whilst both changes in the trench direction and
trench junctions disturb the outer rise geometry (Deplus &
Dubois 1989). Finally we note that an estimate of strain rate,
averaged over the lithospheric thickness, was given for the
Kuril trench by McNutt & Menard (1982) using a quite
different approach. Thus the Kuril trench appears to be a
good test for our model.

The model may be applied to interpret both gravity and
bathymetry data. As it was already discussed (e.g. Watts &
Talwani 1974) results obtained using gravity profiles are
more reliable, since shipboard marine gravity data naturally
filter the short-wavelength noise that can be present in
bathymetry. Furthermore, and more importantly, the gravity
profiles are less affected by the sedimentary cover. The
presence of sediments can result in a bathymetry that does
not represent the flexure of the lithosphere. In addition,
flexure is also visible in satellite altimetry (McAdoo &
Martin 1984) so that abundant satellite altimeter data allow
us to make a complete regional analysis by the same
method.

In the present study, we used gravity profiles supplied by
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Figure 13. The Kuril trench area. North latitude and east longitude
in degrees are noted on the border of the coordinate grid. The
location of selected data profiles is shown.

the Bureau Gravimétrique International. 12 orthodromic
profiles, 800km long, were constructed by interpolation
from all randomly distributed data points available in the
area. The profiles were taken perpendicular to the trench
(Fig. 13). The spacing along each profile is 7 km. Note that
special care was taken to accomplish interpolations only in
areas with sufficiently dense coverage of data and to avoid
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Figure 14. Averaged relative rms misfits between gravity data and
model profiles. Since free-air gravity anomaly rms deviations
between data and model profiles have a marked range difference
because of diverse roughness of data profiles, we normalized rms
misfits for each profile to the respective minimal value. Then
relative rms misfits have been averaged through all the profiles. A
pronounced minimal rms misfit (vertical axis) at the strain rate
{#: log,y[€(s ') -s], horizontal axis} of about 3.10 s ' s
obscrved.
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the junctions with Aleutian and Japanese trenches as well as
seamounts, ridges and fracture zones.

The modelling of profiles was achieved assuming an age of
100 Ma and varying the strain rate that can represent, as it
was shown above, variations of activation energies. The
estimated strain rate lies between 107 '®s™' and 107 '°s™!
assuming usual @, =536kJ/mole and Q,=523kJ/mole
(Fig. 14). On the basis of a relationship between strain rate
in the oceanic lithosphere, outer-rise geometry and
subduction rate derived from the purely elastic model,
McNutt & Menard (1982) evaluated strain rate for several
trenches; in  particular, for the Kuril trench
£=14-10"""s"" that is consistent with our results. Hence
the values of activation energies used seem to be reasonable.
Note that our model does not use any information about
subduction rate. Taking into account the lithospheric age
range mentioned above as well as uncertainty of strain rate,
according to Figs 3(a) and 7-11, we obtain on the whole
trench approximately: T,=2,=61+3km,
jwg|=435+30m, x5=86+t4km, Agg=38+3mGal,
el =75+ 4km, |zy4| =45+ 3 km. Finally, from Table 1,
temperature at depth gz, is about 750 + 20 °C.

CONCLUSIONS

We developed a model of flexure of the oceanic lithosphere
assuming a realistic rheology in order to estimate the strain
rate of the lower oceanic lithosphere.

The mechanical lithosphere thickness appears to be
controlled not only by the age, i.e. by the temperature
distribution, but also by the strain rate and creep activation
energy in the lower lithosphere. We computed flexure of the
oceanic lithosphere at subduction zones for lithospheric ages
ranging from 30Ma to 160Ma and strain rates from
107%s™" up to 107 s™! at activation energies
Q,=536kJ/mole and Q,=523kJ/mole. Analysis of the
trade-offs among thermal structure represented as litho-
spheric age, activation energies, and strain rates allows us to
extend the results of our modelling to consider different
activation energy values.

Tests of the mode! show that from observations of flexure
it is possible to estimate either the in situ strain rate or the in
situ activation energies or the lithospheric age if other of
these parameters are known. The accuracy of such
estimation is better for old lithosphere. For young
lithosphere (70 Ma or less), a precise knowledge of age is
crucial. Use of independent estimations of strain rate,
activation energies, and age based on different approaches
improves the accuracy of rheology parameter evaluations. In
this case a best-fit set of rheology parameters can be
obtained.

ACKNOWLEDGMENTS

We are indebted to G. Balmino for the supply of gravity
data and computer time. We thank G. Balma and M.
Sarrailh as well as A. Cazenave and K. Dominh for
providing sea gravity and some Geosat altimeter data. We
thank M. G. Kogan for numerous helpful discussions. We
appreciated the comments of two anonymous reviewers.

REFERENCES

Bodine, J. H., Steckler, M. S. & Watts, A. B., 1981. Observations of
flexure and the rheology of the oceanic lithosphere, J. geophys.
Res., 86, 3695-3707.

Bodine, J. H. & Watts, A. B., 1979. Lithospheric flexure seaward of
the Bonin and Mariana trenches, Earth planet. Sci. Le., 43,
132-148.

Brace, W. F. & Kohlstedt, D. L., 1980. Limits on lithospheric stress
imposed by laboratory experiments, J. geophys. Res., 85,
6248-6252.

Byerlee, J., 1978. Friction of rocks, Pure & appl. Geophys., 116,
615-626.

Caldwell, J. G., Haxby, W. F., Karig, D. E. & Turcotte, D. L., 1976.
On the applicability of a universal elastic trench profile, Earth
planet. Sci. Lett., 31, 239-246.

Cazenave, A., 1984. Two distinct trends for cooling of the oceanic
lithosphere, Nature, 310, 401-403.

Chamot-Rooke, N. & Le Pichon, X., 1989, Zenisu Ridge:
mechanical model of formation, Tectonophysics, 160, 175-193.

Chapple, W. M. & Forsyth, D. W., 1979. Earthquakes and bending
of plates at trenches, J. geophys. Res., 84, 6729-6749.

De Bremaecker, J. C., 1977. Is the oceanic lithosphere elastic or
viscous, J. geophys. Res., 82, 2001-2004.

Denlinger, R. P., 1992. A revised estimate for the temperature
structure of the oceanic lithosphere, J. geophys. Res., 97,
7219-7222,

Deplus, Ch., 1987. Comportement mécanique de la lithosphére
océanique, cas d'une subduction complexe, PhD thesis,
Université Paris-Sud.

Deplus, Ch. & Dubois, J., 1989. Flexural response of the oceanic
lithosphere at an arc-arc junction: implication for the
subduction of aseismic ridges, Tectonophysics, 160, 63-73.

Fadaie, K. & Ranalli, G., 1990. Rheology of the lithosphere in the
East African rift system, Geophys. J. Int., 102, 445-453,

Goetze, C. & Evans, B., 1979. Stress and temperature in the
bending lithosphere as constrained by experimental rock
mechanics, Geophys. J. R. astr. Soc., 59, 463-478.

Gunn, R,, 1943. A quantitative study of isobaric equilibrium and
gravity anomalies in the Hawaiian islands, J. Franklin. Inst.,
236, 373-390.

Hanks, T. C., 1971. The Kuril Trench—-Hokkaido Rise system: large
shallow earthquakes and simple models of deformation,
Geophys. J. R. astr. Soc., 23, 173-189.

[vanov, S. S., 1989. Stresses in an oceanic lithosphere associated
with its curvature changes during its cooling, Rep USSR Acad.
Sci., 309, 4, 838-841 (in Russian).

Kirby, S. H., 1977. State of stress in the lithosphere: inferences from
the flow laws of olivine, Pure appl. Geophys., 115, 245-258.
Kirby, S. H., 1983. Rheology of the lithosphere, Rev. Geophys.

Space Phys., 21, 1458-1487.

Kirby, S. H. & Kronenberg, A. K., 1987. Rheology of the
lithosphere: selected topics, Rev. Geophys. Space Phys., 285,
1219-1244.

Lobkovsky, L. I. & Sorokhtin, O. G., 1976. Plastic deformations of
the lithosphere at a subduction zone, in Tectonics of
Lithospheric Plates, pp. 22-52, Ed. Sorokhtin, O. G., IOAN,
Moscow (in Russian).

McAdoo, D. C., Caldwell, J. G. & Turcotte, D. L., 1978. On the
elastic-perfectly plastic bending of the lithosphere under
generalized loading with application to the Kuril trench,
Geophys. I. R. astr. Soc., 54, 11-26.

McAdoo, D. C. & Martin, C. F., 1984. Seasat observations of
lithospheric flexure seaward of trenches, J. geophys. Res., 89,
3201-3210.

McAdoo, D. C., Martin, C. F. & Poulouse, S., 1985. Seasat
observations of flexure: evidence for a strong lithosphere,
Tectonophysics, 116, 209-222.

McNutt, M. K. & Menard, H. W., 1982. Constraints on yield

9102 ‘€2 13NBnY U0 SYND-1SIN| I /Bio'seuinolpioixor1[6;/:dny wouy pepeojumoq


http://gji.oxfordjournals.org/

strength in the oceanic lithosphere derived from observations
of flexure, Geophys. J. R. astr. Soc., T1, 363-394.

Melosh, H. I., 1978. Dynamic support of the outer rise, Geophys.
Res. Lett., 5,321-324,

Nikolayev, N. 1., 1988. The Newest Tectonics and Geodynamics of
the Lithosphere, Nedra, Moscow (in Russian).

Parker, R. L., 1972. The rapid calculation of potential anomalies,
Geophys. J. R. astr. Soc., 31, 447-455.

Parker, R. L. & Oldenburg, D. W., 1973. Thermal model of ocean
ridges, Nature, 242, 122, 137-139.

Parsons, B. & Molnar, P., 1976. The origin of outer topographic
rises associated with trenches, Geophys. J. R. astr. Soc., 45,
707-712.

Parsons, B. & Sclater, J. G., 1977. An analysis of the variation of
ocean floor bathymetry with age, J. geophys. Res., 82, 803-827.

Ranalli, G. & Murphy, D. C., 1987. Rheological stratification of the
lithosphere, Tectonophysics, 132, 281-295.

Stein, C. A. & Stein, S., 1992. A model for the global variation in
oceanic depth and heat flow with lithospheric age, Nature, 359,
123-129.

Talwani, M., Worzel, J. L. & Landisman, M., 1959. Rapid gravity
computations for two-dimensional bodies with applications to
the Mendocino submarine fracture zone, J. geophys. Res., 64,
49-59.

Turcotte, D. L., McAdoo, D. C. & Caldwell, J. G., 1978. An
elastic—perfectly plastic analysis of the bending of the
lithosphere at a trench, Tectonophysics, 47, 193-205.

Turcotte, D. L. & Oxburgh, E. R., 1967. Finite amplitude
convective cells and continental drift, J. Fluid Mech., 28, 29-42.

Turcotte, D. L. & Schubert, G., 1982. Geodynamics applications of
continuum physics to geological problems, John Wiley & Sons,
New York.

Vening-Meinesz, F. A., 1941. Gravity over the Hawaiian
Archipelago and over the Madeira Area: conclusions about the
Earth’ crust. Proc. Kon. Ned. Akad. Wetensch., 44, 1-12.

Watts, A. B. & Talwani, M., 1974. Gravity anomalies seaward of
deep-sea trenches and their tectonic implications, Geophys. J.
R. astr. Soc., 36, 57-90.

APPENDIX A

The highest permissible difference of the principle stresses
in the upper oceanic lithosphere (brittle layers)

We call normal, tangent and principle stresses as o, o, and
05 < 0, < 0, respectively. For the plane area parallel to the
direction of o, and making an angle a between its normal
and the direction of o,, the Mohr’s external circle
relationship gives (e.g. Turcotte & Schubert 1982):

g —

o toy o—0 o; .
R —2—sm2a.

3
o, cos 2a; o=
2 2

(A1)

Byerlee’s laws [see eq. (1) above] can be represented in
the general form as 7=Ao,+ B. It means o = 7 if the
difference of the principle stresses reaches its highest
permissible value Ao, = (01— 03)max at given o, or o;.
Using (1) and (A1) it can be written as

(sin2a—A—Acos2a)o, = (sin2a+A—Acos2a)o; +2B.
(A2)

On the other hand, (A1) gives o2 = —(0, — o5)(0, — 7).
By differentiation at Ao,,,, and taking into account
dt/do,= A, we find:

24t= —(o,~ 0y) — (0, — 03) =0 + 03— 20, (A3)
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A substitution of (Al) taken at Ac,,,, for (A3) gives
A= —cig2a. Because sin2a=0, we have sin2a=
(1+A%712 and cos2a = —A(1 + A%)™"? so that (A2) can
be rewritten as

[(1+A)? = Ao, =[(1 + AD)'? + Alo, + 2B. (A4)

Let us consider the elastic stress that is supported by the
plate until Ao, is reached. We assume that only lithostatic
initial stress exists in the plate from its formation time.
Generally the plate is deformed as long as it moves away
from the mid-ocean ridge and even changes the sign of its
curvature (Ivanov 1989), but stress must relax with time. In
addition a specific cooling regime is observed for the oceanic
lithosphere younger than 30 Ma (Cazenave 1984). Since we
examine the plate older than 30 Ma, we shall not consider
these features. We write for the non-deformed plate:
O =0,,=0, =0, =0,=0;=p where p is the lithostatic
pressure. According to Hooke’s law, we get

Ee,.=0, — vo,, —vo,, =(1- 2v)p
Ee, =—vo, to, —vo, =(1-2v)p. (AS)

Ee, =

22 = VO VO, o, =(1-2v)p

If there is an additional stress Ao,, = Ao, but deformation
remains in the x—z plane, i.e. Ag,, =0, then the new stress
and deformation are &, =p+Ac, &,=p, and
&,, = (1 —2v)p/E. Together with (A5), this results in
Eéxx :p + AU - Va‘)’)’ - Vp
(1-2v)p=-v(p+Ao)+é&, —wp
Et¢,,=-vip+tAog)~vg, +p

hence
T — 0 =Ac
g, —0,, = vAo .
., —0o,, =0

zz zz

Poisson’s ratio for rocks is restricted as 0.03<v=<04
(Turcotte & Schubert 1982). Therefore the principle stresses
become

o, =0,=p+Ac
g,=0,,=p+vAc ifAc>0,
3= 0, =p
and
(Tl :UZZ :p
a,=0,,=p—vl|Ac| if Ao =<0. (A6)

o3 =0y =p — 0]

We note that the pressure has changed:
P=(o,to,+a3)/3=p+(1+v)Ac/3.

We define the signed Ao, that delimits the YSE as

Ao.r = (01 - U})max Sign (P - p) (A7)
so that Ao, >0 for compression and Ao, <0 for tension.
Substituting {A6) in (A4), we have

[A + (1 + A%)'?] for compression.

A8
[4 — (1 + A%)'?] for tension. (A8)

Ao, =2(Ap + B){
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Taking into account that dp/dz = pg, the following relation
holds for each layer where A, B and p are constant:

dAo, {‘)’Bc} o4 {[A + (1 + A*)'?] for compression.
dz lygs i [A — (1 + A%)"] for tension.

(A9)

Note that actual values of A give ygp/ypr=—(4 £ 1).

At last we can determine the dependence of Ao, on depth
keeping in mind the continuity between (1a) and (1b) at
o,=0.2 GPa. The greatest Mohr’s circle fitting both (1la)
and (lb) may be derived from (A4). It corresponds to
o, =530MPa and o;=113MPa  with respective
Ao, =417 MPa. Substituting in (A8) for A and B their
values from (1), we find

A v{3.69p at0<p<113MPa
" 12.12p + 177 MPa at p > 113 MPa

for compression. (A10a)
Ao = {—0.787p at 0 <p =530 MPa
"~ 1 —-0.68p — 57 MPa at p > 530 MPa
for tension. (A10b)

Taking into account loading of the roughly 5kmdeep
ocean, we get

pratl=sz=sT,

(A1)
pltpu(z—T)atz>T,

p(z)=0.05 GPa +g{
where z is the depth below the mean ocean-floor level, g is
gravity acceleration, p_ is oceanic crust density, p,, is upper
mantle density, 7. is oceanic crust thickness. Substituting
p.=28-10°kgm™>, p,=33-100kgm™, T.=6km,
g=98ms % we find p = 113 MPa at z =2.3 km in the crust
and p = 530 MPa at z =15.7km in the upper mantle. Thus
shear stress in the tensional regime follows (la) down to
z =16km, while for compression, shear stress is mainly
(below z =2.3 km) represented by (1b). Finally substituting
(A11) in (A10) we have

185+ 101z MPa at 0=z <23km

Ao (z)=4283+58z MPa at 23=<z=<6km (Al2a)
223+ 68z MPa at z >6km
—38—-22zMPaat0<z<6km

Ao (z)=9 —17—25.4zMPa at 6 =<z <15.7km (A12b)

—71—22z MPa at z >15.7 km

for compression and tension respectively (see Fig. 1).

APPENDIX B
Notation list

YSE—yield stress envelope;

A, B—general coefficients of Byerlee’s laws: 7= Ao, + B
a—thermal plate thickness;

C—local constants in formulae;

D—rigidity;

E—Young’s modulus;

g—gravity acceleration;

k—thermal diffusivity;

M-—the bending moment;

OX—horizontal coordinate axis, perpendicular to the

trench, oceanward positive;

OY—horizontal coordinate axis, parallel to the trench;

OZ—uvertical coordinate axis, downward positive;

P—pressure;

p—Iithostatic pressure;

(Q—activation energy,

R—gas constant;

T—temperature;

T,—zero-age temperature;

T.—oceanic-crust thickness;

T.—thickness of the elastic layer

T,,—thickness of the mechanical lithosphere;

t—time (age);

w—vertical deflection of the plate;

wp—outer-rise height (taken as a negative value);

xp—nhorizontal coordinate of the outer-rise crest;

xy—horizontal coordinate of the most intense flexure of the
lithosphere;

z—depth below the mean ocean-floor level;

zy—mneutral-plane depth below the mean ocean-floor level;

zg—depth (below the mean ocean-floor level) of the upper
level of the elastic layer between elastic and brittle
ones;

zp—depth (below the mean ocean-floor level) of the lower
level of the elastic layer between elastic and ductile
ones;

z,—depth (below the mean ocean-floor level) of the base of
the mechanical lithosphere;

Zy;—domain depth (below sea-level) of the minimal
thickness of the elastic layer;

a—angle between the normal to the plane area and the
direction of the greatest principle stress o ;

Y. Yp—¢ither yue and yprp, or vy and ypes

vec—vertical gradient of A¢, at compression in brittle
layers;

ypr—Vertical gradient of Ag, at tension in brittle layers;

yL—absolute value of the vertical gradient of Ao, in lower
ductile layers: yi = [yprl = lypcls

Ypo—vertical gradient of Ao, at compression in ductile
layers;

ypr—Vertical gradient of Ao, at tension in ductile layers;

Agg—maximal, free-air gravity anomaly over the outer rise;

Ao—additional stress, compressive positive;

Ac,,..—highest permissible difference of the principle
stresses: Ac . = (01 — 03) s

Ao, —signed highest permissible (restrictive) difference of
the principle stresses: Ao, = Ao, sign (P —p);

e—deformations (with respective indices);

é—strain rate;

A—flexural parameter;

v—Poisson’s ratio;

p—density;

p.—oceanic-crust density;

p,—upper mantle density;

p—sea-water density;

o,—a local constant in the creep law (2a);

o3 < 0, = o,—the principle stresses, compressive positive;

o,—normal (confining) stress, compressive positive;

o—tangent (breaking) stress, compressive positive;

o, —normal stress along the OX-axis, compressive positive;

o,,—normal stress along the OY-axis, compressive positive;

o .~—normal stress along the OZ-axis, compressive positive;

t—highest permissible tangent (shear breaking) stress.
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