Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels
Romain Vullo, Ronan Allain, Lionel Cavin

To cite this version:

HAL Id: insu-01361352
https://insu.hal.science/insu-01361352
Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels

ROMAIN VULLO, RONAN ALLAIN, and LIONEL CAVIN

Spinosaurs represent a group of peculiar theropod dinosaurs that have often been described as “crocodile-mimic”, predominantly fish-eating predators, and recently claimed to have been semi-aquatic animals. Here we report a suite of craniodental characters unexpectedly shared by spinosaurs and pike conger eels. Pike conger eels are predatory, mainly piscivorous bottom-dwelling anguilliform fishes that inhabit marine and brackish environments. These two groups of dinosaurs and fishes show a mediolaterally compressed, elongated rostrum, a terminal “rosette” bearing enlarged teeth in both upper and lower jaws, and a notch posterior to the premaxillary “rosette” characterized by the presence of reduced teeth. The morphological convergence observed in the jaws of these two distantly related groups of vertebrates may result from similar feeding behaviours. This typical jaw morphology likely represents an effective biomechanical adaptation for biting and grabbing elusive prey items in low-light aquatic environments. Associated with this specialized snout morphology, numerous integumentary mechanoreceptors involved in prey detection are present in both spinosaurs and pike congers. Our new observations provide an additional convincing argument regarding the decades-long and widely debated lifestyle of spinosaurs.

Introduction

Outstanding examples of convergent evolution are regularly reported, showing how similar selective pressures can drive to common morphofunctional features in unrelated taxa, extinct or extant (e.g., Donley et al. 2004; Ji et al. 2006; Field et al. 2011; O’Brien et al. 2016). In this short communication, we present preliminary observations concerning a previously unrecognized case of convergent adaptation between spinosaurs (Archosauria: Spinosauridae), an iconic group of bizarre theropod dinosaurs, and pike congers (Actinopterygii: Muraenocidae), a modern group of anguilliform fishes.

During the Cretaceous period, spinosaurs were a highly specialized group of megalosaurid theropods with a craniodental morphology clearly distinct from those known in all other carnivorous dinosaurs (Charig and Milner 1986, 1997; Sereno et al. 1998; Amiot et al. 2010). Moreover, the palaeoecology of spinosaurs is widely considered to have also been radically different. Spinosaurs have been early recognized as piscivorous animals (Taquet 1984; Charig and Milner 1986, 1997; see also Dyke 2010: fig. 1), although it has subsequently been shown that the diet of these theropods also included items other than fishes (Buffetaut et al. 2004). Furthermore, a semi-aquatic lifestyle has recently been proposed for these theropods on the basis of isotopic data (Amiot et al. 2010) or anatomical features (e.g., retraction of the fleshy nostrils, downsized pelvic girdle and short hindlimbs) (Ibrahim et al. 2014), and a new, hydrodynamic hypothesis regarding the function of the huge dorsal sail of Spinosaurus has been formulated accordingly (Gimsa et al. 2016).

Despite its strong mediolateral compression, the rostrum of spinosaurs has usually been compared with the snout of modern crocodilians (Taquet 1984; Charig and Milner 1997; Holtz 1998; Sereno et al. 1998). It is true that the crocodile (Crocodylus spp.) and alligator (Alligator spp.) skulls, in particular, share dental characters with spinosaurs, such as size heterodonty (anisodonty) and sinuous tooth rows. However, the alligator skull is strongly dorsoventrally compressed, and some biomechanical analyses have shown that the closest functional analogues to spinosaurs are the African slender-snouted crocodile (Mecistops cataphractus) and the Indian gharial (Gavialis gangeticus), which have a long tubular snout (Rayfield et al. 2007; Cuff and Rayfield 2013). In the latter, however, the straight jaw margins and the homodont condition make it morphologically very different from spinosaurs. Lastly, Foffa et al. (2014a) found that the snout-bending and torsion resistances of the spinosaurid Baryonyx closely match those of the Nile crocodile (Crocodylus niloticus) and the Late Jurassic marine reptile Pliosaurus kevani. Nevertheless, the general morphology of the rostrum of pliosaurs remains clearly distinct from that of spinosaurs. Although the dentition of Pliosaurus is similarly anisodont, tooth rows are almost rectilinear in lateral view and terminal “rosettes” are not so well defined (Benson et al. 2013).

The narrow jaws of spinosaurs actually appear strikingly similar to those of pike conger eels, a small and relatively poorly known family of tropical/subtropical anguilliform fishes (Castle and Williamson 1975; Smith 1999). Pike congers, such as the Indo-Pacific Muraenox and Congerox, live over soft bottoms from estuaries down to about 100 m deep, and shallow species are apparently nocturnal (Smith 1999). These medium- to large-sized eels (up to 2.5 m long), recognized for their aggressiveness, feed mostly on small demersal fishes and crustaceans (George 1980; Smith 1999).
Results

The main common morphological features observed in spinosaurid dinosaurs and muraenesocid eels are: (i) snout elongated and mediolaterally compressed; (ii) rostral end of premaxilla and dentary rounded (“rosettes”); (iii) upper jaw showing in lateral view a notch posterior to premaxillary “rosette”, bearing reduced teeth and receiving the dentary “rosette” when mouth is closed; (iv) strong heterodonty (in size); and (v) “rosettes” bearing enlarged, slender conical teeth (Takai 1959; Charig and Milner 1997; Smith 1999; Dal Sasso et al. 2005) (Fig. 1). In the upper jaw of pike congers, the fused medial bone corresponding to the robust premaxillo-ethmo-vomerine complex (Eagderi and Adriaens 2010), which is traditionally regarded as autapomorphic for the Anguilliformes, reinforces the analogy with the solid snout of spinosaurs. The main difference consists in the nature of the largest tooth-bearing element of the upper jaw, which corresponds to the maxilla in spinosaurids (paired, laterally placed, tooth rows) (Dal Sasso et al. 2005) and to the vomer in muraenesocids (a single medially placed tooth row) (Takai 1959; Smith 1999). In addition, the dentition posterior to the “rosettes” shows laterally compressed, blade-like teeth in Muraenesox (Castle and Williamson 1975; Smith 1999) and spinosaurs (Dal Sasso et al. 2005; Hendrickx et al. 2015). It is worth noting that the specialized craniodental morphology of spinosaurids and muraenesocids (Fig. 1) represents a derived condition with respect to the more generalized morphology of their sister groups (here referred to as megalosaurids and congrids, respectively), whose members are medium-snouted forms with non-sinuous jaws and homodont dentitions (Takai 1959; Allain 2002; Eagderi and Adriaens 2010; Rayfield 2011).

Fig. 1. Comparative evolution of jaws between Muraenoscidae (A) and Spinosauridae (B). Craniodental morphologies of Recent pike conger eels and Cretaceous spinosaurid theropod dinosaurs are convergently similar, likely resulting from similar feeding habits. In the sister groups of Muraenoscidae and Spinosauridae, here represented respectively by Conger (Congridae) and Dubreuillosaurus (Megalosauridae), skulls exhibit the plesiomorphic condition (i.e., rostrum not markedly elongated, absence of premaxillary and dentary “rosettes”, dentition homodont). The derived condition observed in both pike congers and spinosaurs, which seems to be associated with an enhanced sensitivity, can be interpreted as an adaptation to forage efficiently in aquatic environments and to grab evasive prey items such as fishes. Muraenoscidae are represented here by Muraenox bagio (skull and head), and Spinosauridae by Baryonyx walkeri (skull) and Spinosaurus aegyptiacus (head reconstruction; courtesy of Stephen O’Connor). Characters: 1, elongated rostrum; 2, terminal “rosette” in both upper and lower jaws; 3, deep notch posterior to the upper jaw “rosette”; 4, strong heterodonty (in size); 5, “rosettes” bearing enlarged teeth. Illustrations not to scale.
Discussion
The acquisition of an elongated snout improving prey capture is observed in many groups of aquatic predators (e.g., tremato-
saurs within temnospondyls; Fortuny et al. 2011). Snout elonga-
tion in both spinosaurids and muraenesocids is apparently cor-
related to the acquisition of a greater sensitivity. Interestingly,
it has recently been suggested that the jaw elongation observed
in long-snouted anguilliforms, such as muraenesocid and net-
tastomatid eels, confers some advantages in prey detection and
prey capture kinematics (Eagderi and Adriaens 2010). In such
benthic, biting predators, the premaxillo-ethmo-vomerine com-
plex seems to enhance the grasping and maintaining capacity,
and an enlarged space for the olfactory organ would improve
foraging efficiency in dark and muddy environments. In addi-
tion, long, mediolaterally compressed jaws may increase biting
speed and reduce drag during prey capture. In *Spinosauru*

*s*

spondyly (Dal Sasso et al. 2005), it has been suggested that
*Spinosauraurus* had a sensory integumentary system similar to
that of other groups of long-snouted predators such as crocodil-
ians (Dal Sasso et al. 2009, 2014; Ibrahim et al. 2014) and plio-
saurs (Foffa et al. 2014b). Pressure receptors and the enhanced
tactile sensitivity would have helped in localizing and biting
aquatic prey items under low-light conditions (i.e., in turbid wa-
ters or during crepuscular/nocturnal feeding activity), similarly
to mechanoreceptive neuromasts present in the pored canals of
the cephalic lateral line system of pike congers.

The previously unreported convergence described here be-
tween spinosaurids and predatory fishes such as pike conger eels
indicates that the former had a snout particularly well adapted
to forage in water over sediments, thus providing further evi-
dence for riparian (possibly semi-aquatic) habits and predom-
inate foraging in water over sediments, thus providing further evi-
dence for riparian (possibly semi-aquatic) habits and predom-
nant piscivory in these intriguing theropod dinosaurs. This
remarkable case of trophically driven convergent evolution in-
volving two phylogenetically and temporally disparate taxa
adds to the few known examples of behavioural and morpho-
fuctional similarities between fishes and reptiles (Pettigrew
et al. 1999). However, further studies and new data on foraging
tactics (i.e., prey detection and capture) and jaw biomechanics
of pike congers, for which very little is known, would be re-
quired to achieve a more detailed comparison between spinos-
aurids and muraenesocids.

Acknowledgments.—We are grateful to Stephen O’Connor (London,
UK) for the spinosaur head reconstruction. Philippe Béarez (Muséum
National d’Histoire Naturelle, Paris, France) is thanked for providing
information on pike congers. We also thank Emilie Läng (Muséum
d’Histoire Naturelle de Genève, Geneva, Switzerland) for her helpful
review of an earlier version of the manuscript, as well as Andrew R.
Cuff (University College London, London, UK) and Christophe Hen-
drickx (University of the Witwatersrand, Johannesburg, South Africa)
for their constructive comments and suggestions.

References
Allain, R. 2002. Discovery of megalosaur (Dinosauria, Theropoda) in the
Middle Bathonian of Normandy (France) and its implications for the
phylogeny of basal Tetanurae. Journal of Vertbrate Paleontology 22:
548–563.
Amiot, R., Buffetèt, E., Lécuyer, C., Wang, X., Boudad, L., Ding, Z.,
Fourel, F., Hutt, S., Martinew, F., Medeiros, M.A., Mo, J., Simon, L.,
Oxygen isotope evidence for semi-aquatic habits among spinosaurid
theropods. Geology 38: 139–142.
Benson, R.B.J., Evans, M., Smith, A.S., Sassoon, J., Moore-Faye, S.,
Ketchum, H., and Forrest, R. 2013. A giant pliosaur skull from the
Buffetèt, E., Martill, D., and Escuillie, F. 2004. Pterosaurs as part of a
Castle, P.H.J. and Williamson, G.R. 1975. Systematics and distribution of
eels of the *Muraenidae* group (Anguilliformes, Muraenidae): a pre-
liminary report and key. J.L.B. Smith Institute of Ichthyology Special
Publication 15: 1–9.
from the Wealden of Surrey. Bulletin of the Natural History Museum,
Geology Series 53: 11–70.
Cuff, A.R. and Rayfield, E.J. 2013. Feeding mechanics in spinosaurid thero-
brids and extant crocodylians. PLoS ONE 8: e65295.
within the snout of the predatory dinosaur *Spinosaurus*. In: N.-E. Jaill
(ed.), First International Congress on North African Palaeontology, Pro-
gram and Abstract Volume 30–31. Cadi Ayyad University, Marrakech.
structure of the snout of *Spinosaurus aegyptiacus*. In: S. Zoubri (ed.),
Second International Congress on North African Palaeontology, Pro-
gram and Abstract Volume, 26–27. Hassan II University, Casablanca.
information on the skull of the enigmatic theropod *Spinosauros*, with
remarks on its size and affinities. Journal of Vertebrate Paleontology
Donley, J.M., Sepulveda, C.A., Konstantinidis, P., Gemballa, S., and Shad-
wick, R.E. 2004. Convergent evolution in mechanical design of lamnids
Dyke, G. 2010. Palaeoecology: different dinosaur ecologies in deep time?
Current Biology 20: R983–R985.
Eagderi, S. and Adriaens, D. 2010. Head morphology of the duckbill eel,
*Hoplunnis punctata* (Regan, 1915; Nettastomatidae: Anguilliformes)
2011. Convergent evolution driven by similar feeding mechanics in ba-
Foffa, D., Buffetèt, A.R., Sassoon, J., Rayfield, E.J., Mavrogordato, M.N.,
and Benton, M.J. 2014a. Functional anatomy and feeding biomechanics of
a giant Upper Jurassic pliosaur (*Reptilia: Sauropterygia*) from Wey-
Foffa, D., Sassoon, J., Cuff, A.R., Mavrogordato, M.N., and Benton, M.J.
2014b. Complex rostral neurovascular system in a giant pliosaur. *Natur-
Fortuny, J., Marcè-Noguè, J., De Esteban-Trivigno, S., Gil, L., and Galobart,
A. 2011. Temnospondyli bite club: ecomorphological patterns of the
most diverse group of early tetrapods. *Journal of Evolutionary Biology*
24: 2040–2054.
George, M.K. 1980. Biology and fishery of wam *Muraenoxalabonoides*
Gimsa, J., Sleigh, R., and Gimsa, U. 2016. The riddle of *Spinosaurus aegy-
Hendrickx, C., Mateus, O., and Arató, R. 2015. A proposed terminology of
theropod teeth (*Dinosauria, Saurischia*). Journal of Vertebrate Pa-
leontology 35: e982797.


Romain Vullo [romain.vullo@univ-rennes1.fr], Géosciences Rennes, UMR 6118, CNRS, Université de Rennes 1, 263 avenue du Général Leclerc, F-35042 Rennes cedex, France.

Ronan Allain [rallain@cmnhn.fr], Sorbonne Universités, CR2P, UMR 7207, CNRS, Muséum National d’Histoire Naturelle, Université Paris 06, 57 rue Cuvier, F-75231 Paris cedex 05, France.

Lionel Cavin [lionel.cavin@ville-ge.ch], Muséum d’Histoire Naturelle de Genève, Département de Géologie et Paléontologie, 1 route de Malagnou, CP 6434, CH-1211 Geneva 6, Switzerland.

Received 17 June 2016, accepted 9 August 2016, available online 2 September 2016.

Copyright © 2016 R. Vullo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.