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MINUTE-TIMESCALE >100MeV γ-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR
3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE
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ABSTRACT

On 2015 June 16, Fermi-LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak
>100MeV flux of ∼3.6 × 10−5 photons cm−2 s−1, averaged over orbital period intervals. It is historically the
highest γ-ray flux observed from the source, including past EGRET observations, with the γ-ray isotropic
luminosity reaching ∼1049 erg s−1. During the outburst, the Fermi spacecraft, which has an orbital period of
95.4 minutes, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time,
significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT. The source
flux variability was resolved down to 2-minute binned timescales, with flux doubling times of less than 5 minutes.
The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii
from the central engine in conical jet models. A minimum bulk jet Lorentz factor (Γ) of 35 is necessary to avoid
both internal γ-ray absorption and super-Eddington jet power. In the standard external radiation Comptonization
scenario, Γ should be at least 50 to avoid overproducing the synchrotron self-Compton component. However, this
predicts extremely low magnetization (∼5 × 10−4). Equipartition requires Γ as high as 120, unless the emitting
region is a small fraction of the dissipation region. Alternatively, we consider γ rays originating as synchrotron
radiation of γe ∼ 1.6 × 106 electrons, in a magnetic field B ∼ 1.3 kG, accelerated by strong electric fields E ∼ B in
the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude the production
of γ-rays in hadronic processes.

Key words: galaxies: active – galaxies: jets – gamma rays: galaxies – quasars: individual (3C 279) – radiation
mechanisms: non-thermal

1. INTRODUCTION

Among all high-luminosity blazars—which are active galaxies
dominated by Doppler-boosted emission from relativistic jets
pointing toward our line of sight—3C 279 is one of the most
extensively studied objects. This flat spectrum radio quasar
(FSRQ: z = 0.536) has been detected in essentially all accessible
spectral bands; in particular, strong and variable γ-ray emission
was detected by Compton/EGRET (Hartman et al. 1992; Kniffen
et al. 1993), and it was the first FSRQ detected above 100 GeV
(Albert et al. 2008). The γ-ray emission dominates the apparent
luminosity of the source, and the nature of γ-ray variability and
its relationship to that measured in other bands provide the
strongest constraints on the total energetics, as well as the
emission processes operating in the jets of luminous blazars (e.g.,
Maraschi et al. 1992; Sikora et al. 1994).

Due to the all-sky monitoring capability of the Fermi Large
Area Telescope (LAT: Atwood et al. 2009), we have a
continuous γ-ray flux history of 3C 279 for more than 7 years.
3C 279 underwent several outbursts in the past, having flared
with a peak γ-ray flux (E> 100 MeV)
∼10−5 photons cm−2 s−1, in 2013 December and 2014 April,
with fluxes about three times greater than the peak during the
first 2 years of Fermi-LAT observations (Hayashida
et al. 2012, 2015). During the flaring epoch in 2013 December,
the γ-ray spectrum hardened (Γγ ; 1.7 in dN/dE ∝ -GgE ) and
rapid hour-scale flux variability was observed. The γ-ray flux
strongly dominated the flux in any other band, indicating a very
high “Compton dominance” (the ratio of the total inverse-
Compton luminosity over the total synchrotron luminosity) of a
factor of 100. This in turn suggests extremely low jet
magnetization, with a level of 10−4. Those results motivated,

e.g., the stochastic acceleration model, which could reproduce
the hour-scale variability and the hard spectrum of the flare
event (Asano & Hayashida 2015).
In 2015 June, 3C 279 became very active again, with fluxes

exceeding the 2013/2014 level (Cutini 2015; Paliya 2015), and
prompting a target of opportunity (ToO) repointing of Fermi,
resulting in a ∼2.5 times greater exposure. The measured γ-ray
flux in daily bins reached ∼2.4× 10−5 photons cm−2 s−1 on 2015
June 16, allowing an unprecedented investigation of variability on
timescales even shorter than one Fermi orbit. In this Letter, we
report and offer an interpretation of the minute-scale variability
observed by Fermi-LAT for the first time in any blazar.

2. FERMI-LAT GAMMA-RAY OBSERVATIONS

We analyzed the LAT data following the standard
procedure53, using the LAT analysis software Science-
Tools v10r01p01 with the P8R2_SOURCE_V6 instrument
response functions. Events with energies of 0.1–300 GeV were
extracted within a 15° acceptance cone region of interest (ROI)
centered at 3C 279 (R.A. = 195°.047, decl. = −5°.789, J2000).
Gamma-ray spectra were derived by an unbinned maximum
likelihood fit with gtlike. The background model included
sources from the third LAT catalog (3FGL: Acero et al. 2015)
inside the ROI and which showed TS54 > 25 based on an
analysis of 1 month of LAT data, for 2015 June. Their spectral
parameters were fixed by the fitting results from the 1-month
data analysis. Additionally, the model included the isotropic
and Galactic diffuse emission components55 (Acero
et al. 2016), with fixed normalizations during the fitting. Note
that the contribution of background components to the 3C 279
flux determinations in short-term binned light curves during the
outburst is negligible.

50 Corresponding authors: M. Hayashida, mahaya@icrr.u-tokyo.ac.jp; G. M.
Madejski, madejski@slac.stanford.edu; K. Nalewajko, knalew@camk.edu.pl
51 NASA Postdoctoral Program Fellow, USA.
52 Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of
Education, University and Research (MIUR).

53 http://fermi.gsfc.nasa.gov/ssc/data/analysis/
54

“TS” stands for the test statistic from the likelihood ratio test (see Mattox
et al. 1996).
55 iso_P8R2_SOURCE_V6_v06.txt and gll_iem_v06.fits.
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2.1. Light Curve

Figure 1 shows light curves of 3C 279 measured by Fermi-
LAT between 2015 June 14 12:00:00 and June 18 00:00:00
UTC, including the most intense outburst observed on June 16.
ToO observations were conducted from 2015 June 15 17:31:00
through 2015 June 23 16:19:00, during which LAT switched
from its normal survey mode to a pointing mode targeting 3C
279. For data taken during the normal observing mode, the data
were binned at twice the orbital period so that individual bins
could have more uniform exposure times. Beginning with the
ToO observation, the data were binned orbit by orbit. The γ-ray
fluxes and photon indices were derived using a simple power-
law model. The hardness ratio in the 5th panel of Figure 1 was

defined as the ratio between the hard-band (>1 GeV) and the
soft-band (0.1–1 GeV) fluxes; F>1 GeV/F0.1–1 GeV. Here we
define the outburst phase to be between 2015 June 15 22:17:12
and June 16 15:46:36 (MJD 57188.92861 and 57189.65736),
as indicated in Figure 1: it comprises 11 one-orbit bins
designated Orbit “A” through “K,” respectively.
The greatest flux above 100MeV was recorded during Orbit

C, centered at 2015 June 16 02:15:42 (MJD 57189.09424),
reaching ( ) ´ -3.6 0.2 10 5 photons cm−2 s−1. It exceeds the
largest 3C 279 flares previously detected by Fermi-LAT on
2013 December 20, 2014 April 4 (Hayashida et al. 2015; Paliya
et al. 2015), and those detected by EGRET in 1996 (Wehrle
et al. 1998) (∼1.2 × 10−5 photons cm−2 s−1), making it
historically the largest γ-ray (>100 MeV) flare of 3C 279. It

Figure 1. Light curves of 3C 279 in the γ-ray band as observed by Fermi-LAT. The vertical dashed line indicates when the Fermi-LAT observation mode was
switched from the normal survey mode to the pointing mode of the ToO observations. The data were binned on a two-orbit timescale (190.8 minutes) during the
normal survey mode and on a one-orbit timescale (95.4 minutes) during the ToO observations. The panels from the top to the bottom show: (1) integrated flux above
100 MeV, (2) photon index above 100 MeV, (3) integrated flux between 0.1 and 1 GeV ( -F0.1 1 GeV), (4) integrated flux above 1 GeV ( >F 1 GeV), (5) hardness ratio
( > -F F1 GeV 0.1 1 GeV), (6) arrival time distribution of photons with reconstructed energies above 10 GeV. For bins with TS < 6, 95% confidence level upper limits are
plotted.
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is the second-greatest flux among blazars observed by Fermi-
LAT after the 3C 454.3 outburst in 2010 November (Abdo
et al. 2011a). During Orbit C we found Γγ = 2.01 ± 0.05,
which was not as hard as the Γγ ∼ 1.7 that was observed on
2013 December 20. The hardest spectrum during this outburst
was Γγ = 1.91 ± 0.07 in Orbit B.

The highest-energy photon, 56 GeV, was detected56 at 2015
June 16 14:58:12 UTC, almost at the end of the outburst phase
(Figure 1, bottom), corresponding to ∼15.1 hr since the
outburst began, and ∼12.7 hr later than the center of the
highest-flux time bin. Interestingly, in the 2010 November flare
of 3C 454.3, the highest-energy photon (31 GeV) also arrived
during the decay part of the main flare (Abdo et al. 2011a).

2.2. Sub-orbital Scale Variability

The very high γ-ray flux state and the ToO observations
provided a sufficiently large number of photons in each bin to
resolve light curves with shorter timescales than the Fermi
orbital period. Figure 2(a) shows light curves above 100MeV

for integration times of 5 minutes (red) and 3 minutes (green)
for Orbits B–J, where the orbit-averaged flux exceeded
2 × 10−5 photons cm−2 s−1. The spacecraft location and
attitude data with 1 s resolution were used for analysis of
those short-timescale light curves. To investigate flux varia-
bility at sub-orbital periods, we fitted a constant value to each
orbit for both time bins, and calculated a probability (p-value)
from χ2 in each orbit. While many orbits resulted in p-values
consistent with constant fluxes, we found significant indica-
tions of variability on a sub-orbital timescale for Orbit C: (p,
χ2/dof) = (0.0015, 19.62/5) and (0.00047, 29.8/9) for
5-minute and 3-minute bins respectively, and Orbit D:
(p, χ2/dof) = (0.067, 11.79/6) and (0.068, 18.65/11) for 5-
minute and 3-minute bins, respectively (see details in Table 1).
Enlarged views of light curves above 100MeV for Orbits C

and D are in Figure 2(b); those figures show integration times
of 3 and 2 minutes. In those time bins, the flux reached
∼5 × 10−5 photons cm−2 s−1 at the highest, and showed the
most rapid variations. In the 3-minute binned light curve, the
flux doubled even from the third to the fourth bins, and
decreased by almost a half from the sixth to the seventh bins.
Although defining the characteristic timescale of the variability

Figure 2. Light curves of 3C 279 above 100 MeV, with minute-timescale intervals. (a): intervals of 5 minutes (red) and 3 minutes (green) during the outburst phase
from Orbits B–J. (b): enlarged view during Orbits C and D. Each range is indicated with dotted vertical lines in (a). The points denote the fluxes (left axis), and the
gray shaded histograms represent the numbers of events (right axis) detected within an 8° radius centered at 3C 279 for each bin. Contamination from both diffuse
components were estimated as ∼1 photon for each 3-minute bin.

56 Probability of association with 3C 279 as estimated by gtsrcprob
is >99.99%.
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is difficult, the flux doubling time is conservatively less than
10 minutes, and plausibly ∼5 minutes or shorter.

2.3. Power Density Spectrum

The available LAT data allow us to study the power density
spectrum (PDS) on different timescales. Results for three
different frequency ranges are shown in Figure 3. Two lower-
frequency (<0.1 day−1) PDSs were calculated, each from a
3-day binned light curve covering one half of the 7 year LAT
data (MJD 54683–55950 and 55950–57254, respectively). The
PDS for intermediate frequencies is based on a light curve for
the active period in 2015 June (MJD 57181–57197), binned on
the orbital period of Fermi. White noise subtraction was based
on the estimated measurement errors in the light curves and
these were also logarithmically binned before plotting in
Figure 3. The PDSs for high frequencies were derived from the
3-minute binned sub-orbital light curves of Orbits B–J. One
PDS was calculated for each orbit, and then these were
averaged. White noise defined from the flat PDS level above
110 days−1 has been subtracted. The normalization of the PDS

means that if the rms/flux is constant during variations in
source flux, the PDS level will not change. The intermediate
frequency PDS connects well with the low-frequency PDS for
the second 3.5 years, which includes the active period in 2015
June. The PDS for the second 3.5 year interval shows a higher
relative variability and a flatter spectrum (slope:−0.61 ± 0.06)
compared to the first interval (slope:−1.24 ± 0.15), as well as
a break around 0.1 day−1.

2.4. Gamma-Ray Spectra

Gamma-ray spectra measured by Fermi-LAT, extracted for
each orbit during the outburst, were fitted to simple power-law
(PL) and log-parabola (LP: ( ) ( )µ a b- -dN dE E E E E

0
log 0

with E0 = 300MeV) models (see Table 1). The peak energy
(Epeak) of the spectral energy distribution (SED) was derived
from a fit with the LP model. Generally, the LP model is more
favored than the PL model to describe the spectral shape. The
fitting results suggest that Epeak ranges between ∼300MeV and
∼1 GeV during the outburst. At the beginning and end of the
outburst, the spectra appear relatively hard, with SED peaks at

Table 1
Flux and Spectral Fitting Results of 3C 279 above 100 MeV for Each Orbit (A−K) during the Outburst Phase

Orbit Fluxa Γγ α β Epeak TS - DL2 c p-valued p-valued Emax

Number (10−7) (PLb) (LPb) (LPb) (GeV) (5-minute bin) (3-minute bin) (GeV)

A 121 ± 17 1.96 ± 0.11 1.84 ± 0.19 0.06 ± 0.08 1.1 ± 0.9 502 0.7 K K 8.8
B 218 ± 19 1.91 ± 0.07 1.75 ± 0.12 0.08 ± 0.05 1.40 ± 0.66 1346 3.2 0.434 0.453 16.9
C 350 ± 21 2.01 ± 0.05 1.71 ± 0.09 0.20 ± 0.05 0.61 ± 0.10 3037 21.9 0.00148 0.000474 9.3
D 294 ± 18 2.06 ± 0.05 1.85 ± 0.09 0.15 ± 0.05 0.50 ± 0.11 2661 11.8 0.0668 0.0677 6.7
E 316 ± 17 2.11 ± 0.05 1.99 ± 0.08 0.08 ± 0.04 0.32 ± 0.14 3400 5.0 0.504 0.429 15.2
F 259 ± 14 2.11 ± 0.05 1.88 ± 0.08 0.17 ± 0.06 0.42 ± 0.08 3036 15.6 0.902 0.419 9.2
G 235 ± 14 2.08 ± 0.05 1.94 ± 0.08 0.09 ± 0.04 0.41 ± 0.16 2720 5.6 0.166 0.308 10.9
H 258 ± 14 2.01 ± 0.05 1.79 ± 0.08 0.13 ± 0.04 0.67 ± 0.15 3309 13.4 0.228 0.140 10.9
I 277 ± 15 2.00 ± 0.04 1.67 ± 0.08 0.22 ± 0.05 0.63 ± 0.08 3699 32.8 0.708 0.435 7.7
J 233 ± 14 2.12 ± 0.05 1.92 ± 0.08 0.14 ± 0.05 0.39 ± 0.10 2630 10.3 0.404 0.177 13.1
K 137 ± 11 1.97 ± 0.06 1.81 ± 0.11 0.08 ± 0.05 0.91 ± 0.44 1540 3.8 K K 56.0

Notes.
a Orbit-averaged flux above 100 MeV in photons cm−2 s−1.
b PL: power-law model, LP: log-parabola model.
c
ΔL represents the difference of the logarithm of the total likelihood of the fits between PL and LP models.

d p-value based on χ2
fits with a constant flux to each orbit for 5-minute and 3-minute binned light curves.

Figure 3. Power density spectrum (PDS) of the γ-ray flux of 3C 279. (left) PDS derived from three different time-binned light curves: 3 days (red and magenta),
orbital period (blue), and 3 minutes (green). The PDSs marked in red and magenta were derived using the first and second halves of the first 7 year Fermi-LAT
observation, respectively. The second half of the interval contains the giant outburst phase in 2015 June. (right) Enlarged view of the high-frequency part of the PDS,
based on 3-minute binned light curves, plotted using a linear scale and also including the highest frequencies. The white noise level has been subtracted.
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∼1 GeV. The SED peaks were located at significantly higher
energies than for the usual states of 3C 279, when the peak is
located below the Fermi-LAT band (<100MeV), but lower
than Epeak observed in the 2013 December 20 flare (3 GeV).

Figure 4 shows the γ-ray SED as measured by Fermi-LAT
for each orbit. In these plots, Orbits F and G and Orbits H and I
were combined because they showed similar spectral fitting
results and fluxes. The spectra in the “pre-outburst” and “post-
flare” periods as defined in Figure 1 were also extracted for
comparison. The spectral peaks are apparently located within
the LAT energy band during the outburst. The peak SED flux
reaches nearly ∼10−8 erg cm−2 s−1, corresponding to an
apparent luminosity of 1049 erg s−1.

3. DISCUSSION

For the first time, Fermi-LAT detected variability of
>100MeV γ-ray flux from a blazar on timescales of

~t 5 minutesvar,obs or shorter. These timescales are compar-
able to the shortest variability timescales detected above
100 GeV in a handful of blazars and a radio galaxy
by ground-based Cherenkov telescopes (PKS 2155–304,
Aharonian et al. 2007; Mrk 501, Albert et al. 2007; IC 310,
Aleksić et al. 2014). Moreover, this is only the second case
when such timescales have been reported for an FSRQ blazar,
after PKS 1222+216 (Aleksić et al. 2011), while Fermi-LAT
had only ever detected variability as short as hour timescales in
some FSRQs (e.g., Abdo et al. 2011a; Saito et al. 2013;
Hayashida et al. 2015). This observational result imposes very
stringent constraints on the parameters of the γ-ray emitting
region.
Emitting region size: the observed variability timescale

constrains the characteristic size of the emitting region radius
( ) ( ) < +g

-R ct z1 10 50 pcvar,obs
4 , where  is the

Doppler factor. With such an extremely short variability
timescale, we may consider a significantly larger dissipation

Figure 4. (a), (b): Gamma-ray SEDs of 3C 279 for each orbit during the outburst phase, as well as “pre-outburst” and “post-flare” as indicated in Figure 1. The
downward arrows represent 95% confidence level upper limits. (c): Best-fit parameters of the spectra based on the log-parabola model for each orbit (see Table 1 for
numbers). (d) Broadband SED of Orbits C and D, and some historical multi-band observations with EGRET, MAGIC, and Fermi-LAT.
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region (a region from which energy is transferred/supplied to
the emitting regions) of Rdiss = Rγ/fγ, where fγ is a scale factor.
Normally, fγ = 1; however, values of the order of fγ ∼
0.01–0.1 are motivated, e.g., by studies of relativistic magnetic
reconnection (Cerutti et al. 2012; Nalewajko et al. 2012). The
corresponding characteristic distance scale along the jet for a
conical geometry is ( ) ( )  q G Gr R 0.005 50diss diss

2

( )qG g
- -f pc1 1 , where Γ is the Lorentz factor, and θ is the

opening angle. This corresponds to ∼100 Schwarzschild radii
(RS) for a black hole mass of MBH ∼ 5 × 108Me (as adopted in
Hayashida et al. 2015), and is generally well within the broad-
line region (BLR), with rBLR ∼ 0.1 pc (Tavecchio et al. 2010).
While it is typical to assume that  G and Γθ ; 1, larger
distance scales can be obtained for Γθ < 1 (see also Saito
et al. 2015).

Jet energetics: the total jet power required to produce the
γ-ray emission of apparent luminosity Lγ ∼ 1049 erg s−1 is Lj ;
Lγ/(ηjΓ

2) ∼ 4 × 1046(Γ/50)−2(ηj/0.1)
−1 erg s−1, where ηj is

the radiative jet efficiency, typically ∼0.1 (Nemmen
et al. 2012). The jet power will exceed the Eddington
luminosity of LEdd ∼ 8 × 1046 erg s−1 for Γ < 35(ηj/0.1)

−1/2.
Internal absorption: the optical depth for internal

γ-ray absorption is given by ( )t +gg z1int,
2

s L ET soft max,obs/( )pm c t72 e
2 6 6

var (Dondi & Ghisellini 1995;
Begelman et al. 2008). Excluding a single ;56 GeV photon,
several photons were detected during the outburst with energies
in the range 10–15 GeV, and hence we adopt a maximum
photon energy of =E 15 GeVmax,obs . Based on the Swift-XRT
observation performed during Orbit D (obsID 35019180),
which resulted in a high source flux of (5.5 ±
0.2) × 10−11 erg cm−2 s−1 with a hard photon index of
ΓX = 1.17 ± 0.06 (for the 0.5–5 keV band) and LX ∼
1047 erg s−1, a soft radiation (∼17 keV) luminosity of Lsoft ∼
3 × 1047 erg s−1 has been adopted. The minimum Doppler
factor corresponding to t =gg 1int, is  25min,int .

External absorption: external radiation fields can absorb
the γ-ray photons observed at Emax,obs when >Eext

( ) [( )( ) ]m- +m c z E2 1 1e
2 2

max,obs ; ( )m-23 1 eV in the
source frame (m q q= cos ,scat scat:scattering angle). At short
distance scales R rdiss BLR, additional absorption may arise
from the UV or soft X-ray radiation produced by the accretion
disk or its corona (Dermer et al. 1992), radiation reprocessed by
the surrounding medium (Blandford & Levinson 1995), or
from high-ionization He II lines (Poutanen & Stern 2010).
However, the observed photon statistics are insufficient for
deriving quantitative results for the absorption.

ERC scenario: in the standard leptonic model of
FSRQs, γ rays are produced by the external radiation
comptonization (ERC) mechanism (e.g., Sikora et al.
2009). This requires that leptons are accelerated to
Lorentz factors of [( ) ( )] g + Gz E E1e obs ext

1 2 ;
( ) ( )G - -E250 50 10 eV1

ext
1 2. The radiative cooling timescale

satisfies ( )g¢tcool e ; ( ) s g ¢ ¢m c u t3 4e T e ext var for the minimum
energy density of external radiation fields ¢uext,min

; ( )sm c t3 4e T var,obs [( ) ]+ ~ -z E E1 40 erg cmext cool,obs
1 2 3.

This minimum energy density can be provided by broad
emission lines (  x¢ Gu 0.37BLR

2
BLR erg cm−3; Hayashida

et al. 2012) for Γ > 33, assuming a covering factor of
ξBLR ∼ 0.1. The same leptons would also produce a
synchrotron component peaking in the mid-IR band at
luminosity Lsyn∼ Lγ/q, where q ∼ 100 is the Compton
dominance, and a synchrotron self-Compton (SSC) component

peaking in the hard X-ray band at luminosity
( )p~ ¢g gL L cq R u4SSC

2 4 2
ext (Nalewajko et al. 2014). LSSC

would exceed the X-ray luminosity observed by Swift-XRT for
jet Lorentz factors Γ < 46. The magnetic jet power can be
estimated as p= G ¢L R u c qB diss

2 2
BLR ; ( )´ G g

-f2 10 5043 6 2

~-erg s 0.00051 ( ) ( )hG g
-f L50 0.18 2

j j. Hence, the jet Lorentz
factor Γ = 50, while satisfying the Eddington, opacity, cooling,
and SSC constraints—and already much higher than the value
inferred from radio observations, Γvar ; 21 (Hovatta
et al. 2009)—corresponds to severe matter domination.
However, since LB/Lj ∝ Γ8, equipartition defined as
LB = Lj/2 (Dermer et al. 2014) can be obtained
for G gf120eqp

1 4.
Synchrotron scenario: alternatively, we consider a

more exotic scenario, in which γ-rays are produced as
synchrotron radiation by energetic electrons in a strong
magnetic field—in addition to the standard synchrotron
component produced under typical conditions—motivated
by the γ-ray flares of the Crab Nebula (Abdo et al. 2011b),
and also investigated in the context of the 100 GeV emission
from FSRQ PKS 1222+216 (Nalewajko et al. 2012).
This scenario requires leptons that are accelerated to Lorentz
factors [( ) ( )] g + ´ ¢z E B1 20neVe obs

1 2 ´31.6 106

( )E 1 GeVobs
1 2( )G g

-f25 1 2, where the magnetic field
strength can be estimated from the equipartition magnetic
jet power as ( ) ( ) ( )¢ + GgB z f L c ct1 8 B

1 2 2
var,obs 1.3 kG

( )´ G g
- f25 3 . With such energetic leptons, the inverse-Comp-

ton scattering proceeds in the Klein–Nishina regime, and
neither SSC or ERC components are important. A high
bulk Lorentz factor Γ ; 25 is still required for avoiding
internal absorption of γ-rays and it is helpful for pushing
the observed synchrotron photon energy limit to comfortable
values ( )( ) ´ G ¢ ¢̂E E B4 GeV 25syn,max (e.g., Cerutti et al.
2012). Particle acceleration in magnetic reconnection sites with
¢ > ¢̂E B (Kirk 2004; Uzdensky et al. 2011) is not necessary.

The synchrotron cooling timescale is ∼3 ms in the co-moving
frame, placing this scenario in the fast cooling regime. This will
result in a low-energy electron tail ( )g gµ -N e e

2, and a
corresponding spectral tail ( ) µEF E E0.5.
Hadronic scenarios: on very small distance scales, the

radiative efficiency of the proton-initiated cascade mechanism
(Mannheim & Biermann 1992) is enhanced due to very dense
target radiation fields, and that of the proton-synchrotron
mechanism (Aharonian 2000) is enhanced due to very strong
magnetic fields ( ¢B kG). A careful analysis of these
mechanisms, including the nonlinear feedback effects
(Petropoulou & Mastichiadis 2012), requires a dedicated study.
Dissipation mechanism: the observed variability timescale

and luminosity require extremely efficient bulk jet acceleration
within ~ R100 S. In the synchrotron scenario, they also require
extremely efficient particle acceleration, going beyond the
established picture of the blazar sequence (Ghisellini
et al. 1998). Magnetic reconnection was invoked as a
dissipation focusing mechanism effectively increasing the scale
of the dissipation region by ~g

-f 101 –100 (Cerutti
et al. 2012). Relativistic reconnection can also produce
relativistic outflows dubbed “minijets,” which can provide
additional local Lorentz boosts (Giannios et al. 2009). In
general, magnetic dissipation can lead to rapid conversion of
magnetic energy to radiation by a process called magnetolu-
minescence (Blandford et al. 2015).
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4. SUMMARY

In this Letter, we reported the first minute-timescale γ-ray
flux variability observed by Fermi-LAT in an FSRQ blazar,
3C 279. In the standard ERC scenario with conical jet
geometry, the minute-scale variability requires a high Γ
(>50) and extremely low magnetization, even at the jet base
(~ R100 S) or Γ ∼ 120 under equipartition. The high Γ and/or
low magnetization at the jet base pose challenges to standard
models of electromagnetically driven jets. We also discuss an
alternative, synchrotron origin for the GeV γ-ray outburst,
which would work in a magnetically dominated jet, but
requires higher electron energies and still implies Γ ∼ 25 at the
jet base.
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