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For the past decades, grain size reduction leading to diffusion creep in olivine is believed to be a very important process for strain localisation in the lithospheric mantle. However, the mechanisms of grain size reduction in this regime are still poorly understood (e.g., Platt, 2015).

Here

we show new experimental results that document grain size reduction and material weakening during wet olivine diffusion creep. While occurring for both, mono-phase and twophase aggregates, grain size reduction is coeval with strain localisation and local phase mixing in olivine-pyroxene aggregates. Based on evidence of fluid inclusions and cracks filled with a fine-grained phase mixture, we conclude that grain size reduces as a result of fluid-assisted nucleation that takes place in the presence of an aqueous fluid during diffusion creep. Cavitation induced by grain boundary sliding (creep cavitation) can be inferred, and may play a critical role for olivine grain size reduction. Amongst their implications for rock rheology in general, our findings highlight a key process for strain localisation in the ductile uppermost mantle.

Introduction

In order for tectonic plates to be isolated from each other by high-strain plate boundaries, such as subduction zones or narrow rifts, strain localisation has to occur across the strong uppermost mantle [START_REF] Burov | The long-term strength of continenal lithosphere: "Jelly sandwich" or "crème brûlée[END_REF][START_REF] Bercovici | Plate tectonics, damage and inheritance[END_REF]. The deformation of the lithosphere strongly depends on this presence or absence of strain localisation. Although some brittle behaviour may be expected in the shallow mantle, extrapolations of lab-based flow laws to corresponding depths give predictions of the uppermost mantle as mostly plastic [START_REF] Kohlstedt | Strength of the lithosphere: Constraints imposed by laboratory experiments[END_REF]. In this regime, strain localisation typically arises from a local weakening of the deforming rock, the origin of which remains very elusive today.

Olivine is by far the most abundant phase in the upper mantle. For this reason, experimental, field-based, and modelling studies have focussed on the role of olivine for mantle rheology in the last decades, concluding that grain size reduction and dominant diffusion creep may be the best candidate to account for quasi-viscous strain localisation [START_REF] Rutter | The role of tectonic grain size reduction in the rheological stratification of the lithosphere[END_REF][START_REF] Drury | Shear Localisation in Upper Mantle Peridotites[END_REF][START_REF] Bercovici | Mechanisms for the generation of plate tectonics by two-phase graindamage and pinning[END_REF]. Their conclusion is based on the fact that (1) grain size reduction is a ubiquitous feature of ductile shear zones, and (2) diffusion creep (including grain boundary sliding) is grain size sensitive, unlike dislocation creep which does notor to a lesser extent in the case of disGBS [START_REF] Hansen | Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation[END_REF] depend on grain size [START_REF] Karato | Rheology of Synthetic Olivine Aggregates: Influence of Grain Size and Water[END_REF][START_REF] Hirth | Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists[END_REF]. However, grain size reduction is not a process which is defined or understood during dominant diffusion creep (e.g., Rutter and Rrodie, 1988;[START_REF] De Bresser | Grain size reduction by dynamic recrystallization: can it result in major rheological weakening?[END_REF]. Thus, although reducing grain size in this regime may be a key factor for strain localisation [START_REF] Rutter | The role of tectonic grain size reduction in the rheological stratification of the lithosphere[END_REF][START_REF] Bercovici | Mechanisms for the generation of plate tectonics by two-phase graindamage and pinning[END_REF][START_REF] Platt | Rheology of two-phase systems: A microphysical and observational approach[END_REF], the processes are poorly known and require further investigation.

Many studies have pointed out the presence of minor phases, such as micas or pyroxenes, as a condition for small grain sizes during grain-size-sensitive creep [START_REF] Hiraga | Grain growth systematics for forsterite ± enstatite aggregates: Effect of lithology on grain size in the upper mantle[END_REF][START_REF] Herwegh | The role of second phases for controlling microstructural evolution in polymineralic rocks: A review[END_REF][START_REF] Farla | Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization[END_REF]Linckens et al., 2014;[START_REF] Platt | Rheology of two-phase systems: A microphysical and observational approach[END_REF]. Most of them attributed the reduction of grain size to a combination of dynamic recrystallization and grain boundary sliding (GBS), resulting in phase mixing. Following this approach, [START_REF] Bercovici | Mechanisms for the generation of plate tectonics by two-phase graindamage and pinning[END_REF] developed a theoretical model to propose that damages at olivine-pyroxene interfaces would indirectly drive grain size to reduction, provided that grain boundary pinning (Zener pinning) arises from phase mixing.

However, natural evidence of grain size reduction induced by pinning of grain boundaries is still lacking; Zener pinning has been only shown to inhibit grain growth, not reducing grain size (Stünitz and FitzGerald, 1993;[START_REF] De Ronde | Reaction-induced weakening of plagioclaseolivine composites[END_REF][START_REF] Warren | Grain size sensitive deformation mechanisms in naturally deformed peridotites[END_REF][START_REF] Sundberg | Crystallographic preferred orientation produced by diffusional creep of harzburgite: Effects of chemical interactions among phases during plastic flow[END_REF].

Furthermore, the link between phase mixing, grain size reduction and GBS during diffusion creep, as well as the transition from dislocation creep to diffusion creep, is still unclear [START_REF] Dimanov | Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates[END_REF][START_REF] Kilian | Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep[END_REF][START_REF] Platt | Rheology of two-phase systems: A microphysical and observational approach[END_REF]. And not all aspects are supported by available data. In recent high-temperature (>1200°C) experiments on two-phase material (olivine + pyroxene), it has been shown that diffusion creep tends to aggregate phases because of its related component of GBS, promoting grain growth instead of grain size reduction [START_REF] Hiraga | Comparison of microstructures in superplastically deformed synthetic materials and natural mylonites: Mineral aggregation via grain boundary sliding[END_REF].

In this study, we show new experimental results that document grain size reduction during diffusion creep in olivine at wet conditions of the uppermost mantle. The reduction can be understood in the presence of second phases, but not necessarily; we document it for both mono-phase (olivine) and two-phase (olivine + pyroxene) aggregates. In presence of pyroxene, strain localisation also goes along with grain size reduction and gives rise to typical ductile shear zones where complete phase mixing occurs. Both chemical and microstructural features suggest that grain size reduction results from fluid-assisted nucleation of olivine and pyroxene grains.

Material and methods

Sample preparation

In all experiments, we used olivine (Fo91) from San Carlos (Arizona, USA) and clinopyroxene (Wo51En48Fs1) from Cranberry lake (Canada). To produce the starting material, we crushed gemquality single crystals in an agate mortar and sorted the grain size using a decantation method with distilled water. For olivine, experiments. As for clinopyroxene (CPx), two types of grain sizes were used: one with fine CPx between 5 and 2 and pyroxene powders were mixed at a ratio of 70 to 30% (by weight) in a solution of ethanol, following the procedure described in de [START_REF] De Ronde | Reaction-induced weakening of plagioclaseolivine composites[END_REF]. The powder was then placed between two alumina shear pistons cut at 45° to the piston axis, wrapped in a nickel foil and enclosed in a platinum jacket welded at both ends. The shear piston surfaces have been previously roughened using 120-grit corundum paper. Before welding, 0.1 or 0.2 wt.% of distilled water were added. These amounts exceed the solubility of water in olivine and pyroxene at our experimental conditions [START_REF] Zhao | Solubility of hydrogen in olivine: dependence on temperature and iron content[END_REF][START_REF] Bromiley | Hydrogen solubility and speciation in natural, gem-quality chromian diopside[END_REF]. Such wet conditions and grain size have been chosen to ensure that (1) olivine will deform in the diffusion creep regime [START_REF] Hirth | Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists[END_REF]Sunderg and Cooper, 2008;[START_REF] Hansen | Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation[END_REF], and (2) initial grains will be large enough to see significant grain size reduction, if applicable. We also have chosen to use clinopyroxeneinstead of orthopyroxeneto ensure that secondary phases will be stronger than the olivine matrix [START_REF] Bürgman | Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations[END_REF].

Few grains of orthopyroxene (enstatite; ~0.2 wt.%) and amphibole (tremolite; ~0.8 wt.%) were present in the CPx powder despite initial handpicking (fig. 1).

Deformation experiments

The deformation experiments were conducted in a solid medium (NaCl) Griggs-type apparatus at Tromsø University (Norway). Temperature and pressure were alternately increased over several hours up to the conditions of experiment (900°C and 1.2 GPa). Samples were hot-pressed in situ for 24h (microstructures of hot-pressed material are available in supplementary figure 1). The deformation piston (σ1-piston) was then advanced at a constant rate, first through the top lead piece, and then touching the alumina piston (fig. 1A). Samples started to deform at this point, several hours after starting to advance the σ1-piston. At the end of the experiment, the samples were quenched from 900°C to 200°C in 2 minutes. Both, pressure and differential stress decreased rapidly until the temperature stabilised at 200°C. Subsequently, the sample was decompressed at a rate of ~5 MPa per minute, keeping the differential stress ~100 MPa above the confining pressure to reduce the formation of unloading cracks. Finally, temperature was dropped to 30°C when the confining pressure was lower than 100 MPa. After the experiment, the samples were impregnated with epoxy, and then sectioned along the piston axis for thin sections.

Analytical procedures

Sample microstructures were analysed with a scanning electron microscope (SEM) of ISTO/BRGM (Orléans, France) and a transmission electron microscope (TEM) at the University of Minnesota (Minneapolis, USA). SEM work has been performed on carbon-coated (20 nm thickness) thin section using a TESCAN MIRA 3 XMU at 25 kV and a working distance of 25 mm. TEM images were taken using a FEI-TECNAI T12 at 120 kV through a focused ion beam (FIB) foil of 50-100 nm thickness. In the TEM, Energy dispersive X-ray spectroscopy (EDS) was used to analyse phases.

Electron backscatter diffraction (EBSD) was employed for Lattice Preferred Orientation (LPO) and grain size determination on polished surfaces (diamond paste of 0.25 μm followed by colloidal silica) with an EDAX Pegasus system at 25 kV and a working distance of 18 mm. Lower-hemisphere pole figures of LPO were constructed considering both, the whole map dataset (available in supplementary figure 2) and one measurement per grain acquired manually. The data from EBSD maps have been processed with the OIM TM -EDAX software, and the grain size distributions are shown with respect to the percent area of each category in order to compare between sample types. For LPO, the texture (J) and misorientation (M) indices are also given, which both quantify the degree of minerals alignment between J = 1 / M = 0 for a uniform distribution, and J = ∞ / M = 1 for a crystal-like distribution considering one point per grain [START_REF] Bunge | Texture analysis in materials Science: mathematical models[END_REF][START_REF] Skemer | The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation[END_REF]. Phase composition, including starting material, was measured with an electron microprobe CAMECA SX five at ISTO on carbon-coated (20 nm thickness) thin sections at 15 keV and 10 nA. The step size of the microprobe map was 0.5 μm.

To measure in situ water content of both olivine and pyroxene grains, we performed ion probe measurements on gold-coated (20 nm thickness) thin sections using a Cameca IMS 1280-HR at the CRPG (Nancy, France). A primary beam of Cs + was used with a current of 3 nA and a beam diameter of 10 μm. The positive secondary beam was centred in a 2500 μm image field aperture. The voltage offset was stable at -50 eV and the energy window has been set to 20 eV. The counting elements were 16 O, 17 O, 16 OH, 17 OH, 28 Si and 30 Si with a counting time between 3s (for Si) and 12s (for OH). The total counting time was 12 minutes per point. To calibrate the ratio H/Si, we used the ratio H2O/SiO2 from standards, including basaltic glass (M35, M40, M48, T1G, StHs, Kl2G), synthetic forsterite (Fo100), clinopyroxene (cpxNSH), pyrope (MON 9) and quartz (Suprasil). The very good quality of vacuum into the chamber (6-7*10 -10 torr) indicated that no epoxy degassing occurred during the analyses.

Results

Mechanical data

The strain-stress curves of all experiments show an increase of differential stress to peak stress at a bulk shear strain of γ ≈ 1 (fig. 1B). While the peak stress of the pure olivine sample reaches ~550 MPa, the one of the two-phase samples ranges above 750 MPa. These data indicate stronger samples when CPx is present, in agreement with previous data for pyroxene strength [START_REF] Dimanov | Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates[END_REF][START_REF] Dimanov | Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates[END_REF][START_REF] Chen | Water weakening of dislocation creep in the dislocation creep regime[END_REF]. Following the peak stress, the differential stress drops progressively toward a steady-state stress of around 300 MPa for both, the pure olivine sample and two-phase samples with finecoarse-grained CPx stabilises at a steady-state stress of 700 MPa until the end of the experiment.

Microstructures and composition

The main difference between mono-and two-phase aggregates is the occurrence or absence of strain localisation. While the pure olivine sample shows homogeneous deformation (fig. 1C and supplementary figure 3), the strain in composite samples is localised to different degrees depending on the initial grain size of CPx. In presence of coarse CPx (40-125 μm), strain is highly localised within a ~50 μm wide shear zone, which is well developed on the sample side near the piston corner (fig. 1D). In contrast, the presence of fine-grained CPx (~2 μm) by the same proportion (30/70 %) promoted strain to localise into a shear zone of ~150 μm width all through the sample (fig. 1E).

Samples deformed to only peak stress conditions do not show significant deformation, so that it can be inferred that strain localisation takes place from peak stress conditions onwards during weakening of the sample. Furthermore, using the angle (θ) between the shear plane (piston interface) and foliation plane (long axis of CPx porphyroclasts), and the relationship: γ = 2/ tan 2θ [START_REF] Ramsay | Shear zone geometry: a review[END_REF], we have estimated the strain gradients in both types of composite samples. With coarse CPx, strain ranges from a minimum of γ ≈ -μm-thick localised shear zone (fig. 1D).

-μm-thick localised shear zone, but we also see the development of strain partitioning with typical shear bands parallel to the shear plane where strain is higher (fig. 1E). Considering the amount of displacement accommodated by the bulk sample over the time of experiment from the peak stress onward (see supplementary table 1), i.e., considering plastic strain only, we can estimate a shear strain rate of ~10 -4 s -1 in the 50-μm-thick shear band and ~5.10 -5 s -1 in the 150-μm-thick one.

The two-phase mixture that develops at olivine-pyroxene clast interfaces is of particular interest. This phase mixture mostly typically forms thin layers which extend from the tip or side of CPx grains through the olivine matrix (fig. 1F-H). Strain is highly localised in these layers. In samples with fine-grained CPx, the mixture has a grain size lower than or equal to 1 μm, and it occurs directly in contact with the porphyroclasts of CPx. In contrast, the coarse-grained CPx clasts develop inner tails that consist of 1 to 2 μm sized grains of pure CPx (fig. 1F). These inner tails are mantled by elongated tails of a two-phase, intimately-mixed material of olivine and CPx. TEM observations indicate a grain size of 0.1 to 0.2 μm for all phases of the mixture, whereas the adjacent olivine matrix reveals a homogeneous grain size with equiaxed grains of ~1 μm (fig. 2A-B). The fine-grained material consists of well-mixed olivine and clinopyroxene with a very few grains of enstatite. There are no dislocations in the layers of fine-grained mixture, but dislocations are present in the larger grains of the olivine matrix (fig. 2B).

In addition, cracks occur in the olivine matrix (fig. 2C) and at the high-stress sides of CPx clasts (fig. 2D). While new grains of olivine are present in cracks of the olivine matrix (fig. 2C), the CPx cracks are filled with a fine-grained mixture of olivine + CPx. Most of these CPx cracks contain one or more fluid inclusions at their tip, highlighting the presence of a free fluid phase during deformation (fig. 2E-F).

In terms of composition, the phase mixture is too fine grained to measure the composition of individual grains by the electron microprobe. As a consequence, the integrated measurements of the phase mixture have an intermediate composition which ranges between the two end-members of single-phase olivine and diopside, as shown in figures 3A and 3B. We do not see any chemical effect of the presence of enstatite, suggesting that enstatite grains result from local equilibrium. During deformation, the compositions of both, olivine and diopside, have shifted slightly with respect to the starting material in monomineralic domains: olivine becomes more magnesium-(Mg) rich, and CPx more iron (Fe)-rich (fig. 3C and3D). The calcium (Ca) content of CPx decreases slightly, whereas Ca in olivine records some enrichment (fig. 3D). Analyses of individual grains in the TEM show a larger variation in olivine and CPx grains in the mixture compared to olivine in monomineralic layers (fig. 3E). We attribute these compositional changes to element exchange that tends to locally equilibrate the olivine and pyroxene compositions at 900°C and 1.2 GPa.

H2O content

The ion probe dataset documents water-rich olivine grains with ~157 ± 44 wt. ppm H2O and pyroxene grains with ~147 ± 63 wt. ppm H2O (table 1). Within error, these values correspond to the water solubility of olivine and pyroxene at 900°C and 1.2 GPa, which have been estimated at 155 and 150 wt. ppm H2O, respectively [START_REF] Kohlstedt | Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4[END_REF][START_REF] Bell | Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum[END_REF][START_REF] Zhao | Solubility of hydrogen in olivine: dependence on temperature and iron content[END_REF][START_REF] Bromiley | Hydrogen solubility and speciation in natural, gem-quality chromian diopside[END_REF]. There is one exception of deformed CPx in the shear zone of composite samples where more than 400 wt. ppm H2O are recorded, possibly because of the presence of sub-microscopic fluid inclusions.

All analyses that include grain boundaries yield higher water contents, typically between 300 and 800 wt. ppm H2O. In specific areas, we also measured more than 900 wt. ppm H2O. This includes 1) the surrounding matrix of amphibole grains, and 2) the shear zones where the density of grain boundaries substantially increased because of grain size reduction (table 1). While the former indicates that amphibole grains released some water during experimenttremolite is metastable at 900°C and 1.2 GPa [START_REF] Jenkins | Stability and Composition Relations of Calcic Amphiboles in Ultramafic Rocks[END_REF])the latter suggests that grain boundaries contain a significant amount of water. As suggested by the presence of fluid inclusions, our ion probe data confirms that deformation occurred in water-saturated conditions during the experiments.

Mineral LPO and grain size

The olivine LPOs presented here have been obtained from pure olivine layers only, regardless of the sample type. For composite samples, we focussed on olivine in shear zones. In the hot-pressed sample, the olivine LPO is nearly random with very low texture and misorientation indices of J = 1.48 and M = 0.017 (fig. 4). With deformation, an olivine LPO starts to develop at peak stress conditions, and then moderately strengthens with increasing strain, except for the shear zone with γ > 10 (coarse CPx) where no clear pattern of LPO is observed. In any case, the texture and misorientation indices remain extremely low and never exceed J = 2 and M = 0.1, regardless of both, the finite strain and presence or absence of CPx (fig. 4). In terms of geometry, the fabric has the [001] axis close to the shear direction and the [010] axis normal to the shear plane, typical of so-called Btype fabric [START_REF] Jung | Water-Induced Fabric Transitions in Olivine[END_REF].

Olivine grain size reduction occurs for both, mono-phase and two-phase aggregates, but only after the peak stress. Indeed, the grain sizes at peak stress conditions shows a log-scale distribution and remains unchanged with respect to the hot-pressed sample; we document a mean grain size of ~2 μm and a mode of ~3 μm for both samples (fig. 5). In contrast, grain size has been significantly reduced to a mean and mode of ~1.5 μm in the pure olivine sample (γ = 2.5) and in the shear zone of the two-phase samples with fine-grained CPx (γ > 5). The shear zone with coarse-grained CPx (γ > 10) even records a grain size reduction with a mean size and mode of 1.1 μm (fig. 5). Furthermore, with increasing strain, there is an increase from 10 to 16% of the maximum area fractions, indicating that grain size becomes more uniform during deformation.

It is apparent in figure 6 that new olivine grains appear randomly distributed within the olivine matrix. Based on EBSD maps in combination with inverse pole figures (color coding with respect to the shear direction X), we show that the crystal orientation of small grains (< 1 μm) differs from one grain to another, as well as from the neighbouring olivine porphyroclasts by at least 30 degrees (fig. 6A). Thus, new olivine grains neither have any crystallographic relationship with one another nor with the larger ones. Furthermore, most of these small grains are isolated and dispersed randomly within the olivine matrix, and the amount of larger olivine grains (> 3 μm) decreases with increasing strain. These large grains disappear entirely in the high-strain shear zone (γ > 10), whereas the amount of grains smaller than 1 μm significantly increases (fig. 6B).

In samples with fine-grained CPx (γ > 5), the new pyroxene grains occur as mixed with olivine and have a grain size lower than or equal to 1 μm. They develop a weak LPO (J = 1.94; M = 0.024)

with the [001] axis close to the shear direction and (010) plane within the shear plane (fig. 6C). These observations are consistent with the fact that the fine-grained CPx grains do not have any crystallographic relationships with respect to each other (fig. 6D). We did not see any tails of pure CPx in these samples. In contrast, the sample with coarse-grained CPx (γ > 10) developed inner tails of CPx aggregates with a mean grain size around 1.4 μm. They show a strong preferred orientation (J > 28; M > 0.34), which is directly related to the orientation of the starting porphyroclast (fig. 6D).

Thus, all grains composing a single tail in coarse CPx have a similar crystallographic orientation as the starting CPx (fig. 6F). Note that we do not document any LPO in layers of phase mixture that extend from these tails because the grain size was too small (~0.1 μm) to be indexed at the EBSD.

Discussion

Phase mixing and nucleation

In our experiments, the production of very fine-grained olivine-CPx mixture and high strain deformation typically are joint features. Moreover, our documentation of CPx cracks filled by a phase mixture (fig. 2) provides a key evidence for understanding how the phase mixture forms. The crack filling consists of approximately equal proportions of very small Cpx and olivine grains. The local nature of this filling demonstrates that both, olivine and pyroxene, have nucleated together at the same time during opening of the cracks. The presence of fluid inclusions and our ion probe dataset also indicate that a fluid phase was present during deformation. And the geometry and orientation of cracks (mode 1 cracks) suggest that phase nucleation is connected to a local stress drop. We do not exclude that the crack geometry could also be crystallographically-controlled.

In these cracks, phase mixing cannot result from a two-stage-process involving first the formation of the small grains, and then a mixing process by, e.g., grain boundary sliding (GBS) as proposed by [START_REF] Farla | Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization[END_REF] and Linckens et al. (2014). The nature of the local mixture also excludes dynamic recrystallization. Instead, it is likely that phase mixture formed by simultaneous nucleation of the two phases (fig. 7), giving rise to filling of low-stress sites, where, once formed as a single-stage process, very small grain sizes are preserved because of grain boundary pinning. The presence of an aqueous fluid makes it likely that the two phases precipitated from a fluid. The same grain size and distribution of phases in mixture layers extenting from the CPx porphyroclasts (fig. 1)

suggest that these layers result from the same fluid-assisted nucleation process as the crack fills.

The occurrence of fine-grained, intimately-mixed phases in two-or poly-phases material is commonly observed in the core of mantle shear zones, particularly where strain has been highly localised [START_REF] Warren | Grain size sensitive deformation mechanisms in naturally deformed peridotites[END_REF]Toy et al., 2010;[START_REF] Drury | Crystal preferred orientation in peridotite ultramylonites deformed by grain size sensitive creep, Etang de Lers, Pyrenees, France[END_REF]Linckens et al., 2014). The source mechanism of this mixing remains very uncertain so far. As summarised in [START_REF] Platt | Rheology of two-phase systems: A microphysical and observational approach[END_REF], recent field studies suggested that the GBS component of diffusion creep might account for it, but recent high-temperature deformation experiments of olivine + pyroxene aggregates in the diffusion creep regime do not support GBS as the source of mixing; grain neighbour switching helps to aggregate phases rather than disperse them [START_REF] Hiraga | Comparison of microstructures in superplastically deformed synthetic materials and natural mylonites: Mineral aggregation via grain boundary sliding[END_REF].

According to different authors, phase mixing may be the result of solid-melt interactions [START_REF] Dijkstra | Microstructures and lattice fabrics in the Hilti mantle section (Oman Ophiolite): Evidence for shear localization and melt weakening in the crust-mantle transition zone?[END_REF], or sub-solidus phase transformation [START_REF] Newman | Deformation processes in a peridotite shear zone: reaction-softening by an H2O-deficient, continuous net transfer reaction[END_REF][START_REF] De Ronde | Reaction-induced weakening of plagioclaseolivine composites[END_REF]. But the pressure-temperature conditions of our experiments exclude melting, and both, olivine and clinopyroxene, are stable in these conditions. As an alternative, the process of fluid-assisted nucleation we described above may account for some observed phase mixing in nature, particularly for low-temperature shear zones where dissolution-precipitation commonly occurs (e.g., [START_REF] Herwegh | The role of second phases for controlling microstructural evolution in polymineralic rocks: A review[END_REF]. We do not exclude either that chemical adjustment to local equilibriumin combination with dissolution-precipitationcould be one of the driving potentials for nucleation.

Olivine fabric and diffusion creep

In our samples, the strength (J and M indices) of the B-type olivine fabric moderately increases up to γ > 5 in olivine layers, but it remains very weak and the B-type fabric does not show up anymore at γ > 10 (fig. 4). In any case, we document extremely weak LPOs considering the amount of strain accommodated. For instance, one would expect J > 10 and M > 0.3 for a gamma strain higher than 3 [START_REF] Hansen | Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic, and seismic anisotropy[END_REF][START_REF] Mainprice | Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components[END_REF], whereas we never quantify higher than J = 2 and M = 0.1, irrespective of the amount of finite strain.

While a strong LPO is typical of dominant dislocation creep (or disGBS; [START_REF] Hansen | The influence of microstructure on deformation of olivine in the grain-boundary sliding regime[END_REF], a weak or absent LPO despite intense finite strain commonly indicates diffusion creep deformation (including GBS; [START_REF] Fliervoet | Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep[END_REF][START_REF] Drury | Crystal preferred orientation in peridotite ultramylonites deformed by grain size sensitive creep, Etang de Lers, Pyrenees, France[END_REF][START_REF] Herwegh | The role of second phases for controlling microstructural evolution in polymineralic rocks: A review[END_REF]. Furthermore, [START_REF] Sundberg | Crystallographic preferred orientation produced by diffusional creep of harzburgite: Effects of chemical interactions among phases during plastic flow[END_REF] have shown that B-type fabric may occur during olivine diffusion creep, and especially in presence of (ortho)pyroxene. Based on numerical results [START_REF] Bons | Crystallographic preferred orientation development by dissolutionprecipitation creep[END_REF], GBS. Again, it should be noted that the weak LPO forms in pure olivine aggregates and not in mixture layers, where the grain size was too small (< 0.2 μm) to be indexed at the EBSD. It is also probable that fine-grained CPx deformed by diffusion creep based on their weak LPO (fig. 6C). In contrast, the strong, host-controlled LPO of the inner tails of CPx involves dominant dislocation creep and related dynamic recrystallization, probably by sub-grain rotation.

Grain size reduction

In this study, we document grain size reduction after peak stress during substantial weakening of the sample strength (fig. 5). This reduction occurs for olivine and CPx grains in both, mono-phase and two-phase aggregates. Based on the strong LPO, we inferred grain size to be reduced by dynamic recrystallization in the inner parts of large CPx tails (figs.2 and 6). However, dynamic recrystallization did not produce the very fine-grained mixture of olivine and CPx. And we inferred from our microstructural features that the phase mixture results from nucleation, probably fluidassisted.

In addition, based on available flow laws for wet olivine [START_REF] Hirth | Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists[END_REF][START_REF] Hansen | Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation[END_REF], we show that grain size reduction of the pure olivine sample took place in the diffusion creep field along the strain rate isolines. The olivine grain size of both, pure olivine layers and mixture layers, in the two-phase samples also falls within the diffusion creep field, which supports again dominant diffusion creep for olivine (fig. 8). In all cases, grain size reduction occurred below the experimentally calibrated olivine piezometer ( [START_REF] Van Der Wal | Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks[END_REF], which defines the stressgrain size relationships for dynamically recrystallized grains as dictated by the rate of mechanical work [START_REF] Austin | Paleowattmeters: A scaling relation for dynamically recrystallized grain size[END_REF]. Ever if we consider the occurrence of bulging [START_REF] Platt | Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere[END_REF], the mean grain size of deformed olivine aggregates stands below the minimum size of bulge (dotted line in fig. 8). Thus, dynamic recrystallization has not contributed in reducing olivine grain size. As a possible alternative, Zener pinning is effective in maintaining the small size of grains in mixed layers.

This mechanism has been proposed as potentially able to reduce grain size below the piezometer [START_REF] Bercovici | Mechanisms for the generation of plate tectonics by two-phase graindamage and pinning[END_REF]. However, in absence of pyroxene grains in the olivine matrix (the nonmixed parts), and of course, for the pure olivine sample, a mechanism other than Zener pinning is required.

Creep cavitation as a potential origin for grain size reduction

During dominant diffusion creep, the deformation of poly-crystalline material involves a component of grain boundary sliding (GBS; e.g., [START_REF] Langdon | Grain boundary sliding revisited: Development in sliding over four decades[END_REF]. If crystal-plastic or diffusional mass transport processes cannot accommodate the local sliding of grains fast enough, GBS may lead to the formation of micro-cavities which open (and may close again), giving rise to a process termed creep cavitation [START_REF] Kassner | Creep cavitation in metals[END_REF][START_REF] Dimanov | Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates[END_REF]. In nature, this mechanism is coeval with phase nucleation resulting from dissolution-precipitation [START_REF] Fusseis | Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones[END_REF][START_REF] Kilian | Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep[END_REF][START_REF] Herwegh | The role of second phases for controlling microstructural evolution in polymineralic rocks: A review[END_REF]. Such a nucleation process is a viable mechanism for reducing grain size in the diffusion creep domain and will depend on the solubility of rock components. Based on our evidence of nucleation in micro-cracks, we therefore propose that grain refinement has occurred in pure olivine layers by nucleation in sites produced by creep cavitation.

In this view, nucleation in dilatant sites is expected to yield small, randomly oriented grains, which may subsequently grow at the expense of the old ones with a preferred orientation, reducing grain size and randomising the mineral LPO (fig. 9A). The small size of these new grains assures the operation of GBS as their dominant deformation mechanism. If the nucleation rate is high enough, GBS does not produce any LPO, because the grains are continuously renewed with random orientations. In contrast, at moderate or low nucleation rates, the new grains do not sufficiently decrease the pre-existing fabric, giving rise to a preferred orientation (e.g., B-type fabric), the strength of which depends on the nucleation rate. Such a nucleation model accounts for ( 1) grain size reduction within the diffusion creep field, (2) the dispersion of new olivine grains within the olivine matrix, (3) the absence or weak LPO despite high strain deformation, and (4) the occurrence of phase mixing at phase interfaces (fig. 9B). This process is relatively easy to detect if nucleation of mixed phases occurs (e.g., [START_REF] Kilian | Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep[END_REF][START_REF] Platt | Rheology of two-phase systems: A microphysical and observational approach[END_REF], but in the case of a single-phase aggregate with the same phase nucleating, it is more difficult and requires at least a LPO analysis.

Implications for strain localisation

The nucleation of new grains as a process of grain size reduction during dominant diffusion creep highlights a potentially important source for weakening and strain localisation, provided that grain size reduction is locally enhanced. In our experiments, strain only localises in two-phase aggregates where strong and locally cracked CPx clasts are present. The occurrence of mode-1-cracks at the rim of CPx porphyroclasts suggests that stress locally increased during deformation. As shown during creep cavitation of metals, micro-cavities form most easily at sites of higher stresses [START_REF] Kassner | Creep cavitation in metals[END_REF]. Thus, it is likely that the pure olivine matrix adjacent to CPx porphyroclasts suffered more creep cavitation and phase nucleation, enhancing grain size reduction (fig. 9C). This would promote local weakening and subsequent strain localisation within the olivine matrix. We also envisage that strain localisation propagates because of stress concentration (shear stress) and related creep cavitation at the tip of the incipient shear zone (fig. 9C).

The absence of strain localisation in pure olivine aggregates may be caused by the fact that strong CPx clasts as stress raisers are absent and creep cavitation may be homogeneous. Furthermore, a different degree of strain localisation, i.e. a wide shear zone instead of a narrow shear zone, is expected when there are more weakening areas, i.e., more olivine/CPx interfaces (finer-grained CPx produces more cavitation sites giving rise to a larger volume of weaker material and thus a wider zone).

This process provides a consistent approach to answer for strain localisation during olivine diffusion creep, with crucial implications for the lithosphere dynamics. For instance, recent quantifications of silicon diffusion in olivine [START_REF] Fei | New constraints on upper mantle creep mechanism inferred from silicon grainboundary diffusion rates[END_REF] have predicted grain-boundary diffusion creep (coble creep) to be dominantat the expense of dislocation creepin the whole uppermost mantle. Moreover, numerical models of upper mantle convections have shown that strain localisation induced by grain size reduction during olivine diffusion creep have a great potential in promoting plate boundaries, which is a sine qua non condition for Plate Tectonics to originate [START_REF] Bercovici | Plate tectonics, damage and inheritance[END_REF]. We stress nevertheless that the nature of phase nucleation during diffusion creep remains an open question, particularly for mono-phase aggregates. The processes controlling grain size equilibrium within the diffusion creep field also remain very elusive. Defining an equilibrium grain size as a function of deformation parameters is indeed critical to quantify strain localisation in the lithospheric mantle, and hence, to better constrain its implications for the lithosphere dynamics.

Conclusion

In this study, we performed Griggs-type deformation experiments on pure olivine and composite (olivine + diopside) aggregates with 0.1-0.2 wt% H2O at 900°C and 1.2 GPa. Starting with a mean grain size of 2 μm for olivine, we explored how diffusion creep may be important for grain size reduction and strain localisation in the wet uppermost mantle. While we document olivine grain size reduction and a substantial weakening for all sample types, we develop typical ductile shear zones for two-phase samples. Strain localisation is coeval with complete phase mixing of olivine and CPx in very fine-grained layers that extend from CPx porphyroclasts. The phase mixture is also found as mantling CPx tails with strong LPO, as well as in cracks of large CPx with fluid inclusions. For olivine aggregates, we further document (1) some cracks containing new grains, and (2) absent or very weak LPO (B-type fabric) despite substantial finite strain.

While phase mixing is inferred to form by nucleation of two-phase aggregates at olivine/pyroxene interfaces, both, olivine grain size reduction and strain localisation are proposed to arise from creep cavitation induced by grain boundary sliding and subsequent fluid-assisted nucleation. These findings provide a key source for strain localisation in the uppermost mantle, including at the scale of the lithosphere. We therefore emphasize creep cavitation and diffusion creep to be considered in future studies investigating on the consequences of strain localisation for the lithosphere.

where shear bands have been developed. For both sample types (with fine vs. coarse CPx), we also give an estimation of the finite strain (γ) involved at the right of each picture based on the angle (θ) between the long axis of CPx (dotted lines) and shear plane (piston side). γ = 2 / tan2θ [START_REF] Ramsay | Shear zone geometry: a review[END_REF]. From F to H) BSE images of the bi-phase deformation product (mixture) that extends from starting CPx. The mixture of CPx + Ol also rims pure CPx aggregates. figure 2). N = number of data; J = texture index [START_REF] Bunge | Texture analysis in materials Science: mathematical models[END_REF]; M = misorientation index [START_REF] Skemer | The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation[END_REF]. et al., 1993). The dotted yellow line defines the minimum size of bulge for olivine [START_REF] Platt | Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere[END_REF]. For the pure olivine sample, we highlight substantial weakening within the diffusion creep field and below both, the olivine piezometer and minimum size of bulge (black arrow). 35 36 

  they attributed the B-type fabric to the GBS component of diffusion creep when accommodated by anisotropic lattice-controlled grain boundary migration. The recent experiments of Miyazaki et al. (2013) on olivine diffusion creep further support this point. In our samples, the presence of very weak B-type fabric is therefore consistent with olivine deforming by diffusion creep in combination with
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9 Table 1 Sample Water content (wt. ppm H2O) Hot-pressing Peak stress Pure olivine
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					Two-phase	Two-phase
					(fine-grained	(coarse-grained
					CPx)	CPx)
		597.2 ± 76	684.26 ± 54	370.09 ± 47	707.94 ± 48	421.28
		532.26 ± 68	935.09 ± 49	526.20 ± 55	396.15 ± 49	445.48
		532.15 ± 60	(amph.)	368.08 ± 47	479.78 ± 497	442.37
		459.62 ± 48	693.32 ± 61	461.07 ± 49	509.05 ± 46	528.25
		505.29 ± 50		424.32 ± 64	614.57 ± 50	544.00
		729.38 ± 55			912.9 ± 52	1115.43 (amph.)
	Olivine matrix	(amph.)			(amph.)	1009.8 (amph.)
		347.53 ± 478			773.23 ± 60	824.74
		306.44 ± 54			476.21 ± 49	661.00
					786.47 ± 83	1034.74 (SZ)
					474.63 ± 48	1156.76 (SZ)
					546.59 ± 59	1283.67 (SZ)
					649.04 ± 59
					157.25 ± 44
	Single olivine grain				
		148.85 ± 61	160.55 ± 64	684.26 ± 54	166.60 ± 45	436.66 ± 72 (SZ)
		147.48 ± 61	150.00 ± 62	935.09 ± 49		648.1 ± 78 (SZ)
		209.57 ± 63	314.47 ± 64	(amph.)		477.89 ± 64 (SZ)
	Single CPx grain	184.64 ± 63 317.81 ± 67	129.6 ± 61	693.32 ± 61		473.51 ± 126 (SZ)
		244.31 ± 62			
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Table and figures captions

Table 1 | Sample water content -Post-experiment water content of the olivine matrix and single crystals (in wt. ppm of H2O) in the hot-pressed, peak stress, pure olivine and composites samples. The measurements have been performed using ion probe at the CRPG (Nancy, France) on gold-coated thin section (see text for analytical conditions). The terms "amph." and "SZ" refer to a measurement taken by an amphibole grain or within the high-strain shear zone, respectively.

Figure 1 | Sample assembly, strain-stress curves and microstructures. A) Sample assembly in the

Griggs-type apparatus. WC = Tungsten carbide; Pt = Platinum; σ1 = deformation piston; σ3 = confining piston. B) Differential stress (MPa) versus shear strain (γ) that shows the mechanical behaviour of a pure olivine sample (green), two composite samples with 30 wt.% of fine-grained (5-20 μm) CPx (light blue), and two composite samples, including a "peak-stress" experiment, with 30 wt.% of coarse-grained (40-125 μm) CPx (purple). For all experiments, the olivine grain size is between 1 and 10 μm, and the temperature, confining pressure and bulk strain rate are set to 900°C, 1.2 GPa, and ~3.10 -5 s -1 , respectively.