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Abstract 

The aim of this study was to develop synthetic magnetite nanoparticles (nFe3O4) with 

preferential reactivity for trace elements (TE) for possible environmental applications as 

adsorbents. The synthetic magnetite materials obtained through the co-precipitation of both Fe3+ 

and Fe2+ ions (Fe2+ / Fe3+ = 0.5) were characterized by a set of complementary techniques such as 

X-ray diffraction, transmission and scanning electron microscopy, Fourier transform infrared and 

Raman spectroscopy, and BET adsorption method. The resulting nFe3O4 displayed a wide specific 

surface area (100 m2 g-1) with particles reaching a size of about 10 nm, smaller than those of the 

well-crystallized commercial ones (cFe3O4) estimated at 80 nm while showing a BET surface area 

of 6.8 m² g-1. The adsorption properties of the synthetic nFe304 magnetite nanoparticles were 

characterized and compared to commercial analogues with the adsorption of both arsenic and 

copper. The equilibrium adsorption isotherms were properly fitted with Langmuir and Freundlich 

equation models.  The maximum adsorption capacity for the solid phase, qm, obtained for the 

adsorption of arsenic onto nFe3O4 had an increase of 69.46% comparative to the value obtained 

for the adsorption of arsenic on cFe3O4. The results suggested that the iron oxide nanoparticles 
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displayed a definitive potential for removal and/or immobilization of TE from contaminated waters 

and/or soils. 

Keywords: Arsenic, Copper, Magnetite, Nanoparticles, Adsorption  

 

1. Introduction 

Water is vital for all known forms of life and a valuable resource to human civilization. 

Providing clean and affordable water to meet human needs is a major challenge of the 21st century. 

Unfortunately, rapid technological and industrial development in recent decades has led to a 

number of environmental problems, particularly with regard to the pollution of water resources. In 

this context, trace elements (TE) are one of the major classes of pollutants responsible for 

imbalances in aquatic ecosystems. Generally, TE present in wastewaters, soils and even tap waters 

originate from industrial and municipal wastes as well as excessive utilization of pesticides and 

herbicides (Zhu et al., 2015). Frequent exposures to high concentration of TE have been recognized 

to lead to various health problems such as diarrhea, hemolysis, perturbation of the central nervous 

system (Cho et al., 2012; Barbuceanu et al., 2015; Dalida et al., 2011). Also, Cu and As poisoning 

can lead to cancer, skin diseases, hyperkeratosis, etc. (Cho et al., 2012; Tuna et al., 2013; Yang et 

al., 2015). Thus, health authorities such as the United States Environmental Protection Agency 

(USEPA) set the maximum levels for copper and arsenic in drinking waters to be 1.3 and 0.01 mg 

L-1 (He and Charlet, 2013). One of the most toxic elements, also classified as the world’s most 

hazardous chemical is arsenic (USEPA, 2003). The occurrence of arsenic in the water supply of 

numerous countries represents a worldwide health risk to both humans and animals.  Arsenic is 

present in water in inorganic form as arsenate (As(V)) and arsenite (As(III)). While arsenate is the 

most predominant form of arsenic and it is present in well-oxygenated waters (Ferguson et al., 
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1972), As(III) is the dominant form of arsenic in groundwaters (Smedley and Kinniburgh, 2002). 

In water, As(III) is much more toxic, more soluble, and more mobile than As(V) (Kanel et al., 

2006; Zhang et al., 2007), therefore representing a dangerous threat to human health. 

One of the most effective principles for removing inorganic pollutants such as TE as well as 

organic ones is adsorption. In order to have the desired effects, the adsorbent materials must 

possess specific properties like a large specific area and an excellent affinity to micro-pollutants. 

Natural materials such as activated carbon, clay minerals, zeolites and iron oxides are already 

being used for water remediation (Boneto et al., 2015; Guégan et al, 2015; Thiebault et al., 2015). 

Although activated carbon presents excellent adsorption properties, the costs involved in using this 

type of material can be very high. Some of the major drawbacks of activated carbon are the high 

costs of carbon replacement, the production of dimethyl disulfide as a byproduct of catalytic 

carbons, the carbon disposal or the decrease of its TE adsorption capacity due to the adsorption of 

air moisture (http://www.odor.net/carbon-adsorption/). 

Recently, adsorbents with magnetic properties have attracted much attention from researchers 

due to a significant effect in accelerating separation and improving the efficiency of water 

treatment (Sivashankar et al., 2014; Harikishore et al., 2016; Mehta et al., 2015; Gomez-Pastora et 

al., 2014). The iron oxide nanoparticles attracted considerable attention for a variety of 

fundamental and technological applications such as novel optical electrical and magnetic 

properties due to the surface /volume ratio at the nanomatric scale. According to the studies 

conducted by Hochella et al. (2005), at many kilometers downstream from mining sites, iron oxide 

particles at nanomatric scale with various surface-bound metals were found. The new findings 

suggested the importance of magnetic iron nanoparticles in a variety of geochemical processes 

such as the sorption of trace elements, photochemical reduction, acceptance of electrons from 

http://www.odor.net/carbon-adsorption/
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microbial respiration and heterogeneous catalysis. Therefore, these nanoparticles received 

significant attention for potential applications in the marine environment, site remediation and 

groundwater treatment (Gilbert and Banfield, 2005; Brown Jr. and Parks, 2001). In general, the 

results have shown that it is possible to produce promising adsorbents in this field creating new 

options for the adsorption of both TE and organic pollutants. In this context, in the last decade the 

adsorption capacity of As and Cu by iron oxide based materials (hematite, goethite, limonite, 

siderite and magnetite) has been widely investigated (Lunge et al., 2014; Mayo et al., 2007; Savage 

and Diallo, 2005; Wang et al., 2011; Wiatrowski et al., 2009). Moreover, the most promising 

results on the adsorption capacity of As and Cu from aqueous solutions have been obtained for 

magnetic iron oxide nanoparticles. 

For this purpose, synthetic magnetic nanoparticles (nFe3O4) have been developed based on a 

co-precipitation method at room temperature in controlled Ar atmosphere and their adsorption 

properties for As and Cu were studied and compared to those of a commercial analogous material 

(cFe3O4).  

2. Materials and Methods 

2.1. Materials 

Ferrous chloride tetrahydrate (FeCl24H2O), ferric chloride hexahydrate (FeCl36H2O), sodium 

hydroxide (NaOH) and hydrochloric acid (HCl) were purchased from Merck (Darmstadt, 

Germany). Commercial magnetite (cFe3O4) was purchased from Sigma Aldrich (637106). Arsenic 

standard solution (1000 mg L-1 (As3+)) and Coper standard solution used in the batch experiments 

(1000 mg L-1 Cu2+)) were purchased from CHEM-LAB. Deionized water was used in the synthesis 

of the samples and for the preparation of arsenic and copper containing solutions. 

2.2. Magnetite adsorbents 
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Commercial magnetite (cFe3O4) used in the experiments was purchased from Sigma Aldrich 

(637106- 97% Fe3O4). The structural information (XRD) for cFe3O4 powders provided by Sigma 

Aldrich classified the sample as magnetite with a cubic structure of the Fd3m (227) space group, 

in good agreement with the JCPDS card number 19-629. 

Synthesized magnetite (nFe3O4) was prepared in a controlled atmosphere (Ar) by a co-

precipitation method. In order to obtain magnetite at a nanometric scale, ferrous chloride tetrahy-

drate (FeCl2·4H2O) dissolved in 50 mL 2 M HCl was mixed with 60 mL ferric chloride hexahy-

drate (FeCl3·6H2O) at room temperature (Fe2+/Fe3+=0.5) (Massart, 1982; Massart, 1979; Predoi, 

2007). The solution mixture was added drop by drop into a 200 mL NaOH 5M solution under 

vigorous stirring for about 1 h. 

With the use a magnet, the formed black precipitate was isolated by decantation, then 

separated by a centrifugation process (10000 rpm) and washed with deionised water. The final 

material was dried at 40 oC for 24 h in an oven. 

2.3. Characterization methods 

The X-Ray Diffraction patterns of cFe3O4 and nFe3O4 samples were recorded with a Bruker 

D8 Advance diffractometer, with a high efficiency one-dimensional detector (Lynx Eye type) 

operated in integration mode, using a nickel filtered Cu Kα ( λ=1.5418 Å) radiation. The diffraction 

patterns were collected with a step of 0.02° and a 34 s measuring time per step in the 2θ range 20°-

70°. The morphology of the samples was obtained by scanning electron microscopy, using a 

Quanta Inspect F50 microscope with a field emission gun (FEG). The microscope was also 

equipped with an energy dispersive X-ray (EDAX) attachment used to identify the elemental 

composition of the materials. Transmission electron microscopy (TEM) investigations were 

performed with a CM 20 (Philips- FEI) Transmission Electron Microscope equipped with a Lab6 
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filament operating at 200 kV. The powders were dispersed in ethanol in an ultrasonic bath for 

approximately 5 minutes. Afterwards, 5µl of suspension was deposited on a microscopy copper 

grill previously coated with carbon. The copper grills were then observed at the microscope. The 

particle size was measured by the SZ-100 Nanoparticle Analyzer (Horiba) using dynamic light 

scattering (DLS). The signal obtained from the scattered light is fed into a multichannel correlator 

that generates a function used to determine the translational diffusion coefficient of the analysed 

particles. The Stokes-Einstein equation is then used to calculate the particle size. Attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used in order to establish 

the functional groups present in the prepared powders. The spectra were recorded with a SP 100 

Perkin Elmer spectrophotometer in transmission mode. Each spectrum was acquired in the 2000-

400 cm-1 spectral range using a Diamond/KRS-5 crystal cell with a resolution of 4 cm-1. For the 

Raman spectra acquisition, a Renishaw InVia dispersive Raman spectrometer equipped with a 

Leica DM microscope and a 514 nm (gas-type) Spectra Physics Ar ion laser (20 mW) was used. 

The samples were analyzed using 1800 l/mm gratings and a 514 nm laser at a power of 0.2 mW. 

The spectra were acquired in the spectral range 100-2000 cm-1 with a resolution below 2 cm-1. 

Micromeritics ASAP 2020 Physisorption Analyzer (Micromeritics Instrument Corp.) was used to 

determine surface area, pore size and pore volume of cFe3O4 and nFe3O4 by nitrogen adsorption 

at 77 K.  The cFe3O4 and nFe3O4 powders (about 0.20 g each) were degassed overnight being 

heated at 100 oC prior to measurements of the surface area, pore volume, and average pore 

diameter. The specific BET surface area of both cFe3O4 and nFe3O4 samples were determined by 

the classic Brunauer Emmett Teller (BET) method (Brunauer et al., 1938). The concentration of 

As3+ and Cu2+ from the aqueous solutions was determined by Flame Atomic Absorption 

Spectrometry (AAS) using a Zeeman HITACHI Z-8100. An atomizer with an air/acetylene burner 
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was used for determining the arsenic and copper concentrations. The operating settings were those 

recommended in the manual. The wavelengths used were 193.7 and 193.7 nm for As and Cu, 

respectively.  

2.4. Equilibrium adsorption experiments 

Batch equilibrium adsorption isotherms were conducted with aqueous solutions containing As 

and Cu at a concentration range 0.1-150 mg L-1. The batch adsorption experiments were carried 

out in 40 ml silicon tubes. The amount of adsorbent used was 0.2 g and the solution pH was 

adjusted to 5 by the addition of 0.1 M hydrochloric acid (HCl). A pH around 5 was chosen in these 

experiments in agreement with previous studies (Panday et al., 1985) that showed that the degree 

of removal of pollutants increases when the pH of the solution increases from 3.0 to 8.0. According 

to Elliott and Huang (Elliott and Huang, 1981), the removal of a substance that pollutes continental 

and/or oceanic waters is greatly dependent on pH of the solution which alters the surface charge 

of the adsorbent and the ionisation degree of the adsorbate. The solution volume was kept at 20 ml 

and the mixture was stirred on a Mixer SRT1 Roller for 24 h. After stirring for 24 h, the tubes were 

centrifuged for 30 min at 10000 rpm. The supernatant was filtered and analyzed by Atomic 

Absorption Spectrometry (AAS) and the recovered powders were also characterized. The batch 

experiments were carried out in triplicate and at room temperature. All absorbance readings were 

also done in triplicates. The AAS measurements were performed using a 193.7 nm wavelength for 

arsenic and 324.7 nm wavelength for cooper. The structure and morphology of the rerecovered 

powders were caracterized by XRD, SEM and EDX method while the optical properties were 

investigated using FTIR and Raman spectroscopy. 

3. Results and discussions 
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3.1. Characteristics of the synthesized magnetite nano-particles 

The X-ray diffraction pattern (Figure 1A-B) of commercial magnetite (cFe3O4) and 

synthesized magnetite displayed different peaks at about 30, 35, 43, 54, 57 and 63° (2), 

characteristics to a spinel structure that was properly described with the standard Powder 

Diffraction File of pure cubic magnetite (ICDD 75–0449).   

Figure 1: X-ray diffraction patterns of (A): commercial magnetite (cFe3O4) before and after As3+ 

(As:cFe3O4) and Cu2+ (Cu:cFe3O4) adsorption; (B): synthesized magnetite (nFe3O4) before and 

after As3+ (As:nFe3O4) and Cu2+ (Cu:nFe3O4) adsorption. 

The cFe3O4 magnetite showed intense and sharp diffraction peaks attesting a well crystallized 

structure whereas nFe3O4 XRD patterns appeared extremely broad and might underline small 

particles. The X-ray diffraction pattern of commercial magnetite (cFe3O4) and synthesized magnetite 

(nFe3O4) before and after As3+ (As:cFe3O4 and As:nFe3O4) and Cu2+ (Cu:cFe3O4 and Cu:nFe3O4) 

adsorption were compared in Figures 1A-B. As reference, the Powder Diffraction File (PDF) 

standard cards of pure cubic magnetite (ICDD 75–0449) were represented at the bottom of the 

figure. The peaks observed in the XRD spectra of cFe3O4 and nFe3O4 before and after As3+ and 
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Cu2+ adsorption were in good agreement with the structural model of ICSD card PDF file number 

75-0449 and only the presence of cubic magnetite peaks were remarked. The effect of As3+ and 

Cu2+ ions substitutions on the crystal structure of cFe3O4 and nFe3O4 was evidenced by a variation 

of the (hkl) peaks positions of the spinel structure of Fe3O4 (ICCD card PDF file number 75-0449). 

The adsorption of As3+ and Cu2+ ions onto the Fe3O4 lattice caused an increment of the a-axes in 

the unit cell of Fe3O4 (Table 1). Rietveld refinement analysis was undertaken for an estimation of 

the lattice parameters. On the other hand, the quantitative analysis by the Rietveld method of the 

experimental data was evaluated by the values of the discrepancy factor (Rwp), expected weighted 

profile factor (Rexp), Bragg factor  (RBragg) and goodness of fit (2) 

(http://maud.radiographema.eu/). Values obtained for parameters determined by Rietveld method 

are in agreement to data presented in the literature (Zakaria et al 2003; Pandit et al., 2003). The 

values of the calculated parameters are presented in Table 1.  

Table 1: Lattice parameters of samples calculated from XRD 

Samples cFe3O4 As: cFe3O4 Cu: cFe3O4 n Fe3O4 As: nFe3O4 Cu: nFe3O4 

Rwp (%) 8.96 8.78 8.67 8.99 8.12 8.32 

Rexp (%) 5.98 6.38 6.45 6.05 6.17 6.23 

RBragg (%) 3.4 2.95 2.87 3.05 2.90 2.92 

2 1.67 1.89 1.92 1.55 1.71 1.82 

a- axes (nm) 8.395 8.397 8.40 8.39 8.392 8.394 

DXRD (nm) 85±0.3 80 ± 0.3 76 ± 0.1 12±0.2 10 ± 0.2 9 ± 0.2 
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The results revealed that the obtained materials were standard Fe3O4. The cFe3O4 and nFe3O4 

samples after the adsorption of As3+ and Cu2+ ions had also a spinel structure. The average particle 

sizes was determined using Scherrer equation (Cullity, 1956) and are also listed Table 1. 

The adsorption and desorption isotherms of nitrogen gas revealed classical features for iron 

oxides (Figure 2).  

 

 

 

 

 

 

Figure 2: Nitrogen sorption/desorption isotherm of cFe3O4 and nFe3O4 magnetite samples. 

The BET calculation applied to the nitrogen desorption isotherm gave a total specific 

surface area for the cFe304 of about 6.8 m2/g, and 100 m2/g for the synthetized magnetite, nFe3O4, 

that correlated the information obtained by X-Ray diffraction. Indeed, it was not surprising to get 

a wide specific surface area for nFe3O4 that displayed small particles (10 nm) while the commercial 

magnetite showed bigger particles and thus a smaller specific surface area than the synthesized 

magnetite prepared here. Moreover, in order to give an information about the accessible surface 

area which is one the most important parameters that play an important role on the reactivity of 

the materials for the adsorption of chemical compounds, BET calculation drove to the 

determination of the pore volume and average pore diameter which were 0.025 cm3/g and 14.96 
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nm for cFe3O4 and 0.61 cm3/g and 24.39 nm for nFe3O4, respectively. When the size of particles 

decreased from a DnFe3O4/DcFe3O4 ratio of 7 according to the XRD, the BET surface area ratio 

increased 14.76 times while the pore volume ratio increased 24 times and the average pore 

diameter ratio increased 1.63 times. The BET data of cFe3O4 and nFe3O4 changed when the 

average particle size decreased 7 times, thus leading to an increase in surface/volume ratio of the 

particles. The morphology of both synthesized and commercial magnetite before and after the 

adsorption of As3+ and Cu2+ ions was studied by scanning electron microscopy (Figure 3). In the 

case of the synthesized magnetite (nFe3O4 - Figure 3A), the particles had nanometric sizes and 

exhibited spherical morphology. Moreover, the morphology of the nFe3O4 did not change after the 

adsorption of As3+ and Cu2+ ions (Figure 3B and Figure 3C). On the other hand, the commercial 

magnetite (Figure 3D) particles had irregular shapes and were bigger than the synthesized ones. 

As in the case of nFe3O4, the morphology of the commercial magnetite particles was not 

influenced by the adsorption of heavy metal ions. In both cases (synthesized and commercial 

magnetite), the dimension of the particles decreased after the adsorption experiments. After 

adsorption experiments the dimension of the nFe3O4 (14.7±0.8) particles decreased to 12.6±0.6 

(As:nFe3O4) and 10.8±0.6 nm (Cu:nFe3O4). For the cFe3O4 samples, the dimension of the particles 

decreased from 91.2±0.8 to 86±0.8 nm (As:cFe3O4) and 80±0.5 nm (Cu:cFe3O4).The estimated 

mean particles sizes were in good agreement with the XRD results. 

EDAX spectra of the synthesized and commercial magnetite after the adsorption of As3+ 

and Cu2+ ions were acquired (Figure 4). In the case of As:nFe3O4 and As:cFe3O4 samples, the 

EDAX spectra (Figure 3A and Figure 3C) confirmed the presence of the Fe, O and As. Also, the 

As:nFe3O4 sample contained a larger quantity of arsenic than the As:cFe3O4 sample. 
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Figure 3. SEM images of nFe3O4 (A), As:nFe3O4 (B), Cu:nFe3O4 (C),  cFe3O4 (D), As:cFe3O4 

(E) and Cu:cFe3O4 (F) samples. 

 

 

 

 

 

 

 

 

 

Figure 4. EDAX spectra of As:nFe3O4 (A), Cu:nFe3O4 (B), As:cFe3O4 (C) and Cu:cFe3O4 (D) 

powders. 
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On the other hand, the EDAX spectra of Cu:nFe3O4 (Figure 4B) and Cu:cFe3O4 (Figure 

4D) presented all the constituent elements of the powders (Cu, Fe and O).  In this case, both 

samples (Cu:nFe3O4 and Cu:cFe3O4) had roughly the same copper content. The As3+ and Cu2+ 

immobilized by cFe3O4 or nFe3O4 powders did not appear to affect the diffraction patterns of Fe3O4 

but were detected by EDAX analysis. All the elements detected by EDAX are in good agreement 

with the crystalline phase detected by XRD. 

  The TEM micrographs were also obtained for the nFe3O4 (Figure 5A) and cFe3O4 (Figure 

5B) samples.  

 

 

 

 

 

 

 

 

 

 

Figure 5: TEM micrographs of nFe3O4 (A), cFe3O4 (B) samples. The particle size distributions of 

nFe3O4 (C), cFe3O4 (D) samples was also determined. 
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The TEM studies confirmed that the synthesized magnetite samples consist of small, spherical 

nanoparticles. On the other hand, the particle size distributions (Figure 5C-D) were determined 

from TEM micrographs. The mean particle size calculated by TEM analysis was 14.2±0.3 nm for 

nFe3O4 and 89.4±0.6 nm for cFe3O4, respectively. These results were in good agreement with the 

XRD and SEM results. 

In this study, we compared the diameter of nFe3O4 and cFe3O4 nanoparticles using XRD, 

SEM, TEM and DLS methods. XRD, TEM and DLS methods give different information about 

particle size. For SEM, TEM and XRD analysis the samples must be dried while for DLS analysis 

the particles are in a suspension state. DLS method is based on the statistical fluctuations of the 

scattered light due to the Brownian motion of the particles in the control (Lee et al., 2013). The 

mean particle sizes calculated from XRD, SEM, TEM and DLS for nFe3O4 and cFe3O4 are 

presented in Table 2. The mean particle sizes from XRD, SEM, TEM and DLS were called DXRD, 

DSEM, DTEM and DDLS, respectively. The mean particle sizes obtained from XRD, SEM and TEM 

methods are comparable while the mean particle sizes obtained from DLS were bigger. This result 

could be explained by the fact that DDLS were measured in a suspension state. As a result, DDLS 

gives mean hydrodynamic size which is usually larger than DXRD, DSEM or DTEM as it includes a 

few solvent layers. 

Table 2: Mean particle sizes measured by XRD, SEM, TEM and DLS analysis 

Samples DXRD (nm) DSEM (nm) DTEM (nm) DDLS (nm) 

cFe3O4 85 (± 0.5)  91.2 (± 0.8) 89.4 (± 0.6) 198 (± 6.3) 

nFe3O4 12 (± 0.2) 14.7 (± 0.5) 14.2 (± 0.3) 32 (± 3.5) 
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3.2. Adsorption properties of magnetite nanoparticles for As and Cu removal 

Adsorption isotherm models are fundamental for describing the interactive behavior 

between the adsorbate and adsorbent and are also important for investigating mechanisms of 

adsorption. In this study, equilibrium data were analyzed using the Freundlich and Langmuir 

isotherms. The equilibrium adsorption isotherms and the Freundlich and Langmuir isotherm 

linearized models are shown in Figures 6 and 7. Replicates of the adsorption experiments were run 

in order to evaluate the experimental reproducibility. The experiments were performed in triplicate 

and the mean values were considered for the Langmuir isotherm. The standard deviation (SD) for 

each point of the Langmuir isotherm of the replicates of the uptake of arsenic and copper onto 

commercial and synthetic magnetic nanoparticles were also presented in Figure 6.  

Figure 6: Equilibrium adsorption isotherms for arsenic (A) and copper (B) onto nFe3O4 and 

cFe3O4 at room temperature. The inserts highlight the linearized Langmuir fit. Mean and SD 

values for Ce and qe are also presented in the inserted tables. 
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The Langmuir model is based on the assumption of monolayer adsorption on a structurally 

homogeneous adsorbent, where all sorption sites are identical and energetically equivalent 

(Suzuki, 1990). The linear form of the Langmuir equation can be expressed according to Eq. (1): 

  
𝐶𝑒

𝑞𝑒
=

𝐶𝑒

𝑞𝑚
+

1

𝐾𝐿×𝑞𝑚
                       (1) 

where qm is the theoretical maximum adsorption capacity corresponding to monolayer coverage 

(mg/g), and kL is the Langmuir constant (L/mg). The kL and qm were determined from the linear 

and angular coefficients of the equations formed by regressing Ce/qe as a function of Ce. The 

empirical Freundlich equation is applicable to adsorption on heterogeneous surfaces, where the 

interaction between the adsorbed molecules is not limited to the formation of a monolayer. The 

Freundlich constant (kF) is related to the adsorption capacity of the adsorbent: the higher the value, 

the greater the affinity for the adsorbate. The empirical parameter 1/n is related to the strength of 

adsorption, which varies with the heterogeneity of the material. When the values of 1/n are between 

0.1 and 1.0, the adsorption process is considered favorable (Liu et al., 2011). The linearized form 

of the Freundlich equation is expressed according to Eq. (2):  

  𝑙𝑛𝑞𝑒 = 𝑙𝑛𝐾𝐹 +
1

𝑛
𝑙𝑛𝐶𝑒                      (2) 

where kF is the Freundlich constant (L/g) and 1/n is a dimensionless empirical parameter. The kF 

and 1/n values were determined from the linear and angular coefficients of the equations formed 

by regressing ln qe as a function of ln Ce, respectively.  

To determine whether the adsorption process is favorable, a dimensionless constant 

separation factor RL was defined. The adsorption process is irreversible when RL is zero, favorable 
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when RL is between zero and 1.0, linear when RL is equal to 1.0, and unfavorable when RL is 

greater than 1.0. The RL parameter can be defined based on Eq. (3): 

     𝑅𝐿 =
1

1+𝐾𝐿𝐶0
          (3) 

where C0 is the initial metal ion concentration (mg/L).  

Figure 7: Freundlich linearized fits for the adsorption of both As and Cu onto cFe3O4 and nFe3O4 

magnetite samples. 
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The isotherm parameters for both As and Cu adsorption by the magnetite were shown in Table 3. 

As shown, the experimental data were well adjusted to the Langmuir model, once its correlation 

coefficient (r) was higher that the Freundlich ones. The RL values were between 0.048-0.734, 

confirming that the adsorption process was favorable by Langmuir isotherm model. Thus, this data 

suggested that adsorption mechanism mainly occurred by a monolayer coverage. 

Table 3: Parameters derived from both Langmuir and Freundlich fitting models for arsenic and 

copper adsorption on nFe3O4 and cFe3O4. 

 Langmuir Freundlich 

qm (mg/g) KL (L/mg) R2 RL n kf
 R2

 

As (III) nFe3O4 66.53 0.297 0.999 0.048 1.24 4.37 0.877 

cFe3O4 39.26 0.2 0.887 0.113 1.56 2.77 0.896 

Cu (II) nFe3O4 10.67 0.13 0.998 0.419 0.9 0.3 0.962 

cFe3O4 9.06 0.04 0.871 0.734 2.78 0.9 0.958 

 

The density of the As and Cu was approximately 5.75 and 8.93 g/cm3 respectively, which 

yielded an apparent packing area per cations of 0.0415 and 0.0547 nm2. The specific surface area 

was determined to reach about 7 and 100 m2/g for cFe3O4 and nFe3O4 magnetite samples. If we 

assumed that those specific surfaces are totally accessible, the calculated amount of adsorbed As 

cations was 20 and 293 mg/g for cFe3O4 and nFe3O4 magnetite samples whereas it represented for 

adsorbed Cu cations almost 13 and 192 mg/g for cFe3O4 and nFe3O4 magnetite samples. Those 

maximum adsorbed amounts represented the highest dense covering in a monolayer arrangement 
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onto the external surface of the magnetite. Here, the maximum adsorption capacity for the solid 

phase, qm, estimated through the Langmuir fitting procedure, reached almost 100 and 20% of the 

whole accessible surface area of cFe3O4 and nFe3O4 magnetite samples for the adsorption of As3+, 

and 50 and 5% for the sorption of Cu2+. 

The results obtained in our study regarding the adsorption capacity of Cu on cFe3O4 and nFe3O4 

magnetite samples are in good agreement with other similar studies (Huang et al., 2009; Mehdinia 

et al., 2015). The comparative results showed that the removal efficiencies of the investigated 

adsorbents were comparable or higher, in some cases. Moreover, Chuang et al. (2005) reported 

that for chitosan-bound Fe3O4 magnetic nanoparticles the adsorption behavior followed the 

Langmuir adsorption isotherm with a maximum adsorption capacity of 21.5 mg/g. These reported 

studies are in good agreement with our results and were given as possible explanation for the 

complexation capability (donor-acceptor interaction) between the surface of the adsorbent and the 

metal ions (Mehdinia et al., 2015). Also, a study conducted by Mayo et al. (2007) regarding the 

influence of the magnetite particle size on the arsenic adsorption capacity revealed that the 

adsorption capacity for As(III) increased with the decrease of the Fe3O4 particle size. Mayo et al. 

(2007) reported an arsenic removal efficiency of 99.2% in the case of 12 nm Fe3O4 particles, 90.9% 

in the case of 20 nm Fe3O4 particles and only 24.9% in the case of 300 nm Fe3O4 particles. These 

results were attributed to the increase of the Fe3O4 surface area with the decrease of the particle 

size. Our findings regarding the correlation between the particle size, surface area and arsenic 

removal efficiency proved to be in agreement with other reported studies. More than that, in 

agreement with other related studies the higher adsorption capacity for arsenic ions obtained for 

nFe3O4 was attributed to the high specific surface area of these nanoparticles (Mayo et al., 2007; 

Shipley et al.,  2009; Singh et al., 2011). The difference between the adsorption capacity of As and 
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Cu ions by the two magnetite samples could be attributed to the fact that magnetite has been 

reported to have a higher affinity towards arsenic compared to copper (Mayo et al., 2007; Shipley 

et al.,  2009; Singh et al., 2011). 

On the other hand, recent studies emphasized that the metal removal efficiency of a material 

can be explained on the basis of surface functionality, competitive affinity of metal ions towards 

the material used as sorbent, amount of surface charge and availability of active surface sites of 

the sorbent (Singh et al., 2011; Mondal et al.,  2008;). More of that, the metal removal efficiency 

has proven to be strongly dependent on the size of sorbents (Mayo et al.,  2007). Important roles 

are also played by the batch experiments conditions (pH, sample volume, temperature, adsorbent 

dosage, initial metal ion concentration, contact time). 

With such covering of the surface by adsorbed TE, FTIR spectroscopy measurements were 

undertaken as a probe to characterize the functional groups of the magnetite samples that were 

involved for the adsorption (Figure 8).  

The main absorption bands found in the synthesized magnetite powders designated the 

chemical bonds formed between the constituent elements. In this context, the band at 531 cm-1 was 

associated to the Fe-O vibration characteristic to the magnetite phase (Mahdavi et al., 2013a; 

Mahdavi et al., 2013b). This was the main band from all the spectra. In the case of synthesized 

magnetite, this band shifted slightly after the adsorption of metal ions from 531 cm-1 (nFe3O4) to 

535 cm-1 (As:nFe3O4) and 540 cm-1 (Cu:nFe3O4). The same behavior was noticed in the spectra 

of the three samples containing commercial magnetite. The band from 531 cm-1 (cFe3O4) shifted 

after the adsorption of arsenic ions to 534 cm-1 (As:nFe3O4) and to 538 cm-1 after the adsorption 

of copper ions (Cu:nFe3O4). Additional peaks in the spectra of the three samples containing 

synthesized magnetite were found.  
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Figure 8: FTIR spectra of both the commercial and synthesized magnetite before (c,nFe3O4) and 

after the adsorption of As ions (As: c,nFe3O4) and Cu ions (Cu: c,nFe3O4). 

Therefore, the band from 624 cm-1 (nFe3O4), assigned to the Fe-O bond (Khatiri et al., 

2012), shifted to 626 cm-1 in the spectrum of the sample that adsorbed arsenic ions (As:nFe3O4) 

and to 627 cm-1 in the spectrum of the sample that adsorbed copper ions from aqueous media 
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(Cu:nFe3O4). Lastly, the band from 1635 cm-1 (Figure 6 A) suggested the presence of hydroxyl 

groups which most likely appeared on the surface of Fe3O4 nanoparticles during their synthesis 

(Liu et al., 2004; Schwertmann and Cornell, 2003; Yang et al., 2010). This vibrational band was 

not influenced by the presence of As or Cu ions in the structure of the studied samples.  

Additional information on the functional groups from the studied samples were obtained 

using Raman spectroscopy (Figure 9). The three spectra of the synthesized magnetite before 

(nFe3O4) and after the adsorption of As ions (As:nFe3O4) and Cu ions (Cu:nFe3O4) (Figure 9A), 

as well as the three spectra of the commercial magnetite before (cFe3O4) and after the adsorption 

of As ion (As:cFe3O4) and Cu ions (Cu:cFe3O4) (Figure 9B) were acquired.  

Figure 9: Raman spectra of the synthesized magnetite (A) before (nFe3O4) and after the 

adsorption of As ions (As: nFe3O4) and Cu ions (Cu: nFe3O4) as well as the spectra of the 

commercial magnetite (B) before (cFe3O4) and after the adsorption of As ions (As: cFe3O4) and 

Cu ions (Cu: cFe3O4). 



23 

 

The whole spectra display peaks that are characteristics to magnetite structure. The main 

feature of the synthesized magnetic (nFe3O4) prepared in this study was the enlargement of the 

Raman bands compared to those of the commercial one. As it has been shown by both XRD and 

SEM results, such enlargement was related to the size of the nanoparticles which showed a high 

reactivity to TE. In this context, the peaks found between 250 and 400 cm-1 in the spectra of the 

commercial magnetite (Figure 9B) corresponded to the peak from 336 cm-1 from the spectra of 

synthesized magnetite (Figure 9A) resulting to an overlapping of several peaks. The same 

conclusion was drawn for the two peaks between 450 and 600 cm-1, which in the case of 

synthesized magnetite, widened, overlapped and formed the peak from around 490 cm-1 (Figure 

9A).  

The influence of the adsorption of the two ions was evidenced by the shifts of some of the 

peaks. Indeed, the main peak, which appeared at around 670 cm-1 in all the registered spectra was 

assigned to the A1g mode, characteristic to the magnetite structure (Jubb and Allen, 2010). In the 

case of synthesized magnetite, this peak shifted slightly from 672 cm-1 (nFe3O4) to 675 cm-1 

(As:nFe3O4) and to 677 cm-1 (Cu:nFe3O4). Also, in the case of commercial magnetite, the band 

from 670 cm-1 shifted after the adsorption As ions to 672 cm-1 and after the adsorption of Cu ions 

to 674 cm-1. Furthermore, the large peak from around 490 cm-1 observed in the three spectra of the 

synthesized magnetite which was assigned to the T2g vibrational mode (Graves et al., 1988; 

Shebanova and Lazor, 2003) appeared to shift as well after the adsorption of the two heavy metal 

ions. From 496 cm-1 (nFe3O4) it shifted to 499 cm-1 (As:nFe3O4) and to 502 cm-1 (Cu:nFe3O4). The 

same tendency was observed in the FTIR spectra, in the case of the peaks characteristic to the 

magnetite phase. The third peak from the spectra of synthesized magnetite (Figure 9A), from 336 
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cm-1, was assigned to the Eg vibrational mode characteristic to the Fe3O4 structure (Graves et al., 

1988; Shebanova and Lazor, 2003).  

One of the most important environmental problems for which solutions are sought, is the 

removal of toxic contaminants from waters. Due to their toxicity and non-biodegradable nature, 

the presence of heavy metals in surface water represents a serious environmental and public health 

problem. For removing trace metals from waters, researchers established that adsorption is an 

alternative method economically feasible. Unfortunately, cationic and anionic adsorption on oxide 

surfaces is not well enough understood and continues to be extensively studied. Moreover, 

establishing adsorption models is difficult enough due to the fact that it must take into account 

numerous parameters. However, the adsorption process modeling is currently a widely studied 

topic because they could allow assessment of heavy metals in natural environments and also design 

adsorption treatment units used to remove contaminants from contaminated waters. Previous 

studies (Anderson et al., 1976) demonstrated that anions and cations are capable of distinctive 

adsorption onto oxide surfaces and the adsorption of anions and cations sontrgly depends on the 

pH. Thereby, cations can be adsorbed onto positively charged surfaces while anions can be 

adsorbed onto negatively charged surfaces. Previous studies conducted by Hingston el al. 

Hingston et al., 1972) established that adsorption of weak acid anions on any oxide surface 

decreases as the pH increases. James and Healy (James and Healy, 1972) showed that the 

adsorption of cobalt ions decreases when the pH decreases. On the assumption that the adsorption 

is controlled by microcrystalline surface growth, Hsu and Rennie (Hsu and Rennie, 1962) proposed 

a mechanism for anion adsorption on soil adsorbents. Stumm and Bilinsk (Stumm and Bilinski, 

1972) demonstrated that the adsorption of metal ions at the solid-solution interface is governed by 

the much stronger adsorbed hydroxo, sulfato, carbonato and other metal species according to:                 
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     𝑀𝑀𝑎𝑞
𝑍+ + 𝑛𝐻2𝑂 ⇋ 𝑀(𝑂𝐻)𝑛

(𝑍−𝑛)
+ 𝑛𝐻+                           (4) 

In addition, the key reason for the enhanced removal seems to be the presence of hydroxide ions. 

The presence of hydroxyl ions could lead to easier adsorption of copper or arsenic ions on the 

surface lattice which follows further adsorption. It is known that (Elliott and Huang, 1981) an 

important means for controlling the extent of pollution due to liquid waste or sewage discharged 

into a river or the sea is the adsorption at solid-solution interface. On the other hand, previous 

studies (Panday et al., 1985) showed that the removal of pollutants from wastewaters by adsorption 

is highly dependent on the pH of the solution which affects the surface charge of the adsorbent, 

the degree of ionization and the speciation of adsorbate.  

4. Conclusions 

Ferrous chloride tetrahydrate and ferric chloride hexahydrate were used as precursors in a co-

precipitation method at room temperature, in a controlled atmosphere, for the synthesis of 

magnetite nanoparticles (∼12 nm). The synthesized particles had a magnetite crystal structure with 

a grain size of around 12 (± 0.2) nm. The BET surface area and average pore size of the synthesized 

magnetite (nFe3O4) nanoparticles were 100.5179 m²/g and 24.39779 nm. On the other hand, the 

BET surface area and average pore size of the commercial Fe3O4 particles were 6.8075 m²/g and 

14.96434 nm, respectively. The adsorption isotherms of As and Cu onto synthesized magnetite 

and commercial magnetite particles were obtained under relevant conditions. The adsorption of 

As and Cu was described by a Langmuir type isotherm. A good Langmuir fit for the adsorption 

isotherms of As was obtained. The coefficient of Langmuir isotherm (R2) at room temperature was 

0.999 for synthesized magnetite and 0.886 for the commercial magnetite. In this case, the 

maximum adsorption capacity for the solid phase (𝑞𝑚) was 66.53 mg/g for synthesized magnetite 

and 39.24 mg/g for commercial magnetite. On the other hand, the Langmuir constant 𝐾𝐿 was 0.297 
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for synthesized magnetite and 0.2 for commercial magnetite. The combination of a high specific 

area and due to the possibility of being magnetically separated, the developed magnetic iron oxide 

nanoparticles in this study are revealed to be a good material for the depollution of drinking water 

or for the removal of toxic elements like heavy metals from contaminated waters and/or soils.  
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