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ABSTRACT

We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of
data. The newly delivered Pass8 event-level analysis allows the detection and characterization of sources in the
50 GeV–2 TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the
second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise
localization of point sources (∼1 7 radius at 68% C.L.) and the detection and characterization of spatially
extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of
which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL
sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of
candidates to be followed up at very high energies. This work closes the energy gap between the observations
performed at GeV energies by Fermi-LATon orbit and the observations performed at higher energies by
Cherenkov telescopes from the ground.

Key words: catalogs – gamma-rays: general

Supporting material: FITS files

1. INTRODUCTION

The Large Area Telescope (LAT, Atwood et al. 2009) on
board the Fermi gamma-ray space telescope has been
surveying the whole sky since 2008 August. Its unprecedented
sensitivity and localization accuracy allowed the detection of
over 3000 point-like sources in 4 years of data (see the third
catalog of Fermi-LAT sources, 3FGL, Acero et al. 2015).
Typically, Fermi-LAT catalog studies are based on source
detection and characterization in the whole 0.1–100 GeV
energy band. The larger photon statistics present at low energy,
counterbalanced by the LAT point-spread function (PSF)
whose size decreases with energy, yields an optimum
sensitivity at few-GeV energies. The Fermi-LAT catalogs are
thus representative of the GeV sky more than they are of the
MeV or the sub-TeV sky.

The first Fermi-LAT catalog of hard sources, named 1FHL
(Ackermann et al. 2013), provided an unbiased census of the
sky at energies from 10 up to 500 GeV. The comparison of
1FHL and 0.1–100 GeV observations (as provided in Nolan
et al. 2012) allowed us to uncover the presence of spectral
breaks and to determine that blazars of the BL Lacertae (BL
Lac) type represented about 50% of the entire source
population detected in that band. All-sky surveys at γ-ray
energies are instrumental for ground-based imaging atmo-
spheric Cherenkov telescopes (IACTs) such as H.E.S.S.,
MAGIC, and VERITAS (Holder et al. 2009; Lorenz 2004;
Hinton 2004, respectively) in order to find new sources because
of their limited fields of view.
Recently, a new event-level analysis (known as Pass 8) has

been developed by the Fermi-LAT collaboration (Atwood et al.
2013a, 2013b). Pass8 significantly improves the LATʼs
background rejection, PSF, and effective area. All these
enhancements lead to a significant increase of the LAT
sensitivity and its effective energy range, from below
100MeV to beyond a few hundred GeV (Atwood et al.

71 Wallenberg Academy Fellow.
72 NASA Postdoctoral Program Fellow, USA.
73 Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of
Education, University and Research (MIUR).
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2013a, 2013b). These improvements are particularly significant
above 50 GeV, yielding an enhancement in the acceptance and
PSF by a factor between 1.2 and 2. It is interesting to note that,
above 50 GeV, both the PSF (governed mostly by the pitch of
the tracker silicon strips and the spacing of the tracker planes)
and the effective area of the LAT are only weakly dependent on
energy and that the LAT operates, due to the (almost complete)
absence of background, in the photon-limited regime.

In this paper we use 80 months of Pass8 data to produce a
catalog of sources detected by the LAT at energies74 between
50 GeV and 2 TeV. This constitutes the second catalog of hard
Fermi-LATsources, named 2FHL, which allows a thorough
study of the properties of the whole sky in the sub-TeV
domain.

The paper is organized as follows: Section 2 describes the
analysis, and Section 3 discusses the 2FHL catalog and the
main results. A summary is provided in Section 4.

2. ANALYSIS

2.1. Data Selection

We use 80 months (from 2008 August to 2015 April) of
P8_SOURCE photons with reconstructed energy in the
50 GeV–2 TeV range. At these energies the LAT has an
energy resolution of around 10%–15% (1σ). Photons detected
at zenith angles larger than 105° were excised to limit the
contamination from γ-rays generated by cosmic-ray interac-
tions in the upper layers of the atmosphere. Moreover, data
were filtered removing time periods when the instrument was
not in sky-survey mode.75 This leaves approximately 61,000
photons detected all over the sky. The count map reported in
Figure 1 shows that Fermi-LATobserves many point-like
sources and large-scale diffuse emission in the direction of our
Galaxy, some of which appears coincident with the so-called
Fermi bubbles (Su et al. 2010; Ackermann et al. 2014b).

2.2. Source Detection

The first step of the source detection stage comprises the
identification of source seeds, which are locations of potential
sources whose significance is later tested through a maximum
likelihood (ML) analysis. Seeds are identified via a sliding-cell
algorithm as excesses above the background, as clusters of 3 or
more photons, and via a wavelet analysis (Ciprini et al. 2007).
Moreover, the seed list includes all the point sources detected
in the 1FHL catalog. We note that this seed list may include
statistical fluctuations as well as real sources with a non-
optimal position.
A full ML analysis is then performed in order to verify

which, among the seeds, are the reliable sources. The analysis
is performed in 154 regions of interest (ROIs), varying between
10° and 20° in radius, whose sizes and positions in the sky are
optimized to cover all the seeds, ensuring that no more than 45
seeds are contained in a single ROI. For each ROI, we build a
sky model that includes all the potential sources in the region as
well as the Galactic and isotropic diffuse emissions.76 These
models, which are defined only up to ∼600 GeV and
∼900 GeV, respectively, where extrapolated up to 2 TeV.
The ROI models include also the extended sources present in
the region (see Section 2.3). The model is fit to the data via the
unbinned ML algorithm provided within the Fermi Science
Tools77 (version v9r34p3).
The spectrum of each source is modeled with a power law

because none of the sources is expected to show statistically
significant spectral curvature detectable by the LAT in this
energy band. Indeed, this was the case for the sources in the
1FHL catalog (Ackermann et al. 2013).
The fit is performed iteratively in order to ensure

convergence and to produce an optimal solution. It proceeds
as follows:

Figure 1. Adaptively smoothed count map in the 50 GeV–2 TeV band represented in Galactic coordinates and Hammer-Aitoff projection. The image has been
smoothed with a Gaussian kernel whose size was varied to achieve a minimum signal-to-noise ratio under the kernel of 2. The color scale is logarithmic and the units
are counts per (0.1 deg)2.

74 Note the different energy range with respect to the 1FHL.
75 This was achieved using the expression “(DATA_QUAL > 0)&&
(LAT_CONFIG == 1)” in gtmktime.

76 Weusethegll_iem_v06.fitsandiso_P8R2_SOURCE_V6_v06.
txt templates available at http://fermi.gsfc.nasa.gov/ssc/data/access/lat/
BackgroundModels.html
77 Available at http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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1. Complex ML fits require approximate knowledge of the
starting values of the parameters. For this reason the first
step aims to find those values by fitting each single source
separately to determine approximate spectral parameters.
Throughout the entire process, the parameters of the
diffuse emission models are left free to vary. The
significance of each source is evaluated using the test
statistic  = -TS 2 ln ln ,1 0( ) where 0 and 1 are the
likelihoods of the background (null hypothesis) and the
hypothesis being tested (e.g., source plus background).
At each step in the procedure, marginal sources, those
with TS<10, are removed from the model. Once the
spectral parameters and significance of each source have
been evaluated, a global fit for which all the parameters of
the sources with a TS� 10 are allowed to vary is
performed. Then one more global fit is performed after
removing all the sources that had TS< 10 at the previous
global fit. This step, as well as all the others, includes
sources that are spatially extended (see Section 2.3);

2. In this second step, the positions of point-like sources,
using the best-fit sky model derived at step 1, are
optimized using the gtfindsrc tool. This step is done
iteratively as well by optimizing first the positions of the
most significant sources found at step 1 and later those of
the fainter ones;

3. The parameters and significances of sources are estimated
again (as in step 1) using the best-fit source positions.
This step produces the best-fit sky model for any given
ROI. Seeds with 10� TS< 25 are included in the model,
but not reported in the final catalog;

4. For each source we estimate the energy of the highest-
energy photon (HEP) that the fit attributes robustly to the
source model. This is done using the tool gtsrcprob
and selecting the HEP that has a probability >85% to
belong to the source;

5. A spectrum with three logarithmically spaced bins
(boundaries of 50 GeV, 171 GeV, 585 GeV, 2 TeV) is
generated for each source in the ROI that is detected with
TS� 25 and with the number of detected γ rays
(estimated by the likelihood, Npred) to be �3.

The procedure described above achieves the detection of 360
sources (including the extended sources discussed next at
Section 2.3) with TS� 25 and Npred� 3 across the entire sky.
The number of seeds kept in the ROI models with
10� TS< 25 is 453, while 7 are the seeds with TS� 25, but
Npred< 3. We have performed seven Monte Carlo simulations
of the >50 GeV sky whose data have been analyzed like the
real data (as detailed above). The Npred cut was introduced on
the basis of these simulations to limit to 1% the number of
false positives in the final catalog. These simulations will be
discussed in a forthcoming publication.

2.3. Search for Spatially Extended Sources

Preliminary runs of the source detection method described in
Section 2.2 detected clusters of point sources in the Galactic
plane, which were suggestive of spatially extended sources. It
is also possible that clusters of seed sources, each with sub-
detection-threshold significance, could be detected as a
significant extended source. Not modeling extended γ-ray
emission as such can lead to inaccurate measurements of
spectral and spatial properties of both the extended source and

neighboring point sources, particularly in the Galactic plane
(Lande et al. 2012). Most of the TeV sources in the Galactic
plane are spatially extended (Carrigan et al. 2013; Ong 2013),
so to clearly connect LAT detections spectrally to these
sources, extension detection and characterization is important.
In the following, we distinguish between sources whose
extension has been previously determined with Fermi-LAT
and new extended sources that are reported for the first time in
a Fermi-LATcatalog. The details of all significantly detected
extended sources will be reported in Section 3.3.2.

2.3.1. Extended Sources Previously Detected by the LAT

We explicitly modeled sources as spatially extended when a
previous, dedicated, analysis found the source to be resolved by
the LAT. The 25 extended sources reported in 3FGL were
included in our model using the spatial templates derived in the
individual source studies (see references in Acero et al. 2015).
Refitting the positions and extensions of the 3FGL extended
sources in this energy range is beyond the scope of this work.
Of the 25 3FGL extended sources, 19 are significantly

detected here above the detection threshold (TS� 25). Only 6
sources are not detected and, since all have TS< 10, are
removed from the sky model (see Section 3.3.2 for details).
One extended LAT source has had a dedicated analysis

published since the release of the 3FGL catalog. Abramowski
et al. (2015a) reported joint H.E.S.S. and LAT observations of
the very high energy (VHE) source HESSJ1834-087. This
source is coincident with supernova remnant (SNR) W41 and
was detected as spatially extended in a wide energy range
spanning 1.8 GeV to 30 TeV. In this paper, we employ the
spatial model for the GeV emission determined in Abramowski
et al. (2015a), leading to a significant detection of this source.

2.3.2. Newly Detected Extended Sources

In addition to modeling the extended sources mentioned in
Section 2.3.1, we performed a blind search of the Galactic
plane ( < b 10∣ ∣ ) to identify potential extended sources not
included in previously published works. Our analysis pipeline
is similar to that used in Hewitt et al. (2013), with some
modifications tailored to searching for multiple extended
sources in an ROI. The pipeline employs the pointlike
binned ML package (Kerr 2010), in particular utilizing the
extended source fitting tools validated by Lande et al. (2012) to
simultaneously fit the position, extension, and spectra of
sources in our ROI.
We created 72 ROIs of radius 10°, centered on b= 0° with

neighboring ROIs overlapping and separated by 5° in Galactic
longitude. Our initial model of the γ-ray emission in each ROI
consisted solely of the Galactic diffuse (allowing just the
normalization to be fit) and isotropic emission models (fixing
the normalization), with no other sources in the ROI. Emission
in the ROIs was further characterized by adding sources and
fitting their spectral parameters (normalization and spectral
index) in a 14°× 14° region.
A TS map, that included all significant sources found

previously, made up of 0°.1× 0°.1 bins across the ROI, was
created at each iteration and a small radius (0°.1) uniform disk,
with a power-law spectrum was placed at the position of the
peak TS pixel. The spectra of any newly added sources, as well
as the position, extension, and spectral parameters of the disk
were then fit. If TSext� 16, where TSext= 2log  ext ps( )
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(i.e., twice the logarithm likelihood ratio of an extended to a
point source, Lande et al. 2012), then the disk was kept in the
model. For TSext< 16, the extended source was replaced by a
point source with a power-law spectral model. For the point-
source replacement case, spectral parameters of sources in the
ROI were fit and the position of the new point source was
optimized. Finally, the spatial parameters of any previously
added extended sources were refit iteratively before creating a
new TS map and repeating the process. We stopped adding
sources when the peak TS was less than 16 for two successive
sources.

To assess the impact of fitting extended sources when
starting with an ROI devoid of sources, a crosscheck analysis
(also using pointlike) was performed across the Galactic
plane. We included 3FGL point and extended sources, the
Galactic diffuse and isotropic emission, and pulsars from the
second Fermi-LATpulsar catalog (Abdo et al. 2013; as well as
from 3FGL) in the preliminary source model for each region.
Sources were iteratively added to account for residual emission
and both these residual sources and 3FGL sources were tested
for extension. Remarkably, this alternative analysis converges
(i.e., spectral and spatial parameters for the detected extended
sources are compatible in both analyses) to the initially source-
devoid analysis for nearly all detected extended sources.

Extended sources detected in the analysis described in this
section for which the position and extension were compatible
with those found by the crosscheck were included in the ROI
model at step 1 of the full ML analysis detailed in Section 2.2.
Seed point sources interior to the extended sources were
removed prior to the ML fit. To address the ambiguity between
detecting a source as spatially extended as opposed to a
combination of point sources, we utilized the algorithm detailed
in Lande et al. (2012) to simultaneously fit the spectra and
positions of two nearby point sources. We only consider a
source to be extended if TSext> TS2pts (improvement when
adding a second point source). Our blind search of the Galactic
plane allowed us to find 5 sources not previously detected as
extended by Fermi-LAT. Further details on these sources are
presented in Section 3.3.2.

2.4. Comparison with Pass 7

In order to gauge the improvement delivered by Pass8 at
�50 GeV, we repeated the analysis procedure described above
with 80 months of Pass7 reprocessed data. This analysis
detected ∼230 sources; ∼35% fewer than the corresponding
analysis that relies on Pass8 data. The main difference is for
the region > b 10∣ ∣ where Pass8 data, because of the larger
acceptance, and better PSF allow the detection of ∼60% more
sources than what could be achieved with Pass7. The
improvements delivered by Pass8 above 50 GeV are clearly
substantial.

2.5. Source Association

The approach for automated source association closely
follows that used for the 2FGL, 1FHL, 3FGL and 3LAC
catalogs (Nolan et al. 2012; Ackermann et al. 2013; Acero
et al. 2015; Ackermann et al. 2015). In short, we use catalogs of
known or potential γ-ray source classes to determine the
probability that a source from a given catalog or survey is
associated with a 2FHL source.

The associations were derived with two different procedures:
the Bayesian method and the likelihood-ratio method
(described in detail in Ackermann et al. 2015; Acero
et al. 2015). In the application of these two methods, potential
counterparts were deemed associated if they were found to
have a posteriori probability of at least 80%.
For the Bayesian method, the catalogs relavant for associat-

ing 2FHL sources are the 5th version of the BZCAT (Massaro
et al. 2015) and the ATNF Pulsar Catalog (Manchester
et al. 2005). Other catalogs of Galactic populations (X-ray
binaries, O stars, Wolf–Rayet stars, luminous blue variable
stars, open and globular clusters) were used in the procedure,
but no counterparts reached the probability threshold.
For the likelihood-ratio association method, we made use of

a number of relatively uniform radio surveys. Almost all radio
candidates of possible interest are in the NRAO VLA Sky
Survey (NVSS; Condon et al. 1998) or the Sydney University
Molonglo Sky Survey (Mauch et al. 2003). To look for
additional possible counterparts we cross-correlated the LAT
sources with the most sensitive all-sky X-ray survey, the
ROSAT All Sky Survey Bright and Faint Source Catalogs
(Voges et al. 1999, 2000).
In order to be consistent, we evaluated matches between the

2FHL and the 3FGL and 1FHL catalogs, cross correlating
those catalogs with the 2FHL one taking into account the
source location uncertainty (95% confidence) regions. In
those cases, we adopted the source associations given in
previously published Fermi-LATcatalogs. This yielded only
two associations (Eta Carinae and the SNR G338.3-0.0),
which were both detected and associated in both the 3FGL
and 1FHL. The 2FHL catalog was also cross-correlated with
the TeVCat78 (which contains all the TeV sources detected by
IACTs so far) and spatial coincidences are reported (see
Section 3.6). Since they have no positional error associated,
the association probability was not computed for the extended
sources.
High-confidence associations allow us to assess the

systematic uncertainty in the accuracy of the LAT source
positions. As done in Acero et al. (2015), we compared the
distribution of angular separations of the γ-ray sources to the
highest-confidence (probability >90%) counterparts (in units
of 1 σ errors) with a Rayleigh distribution, and found it slightly
broader than expected. Consequently, the standard 68%
uncertainty radius provided by gtfindsrc has been multiplied
by 1.08 and summed in quadrature to 0°.003 (68% absolute
systematic error from 3FGL).

3. THE 2FHL CATALOG

The 2FHL catalog includes 360 sources detected over the
whole sky, each with a likelihood test statistic of TS� 25 and
number of associated photons, Npred� 3. The association
procedure (see Section 2.5) finds that 75% of the sources in
the catalog (274 sources) are extragalactic79, 11% (38 sources)
are of Galactic nature, and 13% (48 sources) are unassociated
(or associated with a TeV source of unknown nature). The
unassociated sources are divided between 23 sources located at

< b 10 ,∣ ∣ and 25 sources at  b 10 .∣ ∣ Therefore the fraction
of extragalactic sources in the sample is likely larger than 80%.
The number of 2FHL sources that have not been reported in

78 See http://tevcat.uchicago.edu/
79 This includes N157B, an extragalactic pulsar wind nebula (PWN).
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3FGL is 57, 47 of which have not been previously reported in
any Fermi-LATcatalog nor in the TeVCat and are thus new γ-
ray sources. The results of the association procedures are
summarized in Table 1. Figure 2 shows the location of 2FHL
sources color-coded according to their source class.

3.1. Description of the Catalog

The format of the 2FHL catalog follows that of previous
Fermi-LATcatalogs (Ackermann et al. 2013; Acero
et al. 2015) and it is detailed in Table 2, while an excerpt of
the catalog itself, which will be fully released in FITS files80

format,is presented in Table 3. Table 3 contains 16 columns
and it lists the 2FHL name, position, significance, spectral
properties (along with their 1 σ uncertainties), association, class
and redshift (if available) of the sources. The positions are
given in degrees in both Equatorial (J2000) and Galactic
coordinates with their 1σ positional uncertainties (also in
degrees). The full catalog, which contains 39 columns, also
reports (as detailed in Table 2) energy fluxes in the whole
50 GeV–2 TeV energy band, and integrated photon fluxes in
three logarithmically spaced energy bins together with their 1 σ
uncertainties, and the number of photons attributed to the
source (Npred). It also reports, for all objects, with redshift, the
intrinsic (un-attenuated by the extragalactic background light;
EBL) index with its 1 σ uncertainty, computed using the

Domínguez et al. (2011b) and the Gilmore et al. (2012) EBL
models (see Dominguez & Ajello 2015 for details). Finally, the
most likely association (with probability >80%) is also given
with its probability. We also report the 3FGL, 1FHL, 1FGL,
and TeVCat associations if any.

3.2. General Characteristics of 2FHL Sources

The 2FHL sources have >50 GeV fluxes ranging from
∼8× 10−12 ph cm−2 s−1 to ∼1.3× 10−9 ph cm−2 s−1 with a
median flux of 2.0× 10−11 ph cm−2 s−1 and a median spectral
index of 2.83. The index uncertainty increases rapidly with the
spectral index (e.g., the uncertainty is about ±0.5 for sources
with Γ= 2 whereas it is ±2 for sources with Γ= 5). Half of the
sources are localized to better than 1 7 radius at 68%
confidence. Figure 3 plots the spectral index versus the photon
flux for sources associated with extragalactic sources or located
at  b 10∣ ∣ (the extragalactic sample), Galactic sources, and
unassociated sources. Figure 3 shows that there is no visible
dependence of the sensitivity (i.e., minimum detectable photon
flux) on the spectral index. This is because the size of the
Pass8 PSF remains approximately constant above 50 GeV.
However, extragalactic sources are detected to lower fluxes
than Galactic objects, highlighting that the sensitivity for
source detection becomes worse in the plane of the Galaxy.
The distributions of spectral indices and the highest photon

energy reported in Figure 4 show that extragalactic sources
tend to have larger photon indices (median of 3.13) than
Galactic sources (median of 2.10). Because of the harder
spectra, Galactic sources tend to have higher-energy HEPs than
those of extragalactic sources as shown as well in Figure 4. It is
interesting to note that unassociated sources have a median
index of 2.22 (2.00 for sources at < b 10∣ ∣ and 2.96 for those
at  b 10∣ ∣ ), showing that a fraction (see later) of unassociated
sources is likely of Galactic origin.
Building a spectral energy distribution (SED) represents a

powerful way to discriminate or infer the nature of a source. By
combining the spectral data from the 3FGL, 1FHL, and 2FHL
catalogs, it becomes possible to measure the SEDs of sources
over four decades in energy. Although these catalogs rely on
different exposures and most γ-ray sources are variable, these
data allow us to characterize the high-energy peak of their
broadband SEDs. The SEDs of a few notable sources will be
shown in the next sections.

3.3. The 2FHL Galactic Source Population

The narrow PSF core (about 0°.1) and moderate Galactic
diffuse emission (in comparison with the >100MeV band)
allows the LAT to characterize and study well the emission of
sources in the plane of our Galaxy above 50 GeV. Within

< b 10∣ ∣ , Fermi-LAThas detected 103 sources. Of those, 38
sources are associated with Galactic sources, 42 to blazars, 14
are unassociated and 9 are associated with other γ-ray sources
whose origin is not known (see below). Figure 5 shows cut-
outs of the Galactic plane with all detected sources labeled.
Among the 38 Galactic sources, 16 are spatially coincident

with SNRs, 13 are coincident with PWNe, 4 are associated with
PWN/SNR complexes and the other 5 sources are X-ray
binaries (3), one pulsar (PSRJ0835−4510) and the Cygnus
Cocoon. It is clear that the majority of Galactic sources
detected above 50 GeV are associated with objects at the final
stage of stellar evolution.

Table 1
2FHL Source Classes

Description Associated

Designator Number

Pulsar psr 1
Pulsar wind nebula pwn 14
Supernova remnant snr 16
Supernova remnant/Pulsar wind nebula spp 4
High-mass binary hmb 2
Binary bin 1
Star-forming region sfr 1
BL Lac type of blazar bll 180
BL Lac type of blazar with prominent galaxy

emission
bll-g 13

FSRQ type of blazar fsrq 10
Non-blazar active galaxy agn 2
Radio galaxy rdg 4
Radio galaxy/BL Lac rdg/bll 2
Blazar candidate of uncertain type I bcu I 7
Blazar candidate of uncertain type II bcu II 34
Blazar candidate of uncertain type III bcu III 19
Normal galaxy (or part) gal 1
Galaxy cluster galclu 1
Total associated L 312
Unassociated L 48

Total in 2FHL L 360

Note. The designation “spp” indicates potential association with SNR or PWN.
The “bcu I,” “bcu II,” and “bcu III” classes are derived from 3LAC and
describe the increasing lack of multiwavelength information to classify the
source as a blazar (see Ackermann et al. 2015, for more details). The
designation “bll-g” is adapted from the BZCAT (Massaro et al. 2015) and
indicates a blazar whose SED has a significant contribution from the host
galaxy.

80 See: http://fits.gsfc.nasa.gov/
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Galactic sources display on average hard spectra, which is a
sign of efficient particle acceleration. Roughly 55% of all
Galactic sources have a spectral index lower than 2.2. For
comparison, only 14% of the 2FHL blazars display such hard
spectra. A sizable fraction (approximately 25%, see Figure 4,
left panel) of Galactic sources has a photon index harder than 2,
implying a high-energy SED peak in the TeV band. Indeed, as
the right panel of Figure 4 shows, Fermi-LATdetects emission
from many Galactic sources well beyond 500 GeV. All PWNe
detected by Fermi are found to be powered by young and
energetic pulsars (age 30 kyr, Acero et al. 2013). While it is
common for PWNe to show hard spectra, this is less so for
SNRs whose majority (about 85%) display softer spectra
(Hewitt et al. 2013). Hard-spectrum SNRs are typically young
or mid-aged (3–5 kyr) and might be difficult to find in radio
surveys. Thus, Galactic surveys at above 50 GeV have the
capability to detect new SNRs that might have been previously
missed. Such an example is represented by the extended source
2FHL J0431.2+5553e which is spatially coincident with a new
SNR (SNR G150.3+4.5) recently reported by Gao &
Han (2014).

Of the 14 sources at < b 10∣ ∣ that do not have an
association, 7 have power-law indices harder than 2 which
renders them likely Galactic objects. It is interesting to note that
6 of these 7 objects are offset from the plane of the Galaxy by
more than 4°. This is in marked contrast with the associated
portion of the sample where only the Crab Nebula and the
newly discovered SNR G150.3+4.5 (out of 34 SNR/PWN
systems) have such a large offset. Thus it seems unlikely that
all these unassociated sources are SNR/PWN systems.

3.3.1. Comparison with the H.E.S.S. Galactic Plane Survey

The H.E.S.S array, with a field of view of about 5° and an
angular resolution of approximately 0°.12, has invested 2800 hr
of exposure to survey part81 of the Galactic plane, reaching an
average sensitivity of 2% of the Crab Nebula flux (i.e.,

4.5× 10−13 ph cm−2 s−1) at �1 TeV (Aharonian et al. 2006b;
Carrigan et al. 2013). Considering that the Crab Nebula
spectrum is harder in the 2FHL band than in the >1 TeV band,
we estimate that the average sensitivity of 2FHL in the same
region of the H.E.S.S. survey is ∼3%–4% of the 50 GeV–
2 TeV Crab Nebula flux. The slightly better sensitivity allows
H.E.S.S. to detect 69 sources (as reported in the TeVCat), while
the LAT finds 36 objects in the same area. However, the
comparable sensitivities of the two surveys allow the study of
the properties of the high-energy Galactic population. In the
2FHL catalog there is almost an equal number of SNRs and
PWNe in contrast to what is found in the H.E.S.S. survey
where the ratio of PWNe to SNRs is 1.5 to 1. This might be
because the hardest PWNe and softest SNRs are difficult to
detect, respectively, in the >50 GeV and >1 TeV bands.
Of the 36 2FHL sources that fall within the footprint of the

H.E.S.S. survey, 23 have already been detected at TeV energies
and are associated with known counterparts, while 7 are
undetected. The remaining 6 objects (2FHLJ1022.0−5750,
2FHLJ1505.1−5808, 2FHLJ1507.4−6213, 2FHLJ1703.4
−4145, 2FHLJ1745.1−3035 and 2FHLJ1856.8+0256) are
spatially coincident with TeV sources whose origin is not
known. All of them have hard spectral indices (Γ < 2.2), but it
is interesting to note that 4 of them (2FHLJ1022.0−5750,
2FHLJ1505.1−5808, 2FHLJ1703.4−4145, and 2FHL
J1745.1−3035) have Γ< 1.7 (see also Figure 6).
We find that 2FHLJ1022.0−5750 is spatially compatible

with HESSJ1023−575, an extended TeV source (Abramowski
et al. 2011c), whose emission might be due to a PWN powered
by PSRJ1023−5746 (Acero et al. 2013). 2FHLJ1505.1
−5808 is spatially coincident with the unidentified object
HESSJ1503−582, which has a size of 0°.26 and a flux above
1 TeV (Renaud et al. 2008) compatible with the extrapolation
of the 2FHL J1505.1−5808 spectrum. Its spectrum, reminis-
cent of that of a PWN (e.g., HESSJ1825−137, Grondin
et al. 2011) is reported in Figure 6.
2FHLJ1507.4−6213 is spatially coincident with

HESSJ1507−622, an extended source with a radius of 0°.15
located 3°.5 from the plane (Acero et al. 2011). The analysis of

Figure 2. Sky map, in Galactic coordinates and Hammer-Aitoff projection, showing the sources in the 2FHL catalog classified by their most likely association.

81 The H.E.S.S. Galactic plane survey extends between 283° < l < 59° and
Galactic latitudes of < b 3 . 5.∣ ∣
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multiwavelength data showed that it is not possible to
discriminate between a hadronic and leptonic origin of the
emission, but that the latter scenario, if the emission is powered
by a PWN, would require a pulsar generated in the explosion of
a hyper-velocity star in order to reach the required distance
from the plane (Domainko & Ohm 2012).

The sources 2FHLJ1703.4−4145 and 2FHLJ1745.1−3035
are the hardest sources (Γ< 1.3) among the six objects.
2FHLJ1703.4−4145 is spatially coincident with the bright
radio emission observed from the western side of the shell of
SNR G344.7−001, a nearby mid-aged shell-type
(age∼ 3000 years and 8′ diameter) SNR (Giacani
et al. 2011). Both the 2FHL source and the SNR are spatially
coincident with the larger, elongated and unidentified
HESSJ1702−420 (Aharonian et al. 2008b). It thus seems
likely that SNR G344.7−001 is the counterpart of 2FHL
J1703.4−4145 and perhaps also of HESSJ1702−420. The
combined Fermi-H.E.S.S. spectrum of this source is reported in
Figure 6.

2FHLJ1745.1−3035 is found to be spatially coincident with
the extended source HESSJ1745−303, which may be com-
prised of up to three different sources (Aharonian et al. 2008a).
Indeed, the position of 2FHLJ1745.1−3035 is compatible with
the “C” emission region (the second brightest region in the
complex, Aharonian et al. 2008a). However, the nature of this
source is more complex, because the 2FHL source is marginally
brighter at 1 TeV than the entire H.E.S.S. region and has also a
harder spectrum (spectral index of 1.25± 0.38 in 2FHL versus
2.17± 0.11 as measured by H.E.S.S.).
Finally, 2FHLJ1856.8+0256 is coincident with HESS

J1857+026, an almost radially symmetric extended source
(Aharonian et al. 2008c), whose emission likely originates from
a PWN powered by PSRJ1856+0245 (Rousseau et al. 2012).

3.3.2. Extended Source Results

In total, 31 sources are modeled as spatially extended and
input into the ML analysis: 25 listed in 3FGL, 5 sources

Table 2
Description of the Catalog

Column Format Unit Description

Source_Name 18A L 2FHL Source name
RAJ2000 E deg R.A.
DEJ2000 E deg decl.
GLON E deg Galactic longitude
GLAT E deg Galactic latitude
Pos_Err_68 E deg Position uncertainty at 68% confidence level
TS E L Test Statistic
Spectral_Index E L Observed spectral index
Unc_Spectral_Index E L 1σ uncertainty on the observed spectral index
Intr_Spectral_Index_D11 E L Intrinsic spectral index computed using the Domínguez et al. (2011b) EBL model
Unc_Intr_Spectral_Index_D11 E L 1σ Uncertainty on the intrinsic spectral index computed using the Domínguez et al. (2011b) EBL

model
Intr_Spectral_Index_G12 E L Intrinsic spectral index computed using the Gilmore et al. (2012) EBL model
Unc_Intr_Spectral_Index_G12 E L 1σ Uncertainty on the intrinsic spectral index computed using the Gilmore et al. (2012) EBL model
Flux50 E photon cm−2 s−1 Integral photon flux from 50 GeV to 2TeV
Unc_Flux50 E photon cm−2 s−1 1σ uncertainty on integral photon flux from 50 GeV to 2TeV
Energy_Flux50 E erg cm−2 s−1 Energy flux from 50 GeV to 2TeV
Unc_Energy_Flux50 E erg cm−2 s−1 1σ uncertainty on energy flux from 50 GeV to 2TeV
Flux50_171GeV E photon cm−2 s−1 Integral photon flux from 50 to 171 GeV
Unc_Flux50_171GeV E photon cm−2 s−1 1σ uncertainty on integral photon flux from 50 to 171 GeV
Sqrt_TS50_171GeV E photon cm−2 s−1 Square root of the Test Statistic between 50 and 171 GeV
Flux171_585GeV E photon cm−2 s−1 Integral photon flux from 171 to 585 GeV
Unc_Flux171_585GeV E photon cm−2 s−1 1σ uncertainty on integral photon flux from 171 to 585 GeV
Sqrt_TS171_585GeV E photon cm−2 s−1 Square root of the Test Statistic between 171 and 585 GeV
Flux585_2000GeV E photon cm−2 s−1 Integral photon flux from 585 GeV to 2 TeV
Unc_Flux585_2000GeV E photon cm−2 s−1 1σ uncertainty on integral photon flux from 585 GeV to 2TeV
Sqrt_TS585_2000GeV E photon cm−2 s−1 Square root of the Test Statistic between 585 GeV and 2TeV
Npred E L Predicted number of photons from the source
HEP_Energy E GeV Highest photon energy
HEP_Prob E L Probability that the HEP is coming from the source, �0.85
ROI E L Region of interest number
ASSOC 25A L Name of the most likely associated source
ASSOC_PROB_BAY E L Probability of association from the Bayesian method
ASSOC_PROB_LR E L Probability of association from the likelihood ratio method
CLASS 8A L Class designation for the most likely association; see Table 1
Redshift E L Redshift (when available) of the most likely associated source
NuPeak_obs E Hz Observed Synchrotron peak frequency
3FGL_Name 18A L Name of the most likely associated source in the 3FGL
1FHL_Name 18A L Name of the most likely associated source in the 1FHL
TeVCat_Name 18A L Name of the most likely associated source in the TeVCat

Note. A “Source_Name” ending with “e” indicates an extended source.
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Table 3
Excerpt of the 2FHL Catalog

2FHL Name R.A. decl. l b θ TS F50 ΔF50 S50 ΔS50 Γ ΔΓ Association Class Redshift

J0008.1+4709 2.044 47.164 115.339 −15.069 0.053 28.9 1.29 0.70 1.27 0.70 6.26 2.75 MG4 J000800+4712 bll 2.100
J0009.3+5031 2.343 50.522 116.124 −11.793 0.035 54.5 2.00 0.82 2.12 0.92 5.07 1.65 NVSS J000922+50302 bll L
J0018.5+2947 4.635 29.788 114.464 −32.542 0.023 31.1 1.11 0.64 2.13 1.80 2.58 0.99 RBS 0042 bll 0.100
J0022.0+0006 5.500 0.106 107.172 −61.862 0.042 30.3 2.05 1.00 7.15 5.50 1.86 0.57 5BZGJ0022+0006 bll-g 0.306
J0033.6−1921 8.411 −19.358 94.280 −81.222 0.019 149.5 5.71 1.57 7.98 2.81 3.32 0.68 KUV 00311−1938 bll 0.610
J0035.8+5949 8.966 59.831 120.974 −2.981 0.012 380.4 12.30 1.92 30.30 7.27 2.23 0.22 1ES 0033+595 bll L
J0040.3+4049 10.095 40.832 120.676 −21.992 0.020 27.0 1.10 0.66 2.97 2.79 2.12 0.81 B3 0037+405 bcu I L
J0043.9+3424 10.976 34.411 121.164 −28.435 0.051 39.9 1.91 0.86 2.13 1.04 4.56 1.60 GB6 J0043+3426 fsrq 0.966
J0045.2+2126 11.319 21.445 121.020 −41.404 0.036 81.9 3.51 1.19 4.82 1.98 3.38 0.82 GB6 J0045+2127 bll L
J0048.0+5449 12.002 54.828 122.433 −8.040 0.049 35.4 1.27 0.64 7.99 5.97 1.30 0.51 1RXS J004754.5+544 bcu II L

Notes. R.A. and decl. are Equatorial coordinates in J2000 epoch, l and b are Galactic coordinates. All coordinates are shown in degrees. θ is the 68% uncertainty radius. TS is the test statistic. F50 and ΔF50 are the
integrated photon flux between 50 GeV and 2TeV and its uncertainty in units of 10−11 photon cm−2 s−1. S50 and ΔS50 are the energy flux between 50 GeV and 2TeV and its uncertainty in units of 10−12 erg cm−2 s−1.
Γ and Δ Γ are the photon index and its uncertainty from a power-law fit. All the uncertainties are 1σ uncertainties unless stated otherwise. See text for details on the association methodology. The source classes are
detailed in Table 1. Redshifts were taken from from Shaw et al. (2012, 2013), Masetti et al. (2013) and the NED and SIMBAD databases.
2FHL J0811.6+0146 is detected with only few photons with energies around the 50 GeV threshold. As such a measurement of its spectral index is not possible and in the catalog its value has been fixed to 15.
Two extended sources, 2FHLJ1801.3−2326e and 2FHLJ2028.6+4110e, despite being detected with ∼39 and ∼131 photons, respectively, do not have single photons that have a probability of belonging to the source
>85%. As such their “HEP_Energy” and “HEP_Prob” columns are left blank.

(This table is available in its entirety in FITS format.)

9

T
h
e
A
s
t
r
o
p
h
y
s
i
c
a
l
J
o
u
r
n
a
l
S
u
p
p
l
e
m
e
n
t
S
e
r
i
e
s
,
222:5

(19pp),
2016

January
A
c
k
e
r
m
a
n
n
e
t
a
l
.



detected in the pointlike analysis (described in Sec-
tion 2.3.1) that were not detected as extended at the time of
3FGL, and one, SNR W41, reported recently by both the H.E.
S.S. and LAT teams (Abramowski et al. 2015a). Names and
properties of the extended sources are provided in Tables 4 and
5. Six extended sources, detected in 3FGL, were not detected in
2FHL: the SMC, S147 (the point source 2FHLJ0534.1+2753
was detected inside it), the lobes of Centaurus A (although we
detect its core as a point source, 2FHL J1325.6−4301), W44,
HB21 and the Cygnus Loop.

We detect a weak source, 2FHLJ1714.1−4012 (TS = 27),
just outside the southwestern edge of the 3FGL spatial template
used to model the emission from SNR RX J1713.7−3946
(2FHLJ1713.5−3945e). 2FHLJ1714.1−4012 has a hard
spectral index Γ= 1.63± 0.38, that is within errors of the
spectral index derived for the SNR, Γ= 2.03± 0.20. It is
unclear whether 2FHLJ1714.1−4012 is a distinct source
separated from the SNR, or the result of un-modeled residual
emission due to an imperfection in the spatial template adopted
for the extended source.

2FHLJ1836.5−0655e is associated with the PWN HESS
J1837−069. The 3FGL catalog contains several point sources

in the vicinity of the PWN. We detect three sources in the
vicinity, 2FHLJ1834.5−0701, 2FHLJ1837.4−0717, and
2FHLJ1839.5−0705, the first two of which are coincident
with 3FGL sources (3FGL J1834.6−0659, 3FGL J1837.6
−0717, respectively). The power-law spectral indices of the
three 2FHL point sources and 2FHL J1836.5−0655e are all
consistent with each other. The concentration of sources around
HESS J1837−069 combined with the spectral compatibility of
the sources is suggestive of a common origin to the γ-ray
emission in this region. However, the surrounding γ rays could
arise from other sources in the region (Gotthelf & Hal-
pern 2008); further analysis is necessary to determine the
nature of the sources in this region.
A brief description of the five new 2FHL extended sources is

given below with residual TS maps for the region surrounding
each source shown in Figure 7. Detailed analyses of these new
extended sources will be reported in separate papers.
2FHLJ1443.2−6221e overlaps with the young, radio-

detected SNR RCW 86 (G315.42.3). RCW 86 is a 42′
diameter SNR that lies at a distance of 2.3–2.8 kpc and is likely
associated with the first recorded supernova, SN 185 AD
(Rosado et al. 1996; Sollerman et al. 2003). With more than 40
months of data and using the P7SOURCE data set, the LAT did
not significantly detect the SNR, but upper limits on detection
at GeV energies combined with detection of significant
extension in the TeV (Aharonian et al. 2009) were sufficient
to strongly favor a leptonic origin for the emission (Lemoine-
Goumard et al. 2012).
An updated LAT analysis of RCW86 using 76 months of

data, as well as the Pass 8 event-level analysis, resulted in
detection of the SNR by the LAT as well as significant
extension measurement (Hewitt & Fermi-LAT Collabora-
tion 2015). In this paper, we report the results derived for
2FHLJ1443.2−6221e from the pointlike analysis
described in Section 2.3.1.
2FHLJ1419.2−6048e is a newly detected extended sources

with size σdisk= 0°.36± 0°.03, that overlaps two nearby PWN/
PSR complexes in the Kookaburra region. In the southwest of
Kookaburra, HESSJ1418−609 (Aharonian et al. 2006a) is
coincident with both the extended non-thermal X-ray “Rabbit”
PWN (G313.3+0.1, Roberts et al. 1999), and the γ-ray
detected pulsar PSRJ1418−6058 (Abdo et al. 2009). The
northeast region, called “K3,” contains HESSJ1420−607,
coincident with PWNG313.5+0.3 and PSR J1420−6048.
Acero et al. (2013) detected, with Fermi-LAT, emission from

Figure 3. The photon flux vs. the spectral index of Galactic sources (orange
squares), extragalactic sources (green circles), and unassociated sources (brown
diamonds). The medians of the uncertainties are shown as well. We note that
the detectability does not significantly depend on the spectral index as a
consequence of the low intensity of the diffuse background and constant PSF
over the energy range of the analysis. Symbols with a red outline are sources
already detected at TeV energies and contained in the TeVCat catalog.

Figure 4. Distribution of the spectral indices (left panel) and highest photon energy (right panel) of the Galactic sources (orange), extragalactic sources (green slash),
and unassociated sources (brown dotted). The medians of the distributions are plotted with dashed, dashed–dotted, and dotted vertical lines, respectively. Both plots
show that a distinct population of hard-spectrum sources is of Galactic origin.
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Figure 5. Adaptively smoothed count map showing the whole Galactic plane 0° � l � 360° at Galactic latitudes −14° � b � 14° divided in four panels. The panels
are centered at l = 0°, 90°, 180°, and 270°, respectively. Detected point sources are marked with a cross whereas extended sources are indicated with their extensions.
Only sources located at −4° � b � 4° are explicitly named, plus the Crab Nebula.

Figure 5. (Continued.)
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both HESSJ1418−609 (with a soft spectral index, pulsar-like
spectrum) and HESSJ1420−607 (with a hard power-law
index) above 10 GeV, but only HESS J1420−607 was
significantly detected above 30 GeV. Neither showed signifi-
cant extension. Our result for the fitted power-law spectral
index of 2FHLJ1419.2−6048e is in agreement with the
previous GeV and TeV results, yet our measured radius is
considerably larger than the TeV extension. To compare the
extensions of the uniform disk model used for 2FHLJ1419.2
−6048e in this paper to the Gaussian model of Aharonian
et al. (2006a), we defined the radius which contains 68%
of the sourceʼs intensity as r68, with r68,Gaussian= 1.51σ,
and r68, disk= 0.82σ (Lande et al. 2012). We find that
r68; 0°.30 for 2FHLJ1419.2−6048e, and r68; 0°.09 for
HESSJ1420−607.

2FHL J1355.2−6430e, coincident with the VHE source
HESS J1356−645, is detected as extended (σdisk=
0°.57± 0°.02) for the first time by the LAT in this work. The
source HESS J1356−645 (Abramowski et al. 2011a) is
associated with the pulsar PSR J1357−6429, which was
determined to be powering a surrounding extended radio and
X-ray PWN (Lemoine-Goumard et al. 2011). Acero et al.
(2013) detected faint emission from the nebula, and derived a
99% c.l. Bayesian upper limit on extension (σGauss< 0°.39) in
the absence of significant extension. The fitted spectral index
for 2FHL J1355.2−6430e is compatible with the GeV and TeV
results (Acero et al. 2013; Abramowski et al. 2011a), however,
the fitted disk extension is larger than that of the TeV detection,
with r68; 0°.47 for 2FHLJ1355.2−6430e and r68; 0°.30 for
HESSJ1356−645.

2FHL J1112.4−6059e is an extended source (σdisk=
0°.53± 0°.03) newly detected by the LAT that encircles two
3FGL sources, 3FGL J1111.9−6058 and 3FGL J1111.9−
6038, and has another, 3FGL J1112.0−6135, just outside its
boundary (Acero et al. 2015). The extended source also
partially overlaps the massive star-forming region NGC 3603.
Finally, 2FHL J0431.2+5553e is a large extended source

(σdisk= 1°.27± 0°.04), with a hard spectrum, that has not been
previously detected at γ-ray energies. It overlaps the recently
discovered radio SNR G150.3+4.5 (Gao & Han 2014). G150.3
+4.5 is a 2°.5× 3° (Galactic coordinates) elliptical shell type
SNR that has a steep radio synchrotron spectrum (α=−0.6),
indicative of radio SNRs.

3.4. The 2FHL Extragalactic Sky

3.4.1. General and Spectral Properties

Most of the sources detected in 2FHL are extragalactic. 83%
(299) are either located at  b 10∣ ∣ or associated with an
extragalactic source. We refer to this set of sources as the
extragalactic sample.
BL Lacs represent the most numerous source class (54% of

the full 2FHL catalog and 65% of the extragalactic sample),
while there are a few detected FSRQs (10 sources, 3% of the
full 2FHL catalog). Such a low number of FSRQs is expected
due to their soft spectra at >50 GeV. Most of the detected BL
Lacs belong to the high-frequency synchrotron peak (HSP)
class, rather than to the low-frequency synchrotron peak (LSP),
or intermediate-frequency synchrotron peak (ISP) class. This is

Figure 6. Spectral energy distributions of four Galactic sources constructed by combining data from the 3FGL (green diamonds), 1FHL (blue circles), and 2FHL (red
stars). We show the 3FGL extended source SNR IC443 (top left), the new 2FHL extended source PSRJ1420−6048 (top right), and two “dark accelerators” detected
by H.E.S.S. at TeV energies (Carrigan et al. 2013, purple squares) without a previous LAT counterpart: HESSJ1503−582 (bottom left) and HESSJ1702−420
(bottom right).
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shown in Figure 8, which reports the distribution of
synchrotron peak frequencies of blazars detected in the 2FHL
and in the 3FGL. It is clear that the two catalogs sample
different parts of the blazar population, with the 3FGL
including mostly LSPs and ISPs and the 2FHL including
mostly HSPs.

There are 198 2FHL sources in the extragalactic sample that
are detected both in the 3FGL and 1FHL catalogs. There are 33
other sources that are neither in the 3FGL nor in the 1FHL
catalog (and not in 1FGL/2FGL either). In general, 2FHL
sources not detected in 3FGL and 1FHL are harder (median
Γ∼ 2.8 versus 3.2), fainter (median F50∼
1.3× 10−11 ph cm−2 s−1 versus 2.3× 10−11 ph cm−2 s−1) and
are detected at lower significance (median TS∼ 30 versus 53)
than those detected in the aforementioned catalogs.

One of the 33 exclusive 2FHL sources is 2FHL J1944.1
+2117 (Γ= 2.73± 0.66) that is associated with HESS J1943
+213 (Abramowski et al. 2011b). This source is potentially an
extreme high-frequency peaked BL Lac, classified as bcu II,
located in the Galactic plane with n =log Hz 18.79S

10 peak( )
(Ackermann et al. 2015). We also detect N157B, 2FHL

J0537.4−6908, with a very hard spectral index of
Γ= 1.15± 0.37. This is an extragalactic PWN in the LMC
detected by H.E.S.S. up to 18TeV (Abramowski
et al. 2012, 2015c). The other 31 sources (out of the 33
2FHL exclusive sources) are not detected by Cherenkov
telescopes yet. Of the 31 sources, 16 are classified as some
type of blazar whereas 14 are unclassified. One source is
associated with a galaxy cluster, 2FHL J0318.0−4414 detected
with a soft spectrum (Γ= 4.0± 1.7). The emission likely
originates from PKS0316−444, which is a bright radio source
at the center of Abell3112 (z= 0.075, Takizawa et al. 2003).
Emission from the region of Abell3112 was already margin-
ally found by Ackermann et al. (2014a), yet it is robustly
detected in the 2FHL.
We find that the number of FSRQs is strongly reduced from

1FHL (71 sources) to the 2FHL (10 sources). This is mainly
due to the soft indices of this blazar population and the higher
energy threshold adopted in the 2FHL with respect to the
1FHL. Another indication of this effect is that only 2 sources at
z> 1 (out of a total of 7) are FSRQs, while the rest are BL
Lacs. Other noteworthy examples of detected extragalactic

Table 4
2FHL Extended Sources Previously Detected by the Fermi-LAT

2FHL Name l (deg) b (deg) TS Association Class Spatial model Extension (deg)

J0526.6−6825e 278.843 −32.850 49.80 LMC gal 2D Gaussian 1.87
J0617.2+2234e 189.048 3.033 398.64 IC443 snr 2D Gaussian 0.27
J0822.6−4250e 260.317 −3.277 63.87 Puppis A snr Disk 0.37
J0833.1−4511e 263.333 −3.104 49.70 VelaX pwn Disk 0.91
J0852.8−4631e 266.491 −1.233 437.21 VelaJr snr Disk 1.12
J1303.4−6312e 304.235 −0.358 56.06 HESSJ1303−631 pwn 2D Gaussian 0.24
J1514.0−5915e 320.269 −1.276 165.51 MSH15−52 pwn Disk 0.25
J1615.3−5146e 331.659 −0.659 128.15 HESSJ1614−518 spp Disk 0.42
J1616.2−5054e 332.365 −0.131 87.18 HESSJ1616−508 pwn Disk 0.32
J1633.5−4746e 336.517 0.121 114.17 HESSJ1632−478 pwn Disk 0.35
J1713.5−3945e 347.336 −0.473 60.98 RXJ1713.7−3946 snr Map 0.56
J1801.3−2326e 6.527 −0.251 50.20 W28 snr Disk 0.39
J1805.6−2136e 8.606 −0.211 160.43 W30 snr Disk 0.37
J1824.5−1350e 17.569 −0.452 266.09 HESSJ1825−137 pwn 2D Gaussian 0.75
J1834.9−0848e 23.216 −0.373 67.30 W41 snr 2D Gaussian 0.23
J1836.5−0655e 25.081 0.136 62.72 HESSJ1837−069 pwn Disk 0.33
J1840.9−0532e 26.796 −0.198 163.15 HESSJ1841−055 pwn Elliptical 0.62, 0.38, 39.0
J1923.2+1408e 49.112 −0.466 44.60 W51C snr Elliptical 0.38, 0.26, 90.0
J2021.0+4031e 78.241 2.197 115.97 Gamma Cygni snr Disk 0.63
J2028.6+4110e 79.601 1.396 28.09 Cygnus Cocoon sfr 2D Gaussian 3.0

Note. List of the 20 extended sources in the 2FHL that were previously detected as extended by the Fermi-LAT. All these sources are in 3FGL except W41, which is
studied by Abramowski et al. (2015b). The Galactic coordinates l and b are given in degrees. The extension of the disk templates is given by the radius, the extension
of the two-dimensional (2D) Gaussian templates is given by the 1σ radius, and the elliptical templates are given by the semimajor axis, semiminor axis, and position
angle (east of north).

Table 5
New 2FHL Extended Sources

2FHL Name l (deg) b (deg) TS TSext TS2pts F50 ΔF50 Γ ΔΓ Association Class Radius (deg)

J0431.2+5553e 150.384 5.216 87.9 83.4 26.2 11.70 2.11 1.66 0.20 G150.3+4.5 snr 1.27
J1112.4−6059e 291.222 −0.388 80.9 68.3 22.5 12.80 2.36 2.15 0.28 PSRJ1112−6103 pwn 0.53
J1355.2−6430e 309.730 −2.484 82.3 31.8 12.9 9.59 1.95 1.56 0.22 PSRJ1357−6429 pwn 0.57
J1419.2−6048e 313.432 0.260 109.3 49.1 15.6 17.60 2.80 1.87 0.19 PSRJ1420−6048 pwn 0.36
J1443.2−6221e 315.505 −2.239 75.6 29.9 19.2 7.23 1.70 2.07 0.30 SNRG315.4−2.3 snr 0.27

Note. List of the 5 new extended sources in the 2FHL. All these sources are characterized by an uniform disk template whose radius is given in the last column.

13

The Astrophysical Journal Supplement Series, 222:5 (19pp), 2016 January Ackermann et al.



sources are the nearby radio galaxies IC 310 (z= 0.019),
NGC1275 (z= 0.0175), PKS0625-35 (z= 0.05494), 3C264
(z= 0.021718), M87 (z= 0.004283), and Centaurus A
(z= 0.0018).

Figure 9 shows the SEDs of two notable sources, Mrk 421
and 3C 66A, highlighting how the LAT now resolves the
descending part of the high-energy peak. Indeed, 2FHL
spectra of extragalactic sources are generally softer than the

corresponding 3FGL and 1FHL spectra. This is evident in
Figure 10, which compares the spectral indices for a
subsample of 158 BL Lacs in common between the 2FHL,
3FGL and 1FHL catalogs. There are two interesting facts
illustrated by Figure 10. First, the median of the distribution
shifts toward larger (softer) indices since 2FHL samples the
drop of the SED. Second, the scatter of the distribution
becomes larger with increasing energies. Some of the scatter

Figure 7. TS maps for the five new extended sources described in Section 3.3.2. Only the Galactic diffuse and isotropic emission are included in the model to highlight
the location of emission not associated with the diffuse background. Circles indicate the extents of the fit disks. The x marker in the bottom panel (2FHLJ0431.2
+5553e) shows the location of a point source in the ROI.
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arises from statistical effects since the number of detected
photons at >50 GeV is generally lower than in the 3FGL
and 1FHL.

3.4.2. γ-ray Attenuation

Spectroscopic redshift measurements exists in the literature
(e.g., Shaw et al. 2012, 2013; Masetti et al. 2013) for 43%
(128) of the 299 extragalactic sources. The comparison of the
2FHL and 1FHL redshift distributions (reported in Figure 11)
shows that on average 2FHL sources lie at lower redshifts than
the 1FHL ones. This might be because FSRQs and LSP blazars,
which tend to be located at higher redshifts, have soft spectra
and are faint in the 2FHL band. High-redshift sources appear
even fainter because of the EBL attenuation. The EBL contains
all the photons, from the ultraviolet to the infrared, that have
been emitted by star formation processes and supermassive
black hole accretion throughout the history of the universe
(e.g., Dwek & Krennrich 2013). The spectrum of extragalactic
γ-ray sources, in the whole energy range of our analysis, is
modified by pair-production interaction of the γ-ray photons
with the EBL (e.g., Ackermann et al. 2012). This interaction
produces an attenuation of the observed fluxes that is energy
and redshift dependent (the larger the γ-ray energy and/or the
redshift, the larger the attenuation). We note that despite the
high energies probed by this work, seven sources have z> 1,
where the EBL attenuation is not negligible. These sources are
associated with PKS0454−234 (z= 1.003), PKS0426−380
(z= 1.105, Tanaka et al. 2013), OJ014 (z= 1.148), TXS0628

Figure 8. Normalized distribution of the frequency of the synchrotron peak for
the blazars detected in the 3FGL and those detected in the 2FHL. For the 3FGL
sources the peak frequencies were adopted from 3LAC (Ackermann et al. 2015).
LSP, ISP, and HSP blazars are those with n <log Hz 14S

10 peak( ) ,
n< <14 log Hz 15,S

10 peak( ) and n >log Hz 15S
10 peak( ) , respectively.

Figure 9. The spectral energy distributions of Mrk421 (left panel) and 3C66A (right panel) over four decades in energy. The higher energy peak is well characterized
by combining data from the 3FGL (green diamonds), 1FHL (blue circles), and 2FHL (red stars).

Figure 10. The distribution of spectral indices for a subsample of 158 BL Lacs
that are in common among the 2FHL (backslash orange), 3FGL (slash green),
and 1FHL (purple). The medians of the distributions are shown with vertical
lines. The higher the energy band, the larger the index; therefore sources get
softer with increasing energy. The scatter of the distribution is also larger with
increasing energy, partly because of the lower statistics.

Figure 11. Normalized redshift distribution of the sources with known redshift
in 2FHL (orange backslash) and 1FHL (blue dotted). The medians of the
distributions are plotted with a dashed and dashed–dotted vertical line,
respectively.
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−240 (z= 1.238), PKSB1424−418 (z= 1.55), B22114+33
(z= 1.6), and MG4J000800+4712 (z= 2.1). We specially
note that three sources have redshifts z> 1.5. The effect of the
EBL attenuation is clearly seen in Figure 12. This figure shows
the significant dependence of the spectral index on the redshift
at the 2FHL energies whereas that dependence is reduced at
lower energies (i.e., for 3FGL and 1FHL) where the EBL
interaction is less relevant.

The EBL attenuation can be parameterized by an optical
depth τ that can be derived from empirical EBL models (e.g.,
Franceschini et al. 2008; Finke et al. 2010; Kneiske & Dole
2010; Domínguez et al. 2011b; Gilmore et al. 2012; Helgason
& Kashlinsky 2012; Stecker et al. 2012; Scully et al. 2014;
Khaire & Srianand 2014). In fact, the EBL sets a distance limit
from where γ-ray photons of a given energy are expected to
reach us, the cosmic γ-ray horizon (CGRH, e.g., Abdo
et al. 2010; Domínguez et al. 2013). Formally, the CGRH may
be defined as the energy at which τ= 1 as a function of
redshift. Figure 13 shows the HEPs in 2FHL versus the redshift
of emission. As we can see from Figure 13, a few photons are
from near and beyond the CGRH. These photons from
significantly attenuated sources provide information about the
EBL, which in turn carries fundamental information about
galaxy evolution and cosmology (e.g., Hauser & Dwek 2001;
Domínguez & Prada 2013; Biteau & Williams 2015). In fact,
the most complete EBL information is typically given by the
sources detected up to the highest energies, which are usually
the brightest sources with the hardest spectra. The HEPs with
the largest optical depths are associated with RBS0413
(z= 0.19, τ= 1.38), PKS0823−223 (z= 0.911, τ= 1.39),
RXJ0648.7+1516 (z= 0.179, τ= 1.74), 1ES0347−121
(z= 0.188, τ= 2.43), and 1ES0502+675 (z= 0.34,
τ= 2.84), where τ is given by the observationally based EBL
model by Domínguez et al. (2011b). These photons are
especially interesting for testing alternative photon-propagation
scenarios such as secondary cascades (Essey & Kusenko 2010)
and axion-like particles (e.g.,de Angelis et al. 2007; Sánchez-
Conde et al. 2009; Domínguez et al. 2011a; Horns &
Meyer 2012). However, we caution the reader that Figure 13
cannot be readily interpreted in terms of constraints on the EBL

optical depth because brighter and harder sources stand a larger
chance to have photons detected from beyond the horizon.

3.5. Variability of 2FHL Sources

We have studied the variability of 2FHL sources using the
same Bayesian Block algorithm adopted in 1FHL (Ackermann
et al. 2013). This algorithm, designed to detect and characterize
variability in time series (Scargle 1998; Scargle et al. 2013), is
well suited in regimes of low-count statistics. The algorithm
partitions a given source light curve into constant segments
(blocks), each characterized by a flux and duration. The
location of the transition between blocks is determined by
optimizing a fitness function (using the algorithm of Jackson
et al. 2005) for the partitions. As for the analysis of 1FHL data,
the fitness function employed here is the logarithm of the ML
for each individual block under the hypothesis of a constant
local flux (see Scargle et al. 2013). A 1% false positive
threshold was selected for all sources. For 360 sources, we
expect 3-4 false detections. Aperture photometry was per-
formed for each source using an ROI of 0°.5 radius centered on
the ML source coordinates. The light curves were divided into
50 equal time bins spanning the 80-month interval. For sources
with neighboring 2FHL sources closer than 1°, the radius of the
ROI was decreased to the greater value of (half the angular
separation) or 0°.25. No background subtraction was done for
the aperture photometry and Bayesian Block analyses. This is
the same procedure that was used in 1FHL. Five pairs of
sources are closer than 0°.5, all of which are located in the
Galactic plane.
Only 7 sources are detected as being variable at more than

99% C.L (see Table 6) in contrast to the detection of 43
variable sources in 1FHL. Most of the 2FHL variable sources
are associated with BL Lacs and all but one (PMNJ1603
−4904, associated with an AGN that may be a young radio
galaxy, Müller et al. 2015) have already been detected by
IACTs. Most sources are detected with only 2 blocks, meaning
that they were brighter during part of the 80 months spanned by
the 2FHL analysis. MG4J200112+4352, 1ES0502+675,

Figure 12. Observed spectral index vs. redshift of the 3LAC sources (energy
range, 0.1–100 GeV), the median spectral index of the 1FHL sources
(10–500 GeV) in 4 redshift bins, and the median spectral index of the 2FHL
sources (50–2 TeV) in 3 redshift bins. The uncertainties are calculated as the
68% containment around the median. There is a dependence of the spectral
index on redshift at the energies where the EBL attenuation is significant.

Figure 13. The highest photon energy vs. source redshift. The symbols are
color coded by the optical depth, τ, estimated from the EBL model by
Domínguez et al. (2011b). Different estimates of the cosmic γ-ray horizon are
plotted as well, which are derived from the EBL models by Finke et al. (2010,
dotted orange line), Domínguez et al. (2011b, solid black line, with its
uncertainties as a shaded band) and Gilmore et al. (2012, dashed red line). We
note that several photons are from near and beyond the horizon.
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RBS0413, and PMNJ1603−4904 were all in high states at the
beginning of the Fermi mission, while 1ES 0033+595 became
brighter after 2013. 3C66A had a clear outburst at >50 GeV,
coincident with the bright flare detected by VERITAS and
Fermi in 2008 September (Abdo et al. 2011). The most
frequently variable source (detected with 4 blocks) is Mrk421,
which was not detected as variable in 1FHL. The Bayesian
Block analysis clearly detects the outburst of the source in 2012
August (Hovatta et al. 2015). Figure 14 shows the light curves
for these 7 sources. Half of the sources in 2FHL are detected
with less than 6 photons, which prevents us from assessing

whether variability is present. Indeed, the weakest source for
which we detect variability is 2FHLJ0319.7+1849
(RBS0413), which is detected with ∼6 photons.

3.6. Candidates for Detection with Cherenkov Telescopes

A cross correlation between the 2FHL and TeVCat catalogs,
finds that 282 sources in 2FHL (i.e., ∼78% of the 2FHL
sample) have not been detected yet by IACTs. Figure 15 shows
the photon flux distributions of the population already detected
by IACTs (median of 5.72× 10−10 ph cm−2 s−1) and that not

Table 6
Results of the Bayesian Block Variability Analysis

2FHL Name Number of Blocks γ-ray Association Class TeV?

J0035.8+5949 2 1ES0033+595 bll Yes
J0222.6+4301 3 3C66A bll Yes
J0319.7+1849 2 RBS0413 bll Yes
J0507.9+6737 2 1ES0502+675 bll Yes
J1104.4+3812 4 Mrk421 bll Yes
J1603.9−4903 2 PMNJ1603−4904 agn No
J2001.2+4352 2 MG4J200112+4352 bll Yes

Figure 14. Light curves for the seven variable sources detected in the 2FHL catalog. The histograms correspond to the aperture photometry analysis, and the solid
lines correspond to the Bayesian Block analysis using a 1% false positive threshold. The panels are labeled with the 2FHL names and the names of the corresponding
associated sources (in parentheses). For 3C66A, the peak flux in the Bayesian Block light curve is 5.4 × 10−9 ph cm−2 s−1; the ordinate is manually truncated to
3 × 10−9 ph cm−2 s−1 to improve readability.
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detected (median of 1.55× 10−10 ph cm−2 s−1); the flux is a
factor ∼4 greater for the population already detected. Out of
282 sources that are not detected by IACTs, 216 are located at

 b 10∣ ∣ and 66 are at < b 10 .∣ ∣ Therefore, most of the
2FHL targets for IACTs are likely extragalactic. Given the
energy threshold and sensitivity of current IACTs, a large
majority of sources in our catalog are promising targets for
IACT detections. However, for extragalactic studies, it may be
convenient to concentrate on HSP blazars, which typically have
their higher-energy peak at energies above 100 GeV. With a
factor of 10 improvement in sensitivity and the extension to
energies below 100 GeV, all 2FHL sources should be
detectable by the future Cherenkov Telescope Array (Acharya
et al. 2013).

4. SUMMARY

We have presented an all-sky analysis at �50 GeV of
80 months of Fermi-LATdata relying on the new Pass8 event-
level analysis. Pass8 delivers improvements in the acceptance
and the PSF, reduces background of misclassified charged
particles and extends the energy range at which Fermi-LATis
sensitive. All this allowed Fermi-LATto detect 360 sources in
the 50 GeV–2 TeV range, performing an unbiased census of the
>50 GeV sky for the first time. This catalog of sources (dubbed
2FHL) provides a bridge between the traditional 0.1–100 GeV
band of Fermi-LATcatalogs (Acero et al. 2015) and the
100 GeV band probed by IACTs from the ground. The 2FHL
catalog has the potential to improve the efficiency with which
new sources are detected at TeV energies since only about 25%
of the 2FHL sources were previously detected by IACTs.

The majority (80%) of sources detected in the 2FHL
catalog are likely extragalactic because they are either located
at high Galactic latitude or are associated with blazars. BL Lacs
represent the largest population of sources detected by the LAT
(54%), followed by blazars of uncertain classification (16%)
and unassociated sources (13%). Most BL Lacs in 2FHL
belong to the HSP class and display the hardest (among
blazars) γ-ray spectra and substantial emission in the 50 GeV–
2 TeV band. These sources are powerful probes of the EBL and
this work has shown that Fermi-LAThas detected emission
from many blazars at optical depths >1.

The 2FHL includes 103 sources in the direction of the
Galactic plane ( < b 10∣ ∣ ). While a fraction of the sources
(∼39%) is associated with blazars, the rest are Galactic and
unassociated sources. Galactic sources generally display much
harder photon indices than blazars (median of ∼2 versus ∼3)
and copious TeV emission, both signs of efficient particle
acceleration. Most Galactic sources are associated with PWNe
and SNRs, systems at the end of the stellar evolution cycle, and
are detected as spatially extended. All the hard (spectral
index<2) unassociated sources within the plane of our Galaxy
are likely of Galactic origin, since very few blazars have
spectra as hard.
A comparison with a similarly long data set of Pass7

photons shows that Pass8 allows the LAT to detect 35% more
sources. It is thus clear that Pass8 and the accumulated
exposure allow the LAT to extend its reach to higher energy
and to open a new window on the sub-TeV sky. Sensitivity
improves linearly with time in the photon-limited regime, thus
further observations by the LAT in the coming years will probe
the > 50 GeV sky even more deeply, providing important
targets for current and future Cherenkov telescopes.
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