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ABSTRACT 

 

High pressure and temperature decompression experiments were conducted to provide 

experimental information on the conditions of homogeneous bubble nucleation in basaltic 

melts. Experiments were performed on H2O- and H2O-CO2-bearing natural melts from 

Stromboli. Three starting volatile compositions were investigated: series #1 (4.91 wt.% H2O, 

no CO2), series #2 (2.37–2.45 wt.% H2O, 901–1011 ppm CO2) and series #3 (0.80–1.09 wt.% 

H2O, 840–923 ppm CO2). The volatile-bearing glasses were first synthesized at 1200°C and 

200 MPa, and second continuously decompressed in the pressure range 150–25 MPa and 

rapidly quenched. A fast decompression rate of 78 kPa/s (or 3 m/s) was applied to limit the 

water loss from the glass cylinder and the formation of a H2O-depleted rim. Post-

decompression glasses were characterized texturally by X-ray microtomography. The results 

demonstrate that homogenous bubble nucleation requires supersaturation pressures 

(difference between saturation pressure and pressure at which homogeneous bubble 

nucleation is observed, ∆PHoN) ≤ 50–100 MPa. ∆PHoN varies with the dissolved CO2 

concentration, from << 50 MPa (no CO2, series #1) to ≤ 50 MPa (872 ± 45 ppm CO2, series 

#3) to < 100 MPa (973 ± 63 ppm CO2, series #2). In series #1 melts, homogeneous bubble 

nucleation occurs as two distinct events, the first at high pressure (200 < P < 150 MPa) and 

the second at low pressure (50 < P < 25 MPa), just below the fragmentation level. In contrast, 

homogenous nucleation in series #2 and #3 melts is a continuous process. As well, chemical 

near-equilibrium degassing occurs in the series #1 melts, unlike in the series #2 and #3 melts 

which retain high CO2 concentrations even for higher vesicularities (up to 23% at 25 MPa). 

Thus, our experimental observations underline a significant effect of CO2 on the physical 

mechanisms of bubble vesiculation in basaltic melts. Our experimental decompression 

textures either reproduce or approach the characteristics of explosive basaltic eruptions, in 

terms of vesicularity, bubble shapes, sizes and number densities. Unimodal, exponential to 

power law bubble size distributions were encountered and correlated with the different melt 

series, textural characteristics and types of degassing.  
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1. Introduction 

 

CO2-supersaturated basaltic melts have been generated during experimental 

simulations of magma ascent and degassing (Pichavant et al., 2013), questioning the 

commonly accepted view that, due to their relatively high temperatures and low viscosities, 

basaltic magmas degas near equilibrium (Sparks et al., 1994). The classical degassing model 

implies that volatiles (mainly H2O and CO2) exsolve following solubility laws (e.g. Dixon and 

Stolper, 1995; Dixon et al., 1995), with CO2 being extensively lost to the gas phase at high 

pressure (therefore earlier upon ascent) and H2O negligibly lost until the latest stages of 

degassing (Blundy et al., 2010).  

 

Further observations that imply deviation from equilibrium degassing either under 

simple open- (the gas phase escapes from the magma) or closed-system (the gas phase stays 

with the magma) include (1) the occurrence of CO2-rich melt inclusions and (2) basaltic 

explosive volcanism.  

 

(1) Melt inclusions having CO2 contents higher than predicted from equilibrium H2O-

CO2 degassing paths have been commonly found at basaltic volcanoes (e.g. Etna, Stromboli 

and Vesuvius volcanoes in Italy, Jorullo volcano in Mexico, Marianelli et al., 2005; Spillaert 

et al., 2006; Johnson et al., 2008; Métrich and Wallace, 2008; Métrich et al., 2010). These 

data have been interpreted mainly to result from the percolation of CO2-rich magmatic fluids 

of deep provenance (Blundy et al., 2010). Alternatively, mixing of ascending and descending 

magmas (Witham, 2011; Beckett et al., 2014) could possibility generate melt inclusions with 

CO2 contents displaced compared to calculated degassing trends. Lastly, Pichavant et al. 

(2013) proposed that the generation of CO2-rich melts is possible during basaltic magma 

ascent and degassing, as a result of a disequilibrium degassing behavior of CO2. So far, 

disequilibrium degassing is an idea accepted for silicic compositions, like phonolitic or 

rhyolitic melts (e.g. Gonnermann and Manga, 2005; Iacono-Marziano et al., 2007), but not 

really considered for basalts.  
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(2) Basaltic volcanoes are commonly characterized by effusive to low-intensity 

Hawaiian and Strombolian explosive eruptions (Sable et al., 2006; Costantini et al., 2010). 

However, some of these volcanoes (e.g. Etna, Stromboli, Tarawera in New Zealand and 

Masaya in Nicaragua) may erupt occasionally in high-intensity paroxysmal, subplinian to 

Plinian explosive eruptions (e.g. Sable et al., 2006, 2009; Costantini et al., 2010). Magma 

degassing is thought to play a fundamental role in determining effusive versus explosive 

eruptive behavior (Gonnermann and Manga, 2005); the transition is thought to depend on the 

regime of gas bubble transfer and to be caused by changes in magma supply and ascent rates 

(e.g. Pioli et al., 2008; Métrich and Wallace, 2008; Edmonds, 2008). 

 

Magma degassing involves the nucleation, growth and coalescence of gas bubbles and 

has been studied via characterization of natural samples (e.g. Polacci et al., 2006, 2008, 2009; 

Shea et al., 2010), theoretical modeling (e.g. Toramaru 1989, 1995, 2006, 2014; Yamada et 

al., 2005) and laboratory experiments (e.g. Mourtada-Bonnefoi and Laporte, 1999; Mangan 

and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 2002, 2004; Mangan and Sisson, 2005; 

Iacono-Marziano et al., 2007; Gardner and Ketcham, 2011). Experimental constraints are 

available for silicic melts, but are still lacking for basaltic melts. This type of work, which 

consists in determining when and how volatiles separate from magma, is nevertheless 

essential for the understanding of basaltic explosive volcanism (e.g. Bottinga and Javoy, 

1990a; Herd and Pinkerton, 1997; Edmonds, 2008; Polacci et al., 2008; Gardner, 2012).  

 

Although the experiments of Pichavant et al. (2013) were not specifically designed to 

study bubble nucleation, two characteristic distances controlling the degassing process of 

basaltic melts were identified: (1) the gas interface distance (distance between bubbles or to 

gas-melt interfaces at capsule walls) and (2) the volatile diffusion distance. In this way, on the 

basis of differing H2O and CO2 melt diffusivities, CO2/H2O concentration ratios may record 

nonequilibrium degassing (e.g. Gonnermann and Manga, 2005). Other studies have proposed 

that the rate of nucleation controls the final melt volatile concentrations through two 

fundamental parameters (Sparks 1978; Toramaru 1995; Cluzel et al., 2008): the pressure at 

which bubbles begin to nucleate and the number density of bubbles.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

In line with these critical observations, continuous decompressions of H2O- and H2O-

CO2-bearing basaltic melts investigate the systematics of bubble nucleation, and improve our 

ability to model volatile evolution during magma ascent and degassing. 

 

2. Theoretical background 

 

During magma ascent and decompression, the melt can become supersaturated in 

volatiles. For a pressure (P) that becomes less than the volatile saturation pressure (Psat), a 

critical level of volatile supersaturation is attained, and gas bubbles tend to nucleate to 

maintain chemical equilibrium. For homogeneous bubble nucleation to take place, a minimum 

pressure drop below Psat is necessary (e.g. Mangan and Sisson, 2000; Mourtada-Bonnefoi and 

Laporte, 2002). In that case, bubbles are not associated with interfaces or discontinuities 

within the melt (for example at the surface of mineral phases or experimental capsule walls, 

e.g. Hurwitz and Navon, 1994; Gardner et al., 1999; Gardner and Denis, 2004; Mangan et al., 

2004; Gardner, 2007; Cluzel et al., 2008), as for heterogeneous bubble nucleation, and high 

degrees of volatile supersaturation are theoretically required. According to the classical 

nucleation theory, the minimum supersaturation pressure (defined as the difference between 

the volatile saturation pressure and the pressure where bubbles start to nucleate 

homogeneously, ∆PHoN) necessary for bubble nucleation is related to the surface tension of 

the bubble-melt interface (σ, in N.m
-1

) and the nucleation rate (J, in m
-3

.s
-1

) according to the 

following expression (Hurwitz and Navon, 1994; Mourtada-Bonnefoi and Laporte, 2002):  

 

∆PHoN = (16πσ
3
/3kTln(J/J0))

0.5
 (1) 

 

where k is the Boltzmann constant (1.38.10
-23

 J.K
-1

), T is the temperature (in K) and J0 is the 

preexponential nucleation rate (in m
-3

.s
-1

). J0 is given by (e.g. Mourtada-Bonnefoi and 

Laporte, 2004):  

 

J0 = 2ΩLn0
2
Dw/a0(σ/kT)

0.5
 (2), 
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where ΩL is the volume of water molecules in the liquid (ΩL = 3.10
-29

 m
3
), n0 is the number of 

water molecules per unit volume of liquid, a0 is the mean distance between water molecules 

(a0 ≈ n0
-1/3

) and Dw is the water diffusivity in the liquid. n0 is defined as 6.02.10
23

Xmρliq/m, 

where 6.02.10
23

 is the Avogadro number, Xm is the mass fraction of molecular water in the 

liquid, ρliq is the liquid density (2650 kg/m
3
), and m is the molar mass of water (0.018 

kg/mol).  

 

Eq. 1 indicates that homogeneous bubble nucleation in silicate melts can be viewed as 

a competition between volatile supersaturation (which tends to promote volatile exsolution) 

and the surface tension (which tends to resist the formation of a separate phase in the melt). 

The determination of the surface tension of silicate melts is difficult because it is highly 

sensitive to melt composition, temperature and dissolved volatile content (Bagdassarov et al., 

2000; Mangan et al., 2004). The only data available for basaltic melts was determined by 

Khitarov et al. (1979) to range from 0.1 to 0.4 N.m
-1

 (the lowest end of the range for hydrous 

compositions at 1200°C). More recently, Pichavant et al. (2013) obtained σ ranging between 

0.177 and 0.188 N.m
-1

 from the determination of ∆PHoN and J, in decompression experiments 

on basaltic melts containing dissolved H2O and CO2. This is the approach followed in the 

present study to further constrain σ for basaltic melts, especially its dependence with the 

nature and concentration of dissolved volatiles.  

 

Although the classical nucleation theory provides an adequate theoretical background 

for the experiments presented in this study, there are several specificities in our approach that 

are worth being outlined. First, natural basaltic magmas generally contain dissolved CO2 and 

S species, in addition to H2O. These volatile components have very contrasted individual 

solubilities in basaltic melts. It follows that conditions of melt saturation are not simply 

dependent on pressure (and of melt composition to some extent) but become a strong function 

of the respective dissolved volatile concentrations. The volatile saturation surface is no longer 

a line in pressure-H2O concentration (e.g. Mourtada-Bonnefoi and Laporte, 1999, 2002) but 

an hypersurface in multicomponent space. In addition, degassing mechanisms take place at 

high temperature (> 1100°C) in basaltic melts, in a range where the diffusive mobility of 

volatiles (particularly H2O, Zhang and Ni, 2010) is high and has a significant impact on the 

bubble nucleation process (e.g. Mangan and Sisson, 2000; Pichavant et al., 2013). 
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3. Experimental methods 

 

3.1. Preparation of starting glasses 

 

Decompression experiments were conducted on volatile-bearing glasses made from a 

Strombolian high-K basalt. The PST-9 “golden” pumice was used as starting material (Di 

Carlo et al., 2006; Pichavant et al., 2009, 2011). It was selected because it was previously 

used in phase equilibrium and crystallization experiments (Di Carlo et al., 2006; Pichavant et 

al., 2009, 2013), and because it is a sample well-characterized petrographically, 

mineralogically and geochemically (Pichavant et al., 2011). It is the most primitive golden 

pumice (Métrich et al., 2001; Bertagnini et al., 2003; Francalanci et al, 2004; Métrich et al., 

2005; Di Carlo et al., 2006; Pichavant et al., 2009) and, as such, is representative of Stromboli 

pumices emitted during paroxysms and major explosions (Pichavant et al., 2011). Its bulk 

composition is given in Table 1. PST-9 is slightly porphyritic, containing about 10% of 

crystals of clinopyroxene, olivine and plagioclase, and lapilli are highly vesicular (~60 vol.% 

vesicles). To obtain a crystal- and bubble-free glass, the sample was hand-crushed to a fine 

powder, and then fused at 1 atm and 1400°C in a Pt crucible for 3 hours. This process gave a 

homogeneous glass whose composition is listed in Table 1. The glass was then either cored to 

cylinders (2.5 mm in diameter and about 10 mm long) or crushed to a fine powder (~10–50 

µm).  

 

For the synthesis experiments (Table 2), charges were made from glass cylinders 

(140.5–206.4 mg) or glass powder (about 30 mg). Using cylinders has the advantage of 

keeping a constant geometry in all samples, which facilitates the textural analysis. It also has 

the advantage of preventing the formation of bubbles in samples during the synthesis 

experiments. Nevertheless, glass powder was also used for practical reasons in a few 

experiments. Distilled water and carbon dioxide as silver oxalate (Ag2C2O4) were added to 

generate volatile-bearing melts. Au80Pd20 capsules (2–3 cm height, 2.5 mm inner diameter, 0.2 

mm wall thickness) were used as containers. Such a metal composition was adopted to 

minimize iron loss from the experimental charge to the capsule (Di Carlo et al., 2006; 

Pichavant et al., 2009). Three different proportions of H2O and CO2 were introduced in the 

capsules, corresponding to XH2Oin (molar H2O / (H2O + CO2)) = 1 (series #1: only H2O 
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dissolved in glass, no CO2 present), ~0.58 (series #2: H2O and CO2 both dissolved in glass, 

high dissolved H2O/CO2) and 0 (series #3: H2O and CO2 both dissolved in glass, low 

dissolved H2O/CO2, see below for the origin of H2O).  

 

For the decompression experiments (Table 3), the synthesized volatile-bearing glass 

cores (2.5 mm in diameter and about 4 mm long) were fitted in Au80Pd20 capsules. No 

additional volatile was introduced, and this resulted in low proportions of free fluid in the 

decompression charges. Capsules of identical diameter (2.5 mm) but variable lengths (up to 5 

cm for the capsules decompressed to the lowest pressures) yielded variable and large void 

spaces to accommodate gas expansion during decompression.  

 

All capsules were welded shut and weighed, and then reweighed after being placed 

several hours in an oven to ensure that no leaks occurred.  

  

3.2. Equipment  

 

Experiments were performed in an internally heated pressure vessel (IHPV) working 

vertically and fitted with a drop-quench device. To control the redox conditions, the vessel 

was pressurized with gas mixtures made of Ar and H2. All synthesis and decompression 

experiments were performed with an initially applied pressure of 1 bar H2. Then, Ar was 

pumped into the vessel up to the pressure needed to attain the final target conditions 

(Pichavant et al., 2013).   

 

Determinations of experimental fH2 have not been performed specifically for this 

study, for example with redox sensors (Taylor et al., 1992; Di Carlo et al., 2006). Below, we 

use fH2 measurements made from Ni-NiPd sensors in similar experiments performed in the 

same IHPV and under the same P-T-fH2 conditions (Le Gall and Pichavant, 2016). They 

indicate fO2 conditions ranging from NNO–1.3 (series #3) to NNO+1.7 (series #1), NNO 

being the fO2 of the Ni-NiO equilibrium at the P-T of interest. 
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The capsules were placed in a sample holder made of Al2O3. It was suspended by a 

thin Pt wire in a Mo furnace with a 2–3 cm long hotspot. Temperature was monitored with a 

Eurotherm controller and measured by two S-type thermocouples located along the capsules. 

Near-isothermal conditions (gradient < 2–3°C/cm) were maintained in the sample holder. 

Pressure and temperature were read continuously, with uncertainties of ± 20 bars and ± 5°C. 

At the end of the experiments, an electrical current was applied to the Pt suspension wire 

resulting in the sample holder falling to the cold part of the IHPV (< 100°C), leading to a 

quench rate of about 100°C/sec (Di Carlo et al., 2006). 

 

3.3. Run procedure 

 

The synthesis and decompression experiments (Tables 2 and 3) were generally 

performed independently from each other. Volatile-bearing melts were synthesized at a super-

liquidus temperature of 1200°C (Di Carlo et al., 2006; Pichavant et al., 2009) and 200 MPa. 

Up to three capsules (one for each series#) were placed together in the vessel for durations of 

about 46–48 hours, in order to attain an equilibrium distribution of dissolved H2O and CO2 in 

the 2.5 mm diameter cores, according to the H2O and CO2 melt diffusion data (Zhang and Ni, 

2010). The synthesized crystal- and bubble-free volatile-bearing glasses were then used as 

starting materials in the degassing experiments (Table 3).  

 

The decompression runs also included up to three capsules. Experiments were 

conducted at a constant temperature of 1200°C, from an initial pressure (Pin) of 200 MPa to 

final pressures (Pf) varying between 150 and 25 MPa. All runs began with an approximately 

one-hour step at 200 MPa and 1200°C, to re-equilibrate the pre-synthesized glasses. Pressure 

was then decreased manually to Pf at a fast decompression rate of 78 kPa/s (equivalent to 3 

m/s for an assumed rock density of 2650 kg/m
3
), which leads to decompression durations of 

10–40 min depending on Pf. Decompression charges were isobarically quenched immediately 

(within ~1–2 s) after attainment of Pf. 
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Less frequently, synthesis and decompression steps were conducted in the same run. 

This is the case of three synthesis + decompression experiments which were performed using 

glass powder as starting material (Table 4). Consequently, in those three cases, glasses were 

not analyzed after being synthesized. Each synthesis + decompression experiment included 

only one capsule from the series #1. The synthesis step lasted for about 40–60 min at 1200°C 

and 200 MPa, assuming that gas-melt equilibrium is attained in a matter of a few minutes 

under the experimental conditions investigated here (Zhang and Stolper, 1991; Lesne et al., 

2011b) and using powders. Then, the continuous decompression-step consisted in a manual 

reduction of pressure until Pf was attained (150, 100 and 25 MPa) at a fast rate of 78 kPa/s.  

 

After quenching, capsules were weighed again to check that no volatile loss occurred 

during the experiments, and then opened.  

 

4. Analytical methods 

 

4.1. Sample preparation 

 

After each synthesis, a part of the glass core obtained was analyzed to check for its 

volatile concentration and distribution. Sections were cut perpendicular to the long axis of the 

glass cylinders and double-polished. Volatile concentrations were determined by the Fourier 

transform infrared spectroscopy (FTIR) technique.  

 

After decompression, the glass cylinders were carefully removed from their containers 

and imaged in their entirety by X-ray microtomography. Then, glass cylinders were 

subdivided into several sections cut perpendicular to the cylinder long axis. One section (or 

several sections when additional analyses were needed) was doubly-polished for the 

determination of the glass volatile contents by FTIR. Another section (or small glass 

fragments) was mounted in epoxy resin and polished for scanning electron microscope (SEM) 

imaging. 
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4.2. Textural analyses 

 

Textures of all decompressed charges were analyzed by X-ray computed tomography 

(X-ray CT), using a GE Sensing, phoenix|x-ray, Nanotom 180 from ISTO operated between 

90 and 101 kV with variable filament currents (40–170 µA). Glass cylinders were mounted on 

carbon fiber rods with thermoplastic adhesive, and between 750 and 1100 two-dimensional 

projections were acquired as they rotated by 360° with a resolution of 2.42–3.91 µm. The 

reconstruction of the tomographic projections, using phoenix software, creates an image stack 

of the sample, which can be processed with ImageJ (Abràmoff et al., 2004) to obtain a 

complete three-dimensional reconstruction. The total reconstructed volume V consists in void 

space (v2), a glass volume (v3) and a bubble volume (v4) (Fig. 1a). The void space volume 

corresponds to the volume left when excluding the volume of the sample (v3 + v4) to the total 

volume investigated (e.g. v2 = V – (v3 + v4)). Both v2 and v4 can be measured using ImageJ. 

This allows the determination of v3 (by subtracting the sum of the volumes of void space (v2) 

and bubbles (v4) to the total volume investigated (V), v3 = V – (v2 +v4), Fig. 1a), and thus of 

the textural parameters (bubble size, bubble number density and vesicularity).  

 

Image stacks (V, Fig. 1a) were segmented by manual thresholding; the objects of 

interest (bubbles and void space, in gray (for illustration) and black on Fig. 1a) were separated 

from the glass (in white on Fig. 1a). Following segmentation, the volume of these objects, all 

labeled and counted, was measured using the 3D Object Counter plugin (Bolte and 

Cordelières, 2006). The fact that thresholded objects are labeled allows rejecting particles 

which are artifacts, like cracks or noise. This was carefully done after each image analysis.  

 

Bubble sizes (expressed as diameters) were determined from the measured bubble 

volumes, assuming a spherical shape. This assumption was found to be valid in most cases, 

except for the largest bubbles in glasses decompressed to 25 MPa (Fig. 4a–c), and for bubbles 

in series #1 glasses decompressed from powders (Table 4). Bubble number density (BND) was 

calculated as the number of bubbles per unit volume of bulk sample (glass + bubbles, BND, 

Tables 3 and 4) or per unit volume of melt (BNDmelt, Tables 3 and 4). The BNDmelt values 

were preferentially used because they remain invariant as bubbles grow (e.g. Proussevitch et 
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al., 2007). Vesicularity was calculated by dividing the measured bubble volumes by the 

combined volumes of melt and bubbles. As mentioned above, the volume of melt v3 depends 

on the void space volume v2, which includes open bubbles located at the rim of the glass 

cylinders. These bubbles were thus initially excluded from vesicularity measurements (V
c
, 

Tables 3 and 4, Fig. 1a), resulting in significant underestimates for samples having large 

bubbly rims. To compensate for this issue, a sub-volume that included open edge bubbles 

(Vsub, Fig. 1b) together with Voxel Counter plugin was used instead of the total volume (V, 

Fig. 1a) and the 3D Object Counter plugin, yielding a more robust vesicularity value (V
d
). V

d
 

(given in tables 3 and 4 and used below in the text and figures) is the average of calculations 

performed on 4 representative regions in each sample.  

 

For comparison with the vesicularities measured in our run products, equilibrium 

vesicularities were computed for the PST-9 melt composition. Two end-member cases were 

considered, corresponding to the degassing of pure H2O and pure CO2, respectively. The 

equilibrium vesicularity is given by (e.g. Cluzel, 2007):  

 

V = (X0–Xs) / (X0–Xs + ((ρfluid/ρliq)(1–X0))) (3) 

 

where X0 is the weight fraction of initial water, Xs the solubility of the volatile species at a 

given pressure, ρfluid the density of the supercritical fluid and ρmelt the density of the saturated 

silicate liquid.  

 

The H2O and CO2 solubilities for PST-9 at 1200°C and the P of interest (25–200 MPa) 

were calculated based on the models of Lesne et al. (2011a, b). The density of the liquid is 

assumed to be constant and equal to 2.64 g.cm
-3

 (with H2O) and about 2.75 g.cm
-3

 (with CO2). 

The density of pure H2O supercritical fluid was determined at the pressure of interest, using 

the Holloway-Flowers version of the Redlich-Kwong equation of state (from Holloway, 1981; 

Ferry and Baumgartner, 1987). For the pure CO2 supercritical fluid, density was obtained 

from a regression of the fCO2 data of Dixon et al. (1995) at 1200 °C. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

 

4.3. Scanning electron microscopy  

 

Scanning electron microscope (SEM) imaging was used for the observation of < 4 µm 

bubbles that cannot be resolved by X-ray microtomography. Samples were imaged using the 

MIRA3 TESCAN FEG instrument at Orléans, with an accelerating voltage between 15–25 

kV. Results were used only to refine the appearance of bubbles (nucleation) and no attempt 

was made to extract quantitative textural data on the images. 

 

4.4. Glass volatile contents 

 

H2O and CO2 (as CO3
2-

) concentrations in the experimental glasses were determined 

by FTIR. A Nicolet 6700 spectrometer and a Continuµm IR microscope equipped with an IR 

source, a KBr beamsplitter and a liquid nitrogen cooled MCT/A detector were used together. 

Profiles with 50–350 µm steps were performed to check for the homogeneity of H2O and CO2 

concentrations. The diameter of the analyzed spot was 50 µm, 100 µm in a few cases. FTIR 

spectra were accumulated for 128 scans at a resolution of 4 cm
-1 

on doubly polished samples, 

with thicknesses ranging between 29 and 171 µm (Table 5). H2O and CO2 concentrations 

were calculated from the Beer-Lambert law. For H2O, the absorbance of the 3530 cm
-1

 total 

H2O band (H2Omol + OH
-
) was measured with a straight base line between ~3850 and ~2500 

cm
-1

. An extinction coefficient (ɛ
3530

) of 64 L.mol
-1

.cm
-1

 was used (Dixon et al., 1995). For 

CO2, the absorbance of the 1515 cm
-1

 carbonate ions band was determined on subtracted 

spectra. The spectrum used for the subtraction was obtained on a starting glass without 

dissolved volatiles. We calculated an extinction coefficient (ɛ
1515

) of 363 L.mol
-1

.cm
-1 

from 

the equation of Dixon and Pan (1995). Sample thicknesses were measured with an optical 

microscope to within 1–2 µm. Densities of experimental glasses were estimated from the 

density of the volatile-free starting glass measured using a Mettler balance equipped with a 

density accessory kit (ρ = 2.747 ± 0.001) and considering a partial molar volume of H2O of 12 

cm
3
.mol

-1
 (Richet et al., 2000). In this way, we consider only the influence of dissolved H2O 

on the glass density and assume that the effect of CO2 is negligible (Lange, 1994; Bourgue 

and Richet, 2001; Lesne et al., 2011a). 
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5. Experimental results 

 

5.1. Volatile contents of pre-decompression glasses 

 

All glass cylinders obtained in the synthesis experiments (hereafter designated as pre-

decompression glasses) were bubble-free. Considering the analytical uncertainty for CO2 

measurements (~100 ppm), glasses have homogeneous volatile contents. FTIR profiles reveal 

that H2O and CO2 are homogeneously distributed in the glass cylinders; near-rim volatile 

concentrations are identical within error to the other values (averaged H2O and CO2 contents 

in Tables 2 and 5). Pre-decompression glasses divide into three groups of compositions 

according to their synthesis conditions: series #1 (4.91 ± 0.01 wt.% H2O, 0 ppm CO2), series 

#2 (2.41 ± 0.04 wt.% H2O, 973 ± 63 ppm CO2) and series #3 (0.98 ± 0.16 wt.% H2O, 872 ± 

45 ppm CO2). Their H2O and CO2 concentrations are within the range of experimental 

solubilities found both for PST-9 (Lesne et al., 2011a, b) and other basaltic melts (Shishkina 

et al., 2010) under similar P-T conditions. Although H2O was not introduced in the series #3 

capsules, it was found to be dissolved in all pre-decompression glasses of this series. This 

H2O (concentration range: 0.80–1.09 wt.%, Tables 2 and 5) is generated during synthesis 

through the reduction of the ferric iron of the starting glass by H2 from the pressurizing 

medium. The reduction reaction can be written (e.g. Lesne et al., 2011a):  

 

Fe2O3(melt) + H2(vap/melt) = 2FeO(melt) + H2O(melt) (4) 

 

However, part of the water in the series #3 glasses most probably comes from the silver 

oxalate used as the CO2 source because reaction (Eq. 4) is not sufficient to account for the 

measured glass H2O contents.  

Glasses from the few synthesis + decompression experiments (#1, Table 4) were not 

analyzed and are assumed to have the same water content as glass S9#1 (4.91 wt.%, Table 2) 

since the conditions of synthesis are identical (XH2Oin, P, T). Water diffusivity data for 

basaltic melts (Zhang and Ni, 2010) suggest that, under the P-T conditions investigated here, a 

few minutes is sufficient to homogenize the H2O concentration in our basaltic glasses, when 

starting from powder (Lesne et al., 2011b).   
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5.2. Qualitative textural characteristics of post-decompression glasses 

 

The glass cylinders from the decompression experiments and from the few synthesis + 

decompression experiments (hereafter designated as post-decompression glasses) were 

generally recovered as single cylindrical blocks, except a series #1 charge (S+D38#1, Table 4) 

which yielded a partially powdered run product, suggesting partial fragmentation (as also 

described in Le Gall and Pichavant, 2016). Microscopic observation revealed the presence of 

numerous bubbles in the fragmented part of S+D38#1. All run products were crystal-free with 

the exception of the D25#3 charge (Table 3) which contains some plagioclase. These crystals 

(5–10 µm long) are found exclusively near bubbles (but not attached to) and are absent from 

bubble-free glass areas. In the other charges, the absence of crystals was checked by optical 

microscopy on the doubly polished sections prepared for FTIR and by SEM. Almost all the 

charges contain some rare oxide crystals (Ti-bearing magnetite, Di Carlo et al., 2006). 

However, evidence for bubble nucleation on those micron-sized Fe–Ti oxides was 

infrequently observed, as it can be seen on Fig. 2a. Except the D31#2 charge (Fig. 2b, Table 

3) which is completely devoid of bubbles, the post-decompression glasses show a densely 

nucleated core and a bubbly rim ranging from ~10 to 110 µm (Fig. 2c, Tables 3 and 4). A 

distinction was made between bubbles that nucleated inside the glass and those located at the 

glass-capsule interface. The latter are thought to result from heterogeneous nucleation along 

the glass-capsule interface (Mangan and Sisson, 2000) and are not considered further in this 

study (with the sole exception of vesicularity measurements). Given the nearly uniform spatial 

distribution of interior bubbles and the absence of crystals (hence of possible nucleation sites), 

we interpret the textures of our vesiculated glasses to result from homogeneous bubble 

nucleation. Charge D31#3 is characterized by a somewhat heterogeneous distribution of 

relatively large bubbles (8–42 µm, Table 3). However, SEM imaging revealed a population of 

smaller bubbles (< 5 µm, Fig. 2a) almost homogeneously distributed.  

 

Interiors of post-decompression glasses are devoid of bubbles until Pf = 150 MPa for 

series #1 and #3, and until Pf = 100 MPa for series #2. In this study, no experimental check 

was performed at Pf = 200 MPa but similar work at a lower decompression rate confirmed 

that bubbles are initially absent (Le Gall and Pichavant, 2016). 
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5.3. Quantitative study of internal textures 

 

Vesicularities range from 1.01 to 25.6 vol.% (series #1), 0 to 22.7 vol.% (series #2) 

and from 0 to 4.97 vol.% (series #3) (Tables 3 and 4, Fig. 3a). They generally increase with 

decreasing Pf from 150 to 25 MPa, especially between 50 and 25 MPa. Vesicularities are also 

a function of the volatiles in the system (Fig. 3a). The highest vesicularities are for the H2O-

only glasses from series #1. For the same final pressure Pf = 25 MPa, vesicularities decrease 

with increasing CO2 content from 25.6% (series #1) to 22.7% (series #2) to 4.97% (series #3). 

Vesicularities for series #2 and #3 glasses are in qualitative agreement with the calculated 

equilibrium vesicularity curves (since they plot in-between the two end-members theoretical 

curves, Fig. 3a). Measured vesicularities in the series #1 glasses are low by comparison to the 

theoretical values (Tables 3 and 4, Fig. 3a). 

 

The average bubble diameter (D) ranges from 28 to 218 µm (series #1), 10 to 31 µm 

(series #2) and from 10 to 12 µm (series #3) (Tables 3 and 4, Fig. 3b). In the fragmented part 

of the series #1 S+D38#1 charge, bubbles have sizes ranging from about 10 to 110 µm, much 

lower than in the non-fragmented part (76–414 µm). As for vesicularity, D generally increases 

with decreasing Pf although to a lesser extent for series #3 glasses (Fig. 3b). D is also a 

function of the concentration of dissolved volatiles (Figs. 3b and 4a–c). For the same final 

pressure of 25 MPa, bubble sizes decrease with lowering H2O content from 218 µm (series 

#1, Figs. 3b and 4a) to 31 µm (series #2, Figs. 3b and 4b) to 12 µm (series #3, Figs. 3b and 

4c).   

 

Bubble number densities (BNDs) range from about 10
0
 to 10

4
 mm

-3
 for the three glass 

series (Tables 3 and 4, Fig. 3c). Generally, BNDs of series #1 glasses decrease with 

decreasing Pf, from about 10
2
 (150 MPa) to 10

1
 mm

-3
 (25 MPa). Conversely, BNDs of series 

#2 and #3 glasses generally increase when lowering Pf (from about 10
0
 to 10

4
 mm

-3
), except 

between Pf = 100 and 50 MPa where BNDs decrease.  
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For each series, the evolution of bubble size distribution (BSD) along the experimental 

decompression path is documented from two charges, one representative of the initiation and 

the other of the last stage of the bubble nucleation process (Fig. 4d–f). Each of the three series 

shows a distinct evolution of BSD with decreasing pressure and, so, increasing experimental 

duration. At Pf = 150 MPa, the CO2-free glasses (series #1, Fig. 4d) show a unimodal BSD 

with a slight dissymmetry at left. Then, at Pf = 25 MPa (Fig. 4d), the BSD shifts to 

multimodal as the number of large bubbles increases. For example, at Pf = 150 MPa bubble 

sizes range from 8 to 86 µm while at Pf = 25 MPa bubble sizes range between 76 and 414 µm 

(Table 4, Fig. 4d). For series #2 samples, the BSD initially (at Pf = 100 MPa, i.e. at the 

pressure where bubbles start to nucleate) has a power law shape (Fig. 4e). Upon decreasing Pf 

to 25 MPa, the BSD evolves to an unimodal shape with a strong dissymmetry at left implying 

that the number of small bubbles (< 10 µm) decreases (Fig. 4e). Lastly, series #3 glasses have 

power law distributions both at Pf = 150 and 25 MPa (Fig. 4f), with small bubbles (< 10 µm) 

predominating until the lowest Pf.  

 

5.4. Volatile contents of post-decompression glasses 

 

H2O and CO2 concentrations in glasses from decompression experiments are reported 

in Table 5 and shown in Fig. 5. The H2O concentrations of series #1 post-decompression 

glasses range from 4.16 (Pf = 150 MPa) to 1.71 wt.% (Pf = 25 MPa). Thus, a general decrease 

of the concentration of dissolved H2O is observed when decreasing the final pressure (Fig. 5). 

Considering that standard deviations (corresponding to the error bars in Fig. 5) are < 0.1% 

(Table 5), the H2O contents of series #1 post-decompression glasses are in close agreement 

with H2O solubilities calculated from VolatileCalc (Newman and Lowenstern, 2002); the 

correspondence between the data points and the calculated 150–25 MPa isobars is very close 

(Fig. 5). However, the correspondence is slightly less good if comparison is made with 

measured solubilities (Lesne et al., 2011b) rather than with VolatileCalc, especially at low 

pressure: post-decompression glasses have H2O concentrations slightly exceeding solubilities 

(Fig. 6a). Most series #1 charges have near-equilibrium H2O concentrations. The exception is 

charge S+D38#1 (Pf = 25 MPa) which shows a supersaturation of 0.15–0.40 absolute wt.% 

H2O. In addition, analytical dispersions of H2O contents along FTIR profiles are higher than 

typical analytical errors, suggesting some degrees of heterogeneity in the H2O distribution in 
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post-decompression glasses (Fig. 6a). The spatial distribution of H2O in all series #1 charges 

seems influenced by the proximity of the glass-capsule interface, as illustrated for example by 

D10#1 and S+D38#1 samples (Fig. 6a). The glass H2O concentration is also affected by the 

proximity to gas bubbles, which shows that the H2O concentration is close to the solubility 

value near the bubbles or the glass-capsule interface and slightly higher away from them (Fig. 

6a, b), consistent with a mechanism of diffusive motion of H2O inside the melt toward the gas 

phase.  

 

Series #2 post-decompression glasses have H2O concentrations ranging from 1.96 to 

0.95 wt.% and CO2 concentrations ranging between 786 and 206 ppm (Table 5). Taken 

globally, concentrations of dissolved H2O and CO2 in post-decompression glasses 

progressively decrease with decreasing Pf (Fig. 5). However, the drop in H2O concentration is 

not linear with Pf contrary to CO2. For example, the glass decompressed to Pf = 150 MPa has 

a lower H2O content (1.28 wt.%, D31#2) than two glasses decompressed to 100 (1.55 wt.%, 

D34#2) and 50 MPa Pf (1.96 wt.%, D9#2). The glass decompressed to 25 MPa (0.95 wt.%, 

D28#2) has the lowest H2O concentration. Post-decompression glass CO2 concentrations 

progressively decrease from 786 (D31#2, Pf = 150 MPa), 613–678 (D34#2 and D23#2, Pf = 

100 MPa), 556 (D9#2, Pf = 50 MPa) to 206 ppm (D28#2, Pf = 25 MPa). The trend of 

decreasing H2O and CO2 concentrations upon decreasing pressure differs from the closed-

system equilibrium decompression trend in that the observed H2O loss is more important than 

theoretically expected. At Pf = 150 MPa, the measured CO2 concentration is in agreement 

with the gas-melt saturation isobar calculated with VolatileCalc (Newman and Lowenstern, 

2002) despite that the H2O content is much lower than the concentration expected along the 

theoretical degassing trend. In comparison, the data points at Pf = 100 and 50 MPa plot well 

above their respective gas-melt saturation isobars. Measured CO2 contents in these post-

decompression glasses (556–678 ppm) largely exceed the calculated values (< 250 ppm at 

100 MPa and < 50 ppm at 50 MPa) for closed-system equilibrium degassing, the departure 

from equilibrium being the most marked for the 50 MPa Pf point. The Pf = 25 MPa point also 

plots above its respective gas-melt saturation isobar.  
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Post-decompression glasses from series #3 have H2O concentrations between 1.06 and 

0.49 wt.% and CO2 concentrations ranging from 777 to 423 ppm (Table 5). With decreasing 

pressure, melt CO2 contents decrease progressively at approximately constant H2O 

concentrations, except for charge D25#3 which lost most of its water (from 1.09 wt.% H2O at 

200 MPa to 0.49 wt.% H2O at 25 MPa, Table 5 and Fig. 5). However, the decompressed 

glasses keep CO2 concentrations that plot generally above their respective gas-melt saturation 

isobars. For example, the glass decompressed to Pf = 50 MPa has a higher CO2 content (619 

ppm, D9#3) than the calculated value (< 200 ppm) for closed-system equilibrium degassing. 

FTIR profiles show that H2O and CO2 are homogeneously distributed in the post-

decompression glasses. 

 

6. Interpretation and discussion of experimental observations 

 

6.1. Supersaturation pressures required for homogeneous bubble nucleation 

 

Two main arguments support the homogeneous nature of bubble nucleation in our 

samples. (1) The lack of crystals, with the exception of some rare Fe–Ti oxides, in our 

experimental charges implies that there are no or little discontinuities to serve as nucleation 

sites in the melts. Although we can miss the non-resolved oxides by X-ray CT, because of 

their small size, we estimated the proportion of heterogeneously nucleated bubbles to be 

negligible (i.e. for each charge less than a few % of total bubbles, see also Le Gall, 2015). (2) 

The quite homogeneous distribution of the bubbles within samples, when they appear (Fig. 

2a, c), is consistent with a general rather than a local bubble nucleation mechanism (as would 

be observed if bubble nucleation occurs on capsule walls). In addition, there are variations 

neither in the average size nor in the number density of bubbles inside samples (away from 

capsule walls) once bubble nucleation takes place. 

 

The supersaturation pressure required for homogenous bubble formation, i.e. the 

difference between the starting pressure (Pin = Psat) and the final pressure at which bubbles 

begin to nucleate homogeneously, can be determined from our decompression experiments. 

We observed almost homogeneously distributed bubbles in the core of series #1 glasses 
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(initial melt H2O concentration = 4.91 wt.%) from Pf = 150 MPa (S+D36#1, Table 4). 

However, the bubbles appear to have been formed at a much higher pressure. Indeed, most of 

the bubbles have a subspherical shape attesting of slight deformation after being formed. 

Furthermore, small bubbles (< 10 µm) are almost absent (2%, Fig. 4d) and bubble growth 

seems already efficient (main peak diameter of 25 µm, Table 4 and Fig. 4d). Accordingly, the 

supersaturation pressure required to nucleate bubbles homogeneously in our H2O-bearing, 

CO2-free, melts must be much less than 50 MPa (∆PHoN << 50 MPa). It should be noted that 

the 150 MPa Pf series #1 charge (S+D36#1) was obtained from powder starting materials 

which could have facilitated bubble nucleation, thus lowering ∆PHoN. In the same way, the 

fact that bubbles are slightly deformed in charge S+D36#1 is interpreted to result from the use 

of starting powders instead of cylinders. The ∆PHoN value determined for series #1 glasses (<< 

50 MPa) is lower than supersaturation pressures found for more evolved compositions. For 

example, the degree of supersaturation required to trigger homogeneous bubble nucleation is 

~60–90 MPa in dacite melts (H2O ~5 wt.%, Mangan and Sisson, 2005; Gardner and Ketcham, 

2011), ~100 MPa in phonolite (H2O ~5 wt.%, Iacono-Marziano et al., 2007) and ~95–150 

MPa in rhyolite melts (for ~5–7 wt.% H2O, Mangan and Sisson, 2000; Mourtada-Bonnefoi 

and Laporte, 2004; Gardner and Ketcham, 2011). Therefore, ∆PHoN values << 50 MPa as 

found in this study appear specific of basaltic compositions and suggest that bubble nucleation 

is an easy process taking place at low supersaturations in hydrous basaltic melts.  

 

In series #2 (initial melt H2O concentration = 2.37–2.45 wt.% and CO2 = 901–1011 

ppm), the charge decompressed to 150 MPa Pf (D31#2, Table 3) yielded a bubble-free glass 

by X-ray CT (Fig. 2b), which was confirmed by SEM examination. In contrast, the two 

charges decompressed to 100 MPa Pf (D23#2 and D34#2, Table 3 and Fig. 2c) contain small 

and nearly equal-sized bubbles (main peak diameters of  6–7 µm) uniformly distributed, 

suggesting that homogeneous bubble nucleation takes place between 150 and 100 MPa Pf. 

Therefore, a critical supersaturation pressure of 100 MPa maximum and 50 MPa minimum is 

inferred for our series #2 H2O- and CO2-bearing basaltic melts. For comparison, Pichavant et 

al. (2013) found a supersaturation pressure of 150 MPa maximum in their experiments 

performed on compositions similar to our series #2 melts. However, no data were given for Pf 

> 50 MPa, and so it cannot be excluded that, in their decompression experiments, 

homogeneous bubble nucleation would have started at pressures > 50 MPa, leading to ∆PHoN 

<< 150 MPa. A critical supersaturation pressure of 200 ± 100 MPa was found by Lensky et al. 
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(2006) for CO2 bubbles in a synthetic mafic melt decompressed from 1.5 GPa, which is in the 

same range or larger than determined here for series #2 melts. However, it is worth specifying 

that Lensky et al. (2006) worked on nominally H2O-free melts. For more evolved melts, 

∆PHoN values determined for H2O- and CO2-bearing rhyolitic melts (4.6 wt.% H2O and 800–

1100 ppm CO2, Mourtada-Bonnefoi and Laporte, 2002) range from 160 to 350 MPa, 

significantly above our ∆PHoN values for series #2 melts. Therefore, it appears that the 

influence of CO2 in increasing supersaturation pressures and ∆PHoN values is lower for 

basaltic than for rhyolitic melts.  

 

In series #3 glasses (initial melt H2O concentration = 0.8–1.09 wt.% and CO2 = 840–

923 ppm), bubbles begin to nucleate from Pf = 150 MPa (D31#3, Table 3, Fig. 2a). These 

bubbles are so small (< 5 µm) that they were mostly undetected by X-ray CT (smallest bubble 

size detected in D31#3: 8 µm). Thus, a critical ∆PHoN of 50 MPa maximum is also inferred for 

the series #3 melts. These results confirm the relatively low supersaturation pressures and 

∆PHoN values for basaltic melts, even when H2O-poor and CO2-bearing.  

 

Our experimental results for basaltic melts suggest that the H2O concentration has a 

small and, in detail, a complex effect on the critical supersaturation pressure needed to 

overcome the nucleation barrier (expressed as the ∆PHoN value). The H2O-richer (4.91 wt.%, 

series #1) and the H2O-poorer (0.98 ± 0.16 wt.%, series #3) melts require apparently the same 

range of ∆PHoN values (either < or ~50 MPa). Nevertheless, ∆PHoN differences between our 

three series can be masked by our relatively large Pf steps (50 MPa). In this sense, the 

available textural evidence for the series #1 melts suggests that ∆PHoN is in fact much lower 

than 50 MPa. In contrast, for series #3 melts, textural evidence for bubble nucleation at Pf >> 

150 MPa is lacking, suggesting that ∆PHoN is in fact very close to 50 MPa. Comparison 

between results for series #1 and #3 implies a negative but small influence of the melt H2O 

concentration on ∆PHoN. However, the increase of ∆PHoN observed between series #3 (∆PHoN 

≤ 50 MPa, 0.98 ± 0.16 wt.% H2O) and series #2 glasses (∆PHoN < 100 MPa, 2.41 ± 0.04 wt.% 

H2O) is not in agreement with a linear decrease of ∆PHoN with increasing the dissolved H2O 

content. Our experiments do not reveal a systematic influence of the H2O concentration on 

bubble nucleation in basaltic melts, as suggested for example in the case of rhyolitic melts 

(e.g. Gondé et al., 2011).  
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The presence of dissolved CO2 has been considered to influence the degree of 

supersaturation required for homogeneous bubble nucleation. Although the individual 

influence of CO2 is difficult to separate from H2O (since the two volatile concentrations 

usually vary together in the experiments) there are indications for supersaturation pressures 

and ∆PHoN are positively correlated with the melt CO2 concentration (Mourtada-Bonnefoi and 

Laporte, 2002; Bai et al., 2008). In our experiments, ∆PHoN appears to increase linearly 

(although moderately) with increasing the melt CO2 content, from << 50 MPa (no CO2, series 

#1) to ≤ 50 MPa (872 ± 45 ppm CO2, series #3) to < 100 MPa (973 ± 63 ppm CO2, series #2). 

Although other factors (redox state) would need to be considered, our experimental results for 

the three series are consistent with a moderately important inhibiting role of CO2 on bubble 

nucleation in basaltic melts. 

 

Melt-bubble surface tensions have been calculated from our experimentally-

determined supersaturation pressures and nucleation rates computed from our measured 

bubble number densities and decompression timescales, using Eqs. 1 and 2. Dw was taken 

from the equation of Zhang and Ni (2010) which takes into consideration the effects of H2O 

content and temperature. ΩL and Xm parameters are poorly constrained in basalt melts and we 

have used the values given by Mourtada-Bonnefoi and Laporte (2004), determined for 

rhyolitic liquids. Checks were performed to evaluate their influence on the calculated results 

and found to be small (< 0.001 N.m
-1

). In the same way, the choice of the Dw equation leads 

to very small (< 0.001 N.m
-1

) differences in σ. Because our Pf steps are large (50 MPa) and so 

supersaturation pressures given are maxima, calculated surface tensions are upper limits. 

Results give σ values of 0.058–0.059 N.m
-1

 for series #1 and #3 melts, respectively, and of 

0.091 N.m
-1

 for series #2 melts. For comparison, Khitarov et al. (1979) obtained surface 

tensions of 0.1 to 0.4 N.m
-1

 for basaltic melts at 1200°C and 100–500 MPa, the lowest end of 

the range corresponding to hydrous compositions. Pichavant et al. (2013) fitted σ data from 

their decompression experiments performed on compositions similar to our series #2 melts. 

They found a maximum σ of 0.18 N.m
-1

 higher than in this study but consistent with their 

higher ∆PHoN values.  
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6.2. Physical mechanisms of degassing and textures 

 

Below we discuss the physical mechanisms of degassing that occur in our 

experiments, from nucleation, growth and coalescence of gas bubbles to magma 

fragmentation. Emphasis is placed on textural differences between the three series of post-

decompression glasses.  

 

6.2.1. Vesicularities  

 

The data for the three glass series show a general increase in vesicularity upon 

decompression due to magma ascent and decreasing Pf (Fig. 3a). More in detail, specificities 

appear between the different series (vesicularities of series #3 glasses are always very low 

below 5%). Vesicularities of CO2-bearing melts are lower than those of H2O-rich melts, but 

we note that our CO2-bearing compositions have reduced melt H2O concentrations compared 

to our H2O-rich melts. It is also worth noting that for series #1 and #2 glasses, the increase in 

vesicularity is more important between Pf = 50 and 25 MPa. Our measured vesicularities 

never reach the range for Stromboli pumices which have values between 47 and 67% (Polacci 

et al., 2006). However, it is recalled that the series #1 25 MPa Pf sample is partially 

fragmented, suggesting that the measured vesicularity is a minimum. The progressive increase 

in vesicularity with decreasing Pf is consistent with a mechanism of progressive melt 

vesiculation which is associated with decompression. This melt vesiculation mechanism is the 

result of different sub-processes that include bubble nucleation, growth, coalescence and 

outgassing, up to fragmentation. These different sub-processes are examined below.  
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6.2.2. Nucleation events  

 

Textural evidence (bubble size distributions and bubble number densities) can be used 

to distinguish between single vs. multiple bubble nucleation events (or pulses) in our 

experiments. In series #1 glasses, the presence of numerous (1908) bubbles in the charge 

decompressed to Pf = 150 MPa (S+D36#1, Table 4), as well as its unimodal BSD (Fig. 4d), 

imply that a single event of nucleation occurred at Pf > 150 MPa. Then, BND remains 

relatively constant from Pf = 150 to 100 MPa, and even decrease slightly (from 275 to 210 

mm
-3

, Table 4 and Fig. 3c). This plateau marks the end of this nucleation event (as supported 

by the lack of small (< 10 µm) newly formed bubbles at 100 MPa Pf), and the beginning of 

bubble growth, deformation and coalescence (e.g. Martel and Iacono-Marziano, 2015). 

Therefore, this event of nucleation appears to begin before Pf = 150 MPa and to end between 

Pf = 150 and 100 MPa, i.e. it is restricted to a narrow Pf range. In contrast, the presence of 

newly nucleated bubbles (< 5–110 µm) in the fragmented part of S+D38#1 sample (25 MPa 

Pf) is remarkable because it implies that a second bubble nucleation event occurs between Pf 

= 50 and 25 MPa. Thus, two distinct nucleation events take place in our H2O-only melts 

(series #1), each restricted to narrow Pf intervals and both driven by melt H2O supersaturation 

(Fig. 6a).  

 

In series #2 samples, a strong increase of BND is observed from Pf = 150 (BNDmelt = 0 

mm
-3

) to 100 MPa (BNDmelt = 269–10331 mm
-3

) (Table 3, Fig. 3c) which corresponds to the 

beginning of the homogeneous bubble nucleation process. Below 100 MPa, two cases are 

possible, either a continuous increase of the BND (D23#2) or a decrease of the BND (D34#2). 

The first case suggests the continuation of the same process of bubble nucleation below 100 

MPa, an interpretation supported by the continuous increase in the number of bubbles, from 

1692 (Pf = 100 MPa, D23#2), 11609 (Pf = 50 MPa, D9#2) to 16187 (Pf = 25 MPa, D28#2). In 

addition, bubble diameters give evidence for the appearance of small (< 10 µm) newly formed 

bubbles, and thus indicate the occurrence of secondary nucleation events. The second case is 

interpreted to reflect the combination of bubble coalescence and continuous bubble 

nucleation. The distance between bubbles in charge D34#2 is 28 µm, significantly lower (96 

µm) than in the other charge (D23#2) for the same Pf, consistent with the possibility that 
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coalescence can take place, thus decreasing the BND. In both cases, the evolution below 50 

MPa and down to 25 MPa Pf is marked by an increase of BNDs which is interpreted as the 

continuation of the nucleation process. 

 

In series #3 samples, as in series #2, the BND first increases from 150 to 100 MPa Pf 

(BNDmelt = 4 to 836 mm
-3

, Fig. 3c, Table 3). Then, it decreases at 50 MPa (BNDmelt = 17 mm
-

3
) because of bubble coalescence (the number of bubbles is reduced from 5768 to 160, Table 

3), before increasing again at 25 MPa (BNDmelt = 8799 mm
-3

). This increase is interpreted as 

the continuation of the same bubble nucleation process. This is supported by the observation 

that, as degassing continues, small (< 10 µm) bubbles begin to form along the decompression 

path from 150 to 25 MPa Pf. In addition, this indicates the occurrence of multiple nucleation 

events.  

 

In series #2 and #3 post-decompression glasses, no BND stabilization (which would 

mark by a horizontal line in Fig. 3c) is observed. According to the classical nucleation theory, 

BND stabilization would reflect the end of a nucleation event (e.g. Toramaru, 2006). 

Consequently, the BND results for series #2 and #3 are consistent with a continuous, rather 

than limited to narrow Pf ranges, bubble nucleation, as observed in series #1 glasses and in 

other studies as well (e.g. Mourtada-Bonnefoi and Laporte, 2002; Cluzel et al., 2008). 

Continued multiple nucleation events have been proposed to yield power law distributions 

because small bubbles continue to form as volatile supersaturation is maintained (Blower et 

al., 2001, 2002; Yamada et al., 2005; Bai et al., 2008). This is precisely what is observed in 

series #2 and #3 which are both characterized by power law distributions (see below) and CO2 

melt concentrations in excess of the equilibrium solubilities.  

 

We conclude to a major difference in the mechanism of bubble nucleation between 

series #1, on the one hand, and series #2 and #3, on the other hand. In series #1 glasses, a 

discontinuous mechanism of nucleation takes place, leading to two bubble nucleation events 

in narrow Pf intervals. Both nucleation events are driven by melt H2O supersaturation. In 

contrast, in series #2 and #3 glasses, a single continuous mechanism of bubble nucleation 

occurs, leading to multiple discrete bubble nucleation pulses. In series #2 and #3, nucleation 
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takes place over a substantial Pf interval along the decompression path, and is driven by the 

generation of CO2 supersaturated melts. Preservation of volatile supersaturated melts sustains 

continuous bubble nucleation during the entire duration of the decompression path. 

 

In addition to differences concerning mechanisms of bubble nucleation between the 

three series, effects on bubble growth are also expected. It is likely that bubble growth occurs 

as a mechanism in our experiments in addition to bubble nucleation. The effect of bubble 

growth would be the most strongly marked in the longest decompression experiments, i.e. for 

the lowest Pf. We interpret the systematic differences in bubble size between the three series 

(Fig. 4a–c) to reflect the combined influence of bubble nucleation and growth. The largest 

bubbles are for the series #1 charge, followed by the series #2 and then the series #3 charges. 

Bubble growth is mainly controlled by volatile diffusion (Bai et al., 2008), as well as by gas 

volume expansion (larger at low pressures). H2O having a higher melt diffusivity than CO2 

(Zhang and Ni, 2010), it is expected that bubbles would grow larger in series #1 than in series 

#2 and #3 if comparison is made at constant pressure so that the influence of gas volume 

expansion is neglected. The 25 MPa Pf charges (Fig. 4a–c) confirm this general trend since 

the highest bubble sizes occur in the series #1 charge.  

 

6.2.3. Bubble coalescence  

 

Bubble coalescence takes place in our H2O-only glasses (series #1) although, in detail, 

differences appear along the decompression path. From Pf = 150 to 100 MPa, bubble 

coalescence is evidenced by a slight decrease of the bubble number density, from 275 

(S+D36#1) to 210 mm
-3

 (S+D39#1, Table 4, Fig. 3c). Common coalescence structures of 

dimpling (Castro et al., 2012) are present in charge S+D36#1. In addition, the number of 

bubbles decreases from 150 (1908) to 100 MPa (776, Table 4) while, at the same time, the 

average and main bubble sizes increase (Table 4, Fig. 3b). Lastly, the evolution of the bubble 

size distribution from unimodal to exponential (see below) indicates the presence of larger 

bubbles interpreted to result from coalescence (Fig. 9a). Therefore, in series #1 glasses bubble 

coalescence begins very early along the decompression path. 
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Bubble coalescence is most extensively marked between 100 (S+D39#1) and 50 

(D10#1) MPa Pf. This is evidenced by a sharp decrease of BND (from 210 to 8 mm
-3

, Tables 

3 and 4, Fig. 3c), a strong decrease in the number of bubbles (from 776 to 38, Tables 3 and 4) 

and a sharp increase in the average bubble size (from 47 to 161 µm, Tables 3 and 4, Fig. 3b). 

Processes of bubble deformation and coalescence are preserved in 50 MPa Pf, as well as in 25 

MPa Pf charges, suggesting that the mechanism of bubble coalescence continues below 50 

until 25 MPa Pf. In the latter charge, typical coalescence textures (Fig. 7) are characterized by 

deformed bubble walls, interpenetrating bubbles, dome-into-dimple shapes and vestiges of 

dimple structures, suggesting bending, stretching and dimpling mechanisms (Castro et al., 

2012; Martel and Iacono-Marziano, 2015). It is worth mentioning that bubble coalescence is 

also observed in the fragmented parts of S+D38#1 sample. Bubble loss by buoyancy 

(outgassing) has to be considered, especially between 100 and 50 MPa Pf (contributing to 

lower BNDs), although it must be limited by the short duration of the decompression (~11 

min). Indeed, calculations of the gravity-driven upward movement of H2O bubbles in charge 

S+D39#1 (which appears to be the most critically impacted by bubble loss), using the 

Hadamard-Rybcynski bubble velocity equation (Bottinga and Javoy, 1990b), give vertical 

travel distances of ~0.5–1 mm for bubbles of 50 µm diameter (and 7–18 mm for bubbles of 

190 µm, bubble sizes from Table 4). Although the results depend sensitively on the bubble 

diameter, as well as on the gas density and the viscosity of the melt, they demonstrate that 

outgassing possibly occurs in our experiments, and can contribute to the loss of the larger 

bubbles and result in vesicularities below the equilibrium values. 

 

In contrast with series #1, typical coalescence textures generally cannot be observed in 

series #2 and #3 glasses. In the absence of textural evidence, coalescence is demonstrated by a 

decrease of BNDs and bubble numbers, associated with an increase in bubble sizes. In 

comparison, bubble growth would mark by a similar increase in bubble sizes, but at constant 

BNDs and bubble numbers. Generally, coalescence is much less marked in CO2-bearing than 

in CO2-free melts. In series #2, coalescence is not systematic. BND values can either decrease 

or increase between 100 and 50 MPa Pf (Table 3, Fig. 3c). We interpret this difference to 

reflect variations in distances between bubbles in the two series #2 100 MPa Pf charges. The 

average distance between bubbles in charge D23#2 (96 µm) is larger than in charge D34#2 

(28 µm), consistent with the absence of bubble coalescence when starting from a 100 MPa 

charge such as D23#2. Between 50 and 25 MPa Pf, the mechanism of bubble coalescence 
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continues despite an increase of the BND (Fig. 3c). However, coalescence textures were 

observed in a series #2 glass at Pf = 25 MPa (D28#2, Table 3). The mechanism of bubble 

coalescence is partially hidden by the continuing bubble nucleation. 

 

We conclude that bubble coalescence occurs and that it is the more strongly marked in 

the same pressure range (100–50 MPa) for the three glass series.  

 

6.2.4. Fragmentation  

 

Fragmentation was observed (although partially) in one series #1 charge decompressed 

to Pf = 25 MPa, but never at Pf = 50 MPa. In an analogous way, Le Gall and Pichavant (2016) 

obtained several fragmented charges at the same Pf in slower (39 kPa/s) decompression 

experiments. Therefore, the available evidence suggests a fragmentation threshold near 25 

MPa. A detailed discussion of the fragmentation mechanisms is outside the scope of this 

paper. However, our data, combined with those of Le Gall and Pichavant (2016), provide 

clear evidence that fragmentation is intimately related to the second bubble nucleation event 

that occurs between 50 and 25 MPa in series #1 melts. It is worth reminding that the small 

bubbles that result from the second nucleation event were observed only in the fragmented 

part of S+D38#1. The existence of a second nucleation event enhancing magma 

fragmentation has been previously proposed by e.g. Massol and Koyaguchi (2005). 

 

6.3. Equilibrium vs. non-equilibrium degassing 

 

Chemical equilibrium, as classically assumed for basaltic melts (Sparks et al., 1994), is 

reached or approached in our H2O-only melts (series #1). Melts decompressed to 150, 100 

and 50 MPa Pf exhibit near-equilibrium H2O concentrations (Fig. 5). However, deviation 

from equilibrium is encountered in the charge decompressed to 25 MPa Pf (S+D38#1) which 

shows glass H2O contents in slight excess (supersaturation of 0.15–0.40 wt.% absolute H2O, 

Fig. 6) of the equilibrium solubility (Lesne et al., 2011b). Although this charge is particular 

(partially fragmented), we interpret our measured H2O concentrations to indicate the 
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possibility of non-equilibrium degassing in series #1 melts at very low pressures, providing 

the driving force for the occurrence of the second bubble nucleation event. Despite chemical 

equilibrium being approached, textural equilibrium (defined by computed values of the 

volume fraction of bubbles expected from the equilibrium degassing of either a H2O- or a 

CO2-bearing basaltic melt, see Fig. 3a) is not reached in the series #1 melts which have 

vesicularities lower than expected from equilibrium degassing (Fig. 3a). This apparent 

contradiction between near-equilibrium melt H2O concentrations and non-equilibrium 

vesicularities can be explained alternatively by a mechanism of diffusive motion of H2O from 

inside the melt toward the gas phase (gas bubbles and capsule-melt interface) or by bubble 

outgassing. Concerning the former hypothesis, there is some evidence for H2O diffusion in 

our series #1 samples (Fig. 6) but no indication for massive diffusive transfer of H2O that 

would lead to H2O loss out of melt cylinders. Texturally, no systematic bubble-depleted rims 

have been observed in our series #1 samples. About the latter hypothesis, bubble outgassing 

has been demonstrated above (see Bubble coalescence) to be operative in our experiments. 

We conclude that the lowering of our experimental vesicularities is mainly due to bubble 

outgassing. 

 

Non-equilibrium degassing occurs systematically in the CO2-bearing melts (series #2 

and #3). CO2 is retained within these melts at elevated concentration levels. In parallel, H2O is 

lost in significant amounts. The combination of high melt CO2 concentrations and H2O losses 

generates a degassing trend that is in marked contrast with theoretical equilibrium closed-

system degassing trends (Fig. 5). The unusual degassing trends observed in our experiments 

for the series #2 and #3 melts were previously found in the decompression experiments of 

Pichavant et al. (2013). The authors stressed the importance of two characteristic distances 

(the distance between bubbles and the volatile diffusion distance) in the control of the 

degassing process. This model attributes an important role to differences in diffusivities 

between the volatile components in the melt, as emphasized by Yoshimura (2015) who 

developed a diffusive fractionation model of H2O and CO2 degassing. As an illustration, at Pf 

= 50 MPa (D9#2), the calculated distance for CO2 diffusion is only 150 µm in the time 

interval of the decompression experiment (Zhang and Ni, 2010) while the H2O diffusion is 

1060 µm, i.e. 7 times faster. In that charge the average distance between bubbles is 62 µm 

which would appear to be small enough for equilibrium degassing to be reached. However, 

this is not what is observed since CO2 is kept at concentrations much higher than expected 
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along the 50 MPa isobar (Fig. 5). As an explanation, it is worth mentioning that the distance 

between bubbles is an average and also that there are large uncertainties on the timescales 

used for the diffusion distance calculations. Despite the general non-equilibrium behavior in 

all series #2 and #3 charges, the series #2 charge decompressed to Pf = 25 MPa (D28#2) 

approaches equilibrium CO2 concentration. This charge is characterized by relatively large 

(31 µm) gas bubbles and a high vesicularity (23%). The glass CO2 concentration vs. 

vesicularity plot (Fig. 8) shows a negative trend (Pichavant et al., 2013). In comparison, e.g. 

Cluzel et al. (2008) emphasized the importance of the BND parameter, the extent of degassing 

being positively correlated with the BND. However, our data show high and variable BNDs 

correlated with large supersaturations in CO2. Equilibrium degassing requires both numerous 

and large bubbles, i.e. the expression of a high vesicularity. This demonstrates that the mode 

of degassing and the textural parameters are related. 

 

7. Volcanological applications 

 

7.1. Comparison between experimental and natural textural parameters 

 

Despite the fact that our experimental products do not simulate the last stages of 

degassing near the surface and post-fragmentation processes, the comparison of bubble 

textures between experimental and eruptive products can provide insights on degassing 

processes occurring in the volcanic conduit. The comparison focuses on products from three 

well-documented basaltic Plinian eruptions (Tarawera in 1886, Masaya and Etna in 122 BC, 

Sable et al., 2006, 2009; Costantini et al., 2010) and on products of Strombolian paroxysms 

(Polacci et al., 2006, 2009). At Pf = 25 MPa (i.e. at the pressure corresponding to the 

shallowest depth in our experiments, ~1 km), the H2O-only charge (S+D38#1, Fig. 4a) 

exhibits a population of relatively large (76–414 µm) interconnected bubbles which are 

similar to the bubble-chains observed in products of the basaltic Plinian eruptions (Sable et 

al., 2006, 2009; Costantini et al., 2010). From our results, these bubble-chains would be 

generated by interaction between coalesced bubbles, in agreement with previous 

interpretations (Sable et al., 2006, 2009; Costantini et al., 2010). In addition, at Pf = 25 MPa, 

the CO2-bearing charges (D28#2 and D25#3, Fig. 4b, c) exhibit a population of small (< 10 

µm) to larger (up to 0.4 mm) bubbles. The products of basaltic Plinian eruptions and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Strombolian paroxysms also show a wide range of bubble sizes. The former have bubble sizes 

which range from 2–10 µm to 3–5 mm (Tarawera and Etna samples; Sable et al., 2006, 2009) 

up to 1.2 cm (Masaya samples; Costantini et al., 2010). The latter have a narrower range of 

bubble sizes ranging from 21–23 µm to 1 mm (Polacci et al., 2009). In both cases, the natural 

products exhibit larger bubbles than our experimental products. In the Plinian eruptions, the 

bubbles have either spherical to subspherical shapes or complex shapes (as discussed above). 

In contrast, the pumices from the paroxysmal Stromboli explosions display only the spherical 

to subspherical bubbles. From our results, the larger bubbles could have grown from high 

pressure, as a result of the combination of growth and coalescence processes. In contrast, the 

presence of small bubbles is always indicative of a mechanism of continuous nucleation 

occurring up to magma fragmentation, in agreement with the interpretation of Costantini et al. 

(2010). However, the absence of bubbles < 20 µm in the Strombolian pumices suggests that 

the mechanism of nucleation was ended before magma fragmentation. The lack of large (> 1 

mm) bubbles with complex shapes implies that coalescence was not the dominant process, as 

observed in our CO2-bearing charges.  

 

Our experimental products have low vesicularities which extend up to 25.6% (series 

#1), 22.7% (series #2) and 4.97% (series #3). These values are much lower than the 

vesicularities measured in basaltic explosive products. For comparison, vesicularities of 

Strombolian pumices range from 47 to 67% (Polacci et al., 2006; Fig. 3a) and those of the 

Plinian products from the Masaya eruption are even higher, ranging between 70 and 78% 

(Costantini et al., 2010). It is reasonable to expect that the field of Stromboli pumices can be 

attained by extrapolating the data for the series #2 compositions to Pf << 25 MPa. For the 

H2O-rich compositions, the 25 MPa Pf charge is partially fragmented and the measured 

vesicularity is a minimum. 

 

The BNDs found in Strombolian pumices (6–9.10
2
 mm

-3
, Polacci et al., 2009; Fig. 3c) 

are in the same range as the BNDs measured in our CO2-bearing run products (up to 10
4
 mm

-3
 

in series #2 and #3). In detail, at Pf = 25 MPa, the natural pumices have BNDs lower by one 

order of magnitude than the series #2 and #3 charges. The H2O-rich charges (series #1, Fig. 

3c) are much less bubble-rich. The basaltic Plinian products from the Masaya eruption have 

BNDs (3–8.10
4
 mm

-3
, Costantini et al., 2010) higher than all our experimental products.  
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We conclude that our decompression experiments either reproduce or approach the 

natural textures of explosive basaltic eruptions, in terms of vesicularity, bubble textures, sizes 

and number densities.  

 

7.2. Use of BSD systematics 

 

Below, we extend the comparison between our experimental products and the basaltic 

explosive products selected above to include BSDs. Vesicle size distribution is one of the 

most common textural parameters measured to understand processes of bubble nucleation and 

growth in natural products (e.g. Blower et al., 2001; Shea et al., 2010). Volcanic rocks are 

typically characterized by power law and exponential distributions of vesicle sizes (e.g. 

Gaonac’h et al., 1996; Bai et al., 2008; Polacci et al., 2009), but these were generally not 

reproduced in experiments, wherein a single event of nucleation is recorded and interactions 

between bubbles are limited (e.g. Lyakhovsky et al., 1996; Mourtada-Bonnefoi and Laporte, 

1999; Gardner et al., 1999; Mourtada-Bonnefoi and Laporte, 2002; Cluzel et al., 2008), 

producing a unimodal BSD (Blower et al., 2002). However, in some experiments, products 

with BSDs more complex than unimodal have been encountered, such as in the study of 

Simakin et al. (1999), the analogue experiments of Blower et al. (2001, 2002) and in the 

degassing experiments of Bai et al. (2008, 2010, 2011), Polacci et al. (2008) and Masotta et 

al. (2014). Below, methods developed for the interpretation of natural BSDs are applied to our 

experimental results.  

 

To do so, we have represented our experimental BSDs in cumulative number density 

plots, as commonly used (Fig. 9). These were obtained by regressing the number of bubbles 

per mm
3
 against the bubble volume. In doing so, two main BSD types were encountered in 

our experimental samples: exponential and power law. Regressions were performed with 

Excel software. Very good fits were generally obtained yielding R
2
 > 0.99 for more than 50% 

charges. One charge (S+D36#1) yielded a relatively poor exponential fit (R
2
 = 0.86), 

consistent with its unimodal BSD (Figs. 4d, 9a).  
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The three post-decompression glass series show a different evolution of the BSD 

(Figs. 4d–f and 9). Upon decreasing Pf, the BSD of series #1 glasses evolves from a unimodal 

(S+D36#1, Pf = 150 MPa, Figs. 4d and 9a), mixed power law–exponential (S+D39#1, Pf = 

100 MPa, Fig. 9a) to an exponential distribution (D10#1 and S+D38#1, Pf = 50–25 MPa, Fig. 

9a). The mixed distribution recognized in charge S+D39#1 corresponds to two classes of 

bubble sizes. The small to medium bubbles (volumes ~10
2
–10

5
µm

3
) can be fitted by an 

exponential function whereas the larger bubbles (volumes ~10
5
–10

6
µm

3
) are best described 

by a power law with an exponent of 1.45. Texturally, it is clear that these large bubbles result 

from coalescence.  

 

In series #2 samples, both power law and exponential bubble size distributions were 

observed when decreasing Pf from 100 to 25 MPa (Fig. 9b). At Pf = 100 MPa (i.e. at the 

pressure where bubbles start to nucleate), the BSDs of the two D23#2 and D34#2 duplicate 

charges are best described by power laws (Fig. 9b). In contrast, at Pf = 50 and 25 MPa, the 

BSDs in charges D9#2 and D28#2 can be described by mixed power law–exponential 

distributions: the small-to-medium sized bubbles can be fitted with an exponential relation 

(Fig. 9b) whereas the medium-to-large bubbles follow a power law relation. Series #2 power 

law exponents range from 0.78 to 2.24. The low and high values of the range are for the two 

duplicate charges decompressed to 100 MPa Pf. If the power law exponents of these two 

charges are averaged (α = 1.51), all series #2 power law exponents appear to be tightly 

grouped (1.38–1.62). 

 

In series #3 post-decompression glasses (Fig. 9c), only power law distributions were 

observed when decreasing Pf from 150 to 25 MPa, with the exception of the medium-sized 

bubbles (volumes ~10
3
–10

5
µm

3
) in the D9#3 charge (Pf = 50 MPa) which are best fitted with 

an exponential distribution (bubble coalescence effect). The series #3 glasses display power 

law exponents of 0.62 to 1.23, slightly lower than in series #2 glasses.  
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We conclude to a systematic change in the BSD evolution with decreasing Pf between 

the three glass series. The H2O-rich, CO2-free, post-decompression glasses (series #1) are the 

only ones with a unimodal distribution and also the only ones with exponential distributions 

for all classes of bubble sizes. In contrast, the CO2-bearing post-decompression glasses (series 

#2 and #3) are characterized by power law distributions. Among the CO2-bearing glasses, 

only the series #2 show a transition from a power law to a mixed power law–exponential 

distribution. Series #3 glasses are characterized by predominantly power law BSDs.  

 

Two distinct mechanisms have been invoked to explain the occurrence of power law 

bubble size distributions in volcanic rocks. A mechanism of diffusive bubble growth, 

allowing “cascading” coalescence, was involved by Gaonac’h et al. (1996) whereas, 

according to Blower et al. (2001, 2002), such distributions would be more indicative of far-

from-equilibrium degassing, leading to a mechanism of continuous bubble nucleation and 

multiple nucleation events (in the absence of bubble coalescence). Exponential distributions 

would result from steady-state bubble nucleation and growth and thus would imply near-

equilibrium degassing (Baker et al., 2006; Bai et al., 2008).  

 

In our experiments, a unimodal distribution was found in the H2O-only melts at a high 

Pf (in S+D36#1, Pf = 150 MPa), the closest to the beginning of the nucleation mechanism. 

The latter takes place in a narrow Pf interval, leading to a single bubble nucleation event. The 

melt H2O concentration in that charge is equal to the solubility. Therefore, the S+D36#1 

charge provides evidence that a unimodal bubble size distribution implies gas-melt 

equilibrium, despite the fact that its vesicularity is significantly less than the theoretical value. 

Exponential distributions are also specific to the H2O-only series whose post-decompression 

glasses have generally (except the partially fragmented charge S+D38#1) equilibrium melt 

H2O concentrations. Again, our experimental data support the interpretation that exponential 

BSDs are generated by a system evolving under near-equilibrium conditions (Blower et al., 

2001; Baker et al., 2006; Bai et al., 2008) despite vesicularities being lower than theoretical 

values. The evolution from a unimodal to an exponential distribution would thus result from 

post-nucleation mechanisms (growth and coalescence), leading to larger bubble sizes and 

lower bubble number densities. Power law distributions are specific to the CO2-bearing 

charges which are characterized by a single mechanism of continuous nucleation, leading to 
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multiple bubble nucleation events. Small bubbles continue to form because the level of 

volatile supersaturation in the melts is maintained. This is consistent with the preservation of 

high out-of-equilibrium CO2 concentrations in the glasses. Therefore, our data confirm the 

model of Blower et al. (2001, 2002) in that power law distributions are associated with far-

from-equilibrium degassing. Mixed power law–exponential distributions would thus 

correspond to an intermediate case where bubble nucleation is dominated by a coalescence 

process. 

 

On this basis, we examine below natural textures of the selected basaltic explosive 

eruptions above. The microtextural data available for those different explosive products 

exhibit a range of BSDs. The bubble size distributions of Plinian eruptions products (Sable et 

al., 2006, 2009; Costantini et al., 2010) follow power law trends with exponents of the order 

of 1.5 (when exponents are expressed as volume, Baker et al., 2012), i.e. in the range of our 

experimental power law exponents for the H2O- and CO2-bearing melts (series #2). In 

comparison, pumice samples from Strombolian paroxysmal explosions are best fit by mixed 

power law–exponential distributions with a power law exponent of 1.4 (Polacci et al., 2009), 

again as the experimental power law exponent of our 25 MPa Pf series #2 charge (D28#2). 

From our results, the power law distributions found for the Plinian products imply 

disequilibrium degassing, leading to continuous bubble nucleation and growth, in agreement 

with previous interpretation (Costantini et al., 2010). The mixed power law–exponential 

found in Strombolian pumices would be indicative of a system where coalescence is 

superimposed on a continuous bubble nucleation process. This would correspond to a 

disequilibrium degassing situation and to an evolution toward equilibrium (e.g. Polacci et al., 

2009). 
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8. Conclusions 

 

We have performed high pressure and temperature decompression experiments to 

study the systematics of homogeneous bubble nucleation in basaltic magmas. Compared to 

previous works (Lensky et al., 2006; Pichavant et al., 2013) this study is the first to provide 

systematic textural information along the decompression path for three series of volatile 

concentrations. The main conclusions are the following: 

 

(1) Degrees of supersaturation required for homogeneous bubble nucleation (∆PHoN) are ≤ 50–

100 MPa, weakly dependent on the melt H2O concentration but possibly dependent on 

the melt CO2 concentration. These ∆PHoN are significantly lower than found for silicic 

melt compositions which stresses that bubble nucleation in basaltic magmas is 

comparatively easy. 

 

(2) In the H2O-rich melts, homogeneous nucleation occurs as two distinct events taking place 

in narrow Pf intervals. The first and most important nucleation of bubbles occurs at 

high Pf (200 < Pf < 150 MPa) and the second nucleation of bubbles is restricted to low 

Pf (50 < Pf < 25 MPa), in close association with fragmentation. In contrast, in the CO2-

bearing melts, a single continuous mechanism of nucleation occurs over a substantial 

Pf interval along the decompression path, leading to multiple bubble nucleation events.  

 

(3) Post-nucleation mechanisms include bubble growth, coalescence and outgassing, and lead 

to larger bubble sizes and lower BNDs. Specific bubble coalescence textures and 

progressive BND decreases were observed with decreasing Pf. In both H2O-rich and 

CO2-bearing melts, coalescence is the more strongly marked in the same pressure 

range of 100–50 MPa. 
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(4) Both near-equilibrium and disequilibrium degassing occur in our experiments. The former 

is associated with the H2O-rich, CO2-free, melts while the latter occurs systematically 

in the CO2-bearing melts. Post-decompression glasses retain CO2 concentrations much 

higher than equilibrium values. There is a systematic link between textures and mode 

of degassing (equilibrium vs. disequilibrium). Near-equilibrium degassing requires 

both numerous and large bubbles and so high vesicularities.   

 

(5) Partial fragmentation occurred in one H2O-rich charge decompressed to 25 MPa, 

intimately related to the second event of bubble nucleation. 

 

(6) Our experiments underline a significant effect of CO2 on mechanisms (∆PHoN values, 

vesicularities, bubble sizes and densities) of basaltic melt degassing. The main 

difference between CO2-bearing and CO2-free melts concerns the mechanism of 

nucleation, continuous vs. discontinuous in the case of CO2-bearing vs. CO2-free 

melts. 

 

(7) Our experimental decompression textures approach the characteristics of basaltic products 

from explosive eruptions. Vesicularities, BNDs, bubble textures and sizes bring 

constraints on degassing processes occurring in the conduit. 

 

(8) Our experimental products exhibit different BSDs, unimodal, exponential and power law 

with the volatile series. A relation is established between mechanisms of melt 

degassing, textures, volatile concentrations and type of BSDs. This provides a test on 

existing BSD based models to interpret natural degassing mechanisms. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Acknowledgments 

This project has been financially supported by the VUELCO (EC FP7) and DEGAZMAG 

(ANR 2011 Blanc SIMI 5-6 003-02) projects. We are very grateful to A. Burgisser for help 

with the X-ray microtomography analysis technique and to I. Di Carlo for assistance with 

SEM analyses. We thank M.J. Rutherford for his editorial work, as well as T. Shea and D.R. 

Baker for their detailed and constructive reviews which helped to improve the manuscript. 

Previous comments from D. Laporte were also highly appreciated. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

References 

Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics 

international 11, 36–43. 

Bagdassarov, N., Dorfman, A., Dingwell, D.B., 2000. Effect of alkalis, phosphorus, and water on the 

surface tension of haplogranite melt. American Mineralogist 85, 33–40. 

Bai, L., Baker, D.R., Rivers, M., 2008. Experimental study of bubble growth in Stromboli basalt melts 

at 1 atm. Earth and Planetary Science Letters 267, 533–547. doi:10.1016/j.epsl.2007.11.063 

Bai, L., Baker, D. R., Hill, R. J., 2010. Permeability of vesicular Stromboli basaltic glass: Lattice 

Boltzmann simulations and laboratory measurements, Journal of Geophysical Research 115, 

B07201. doi:10.1029/2009JB007047 

Bai, L., Baker, D.R., Polacci, M., Hill, R. J., 2011. In-situ degassing study on crystal-bearing 

Stromboli basaltic magmas: Implications for Stromboli explosions: Geophysical Research 

Letters 38, L17309. doi: 10.1029/2011GL048540 

Baker, D.R., Lang, P., Robert, G., Bergevin, J.-F., Allard, E., Bai, L., 2006. Bubble growth in slightly 

supersaturated albite melt at constant pressure. Geochimica et cosmochimica acta 70, 1821–

1838. 

Baker, D.R., Brun, F., O’Shaughnessy, C., Mancini, L., Fife, J.L., Rivers, M., 2012. A four-

dimensional X-ray tomographic microscopy study of bubble growth in basaltic foam. Nature 

Communications 3:1135. 

Beckett, F.M., Burton, M., Mader, H.M., Phillips, J.C., Polacci, M., Rust, A.C., Witham, F., 2014. 

Conduit convection driving persistent degassing at basaltic volcanoes. Journal of Volcanology 

and Geothermal Research 283, 19–35. 

Bertagnini, A., Métrich, N., Landi, P., Rosi, M., 2003. Stromboli volcano (Aeolian Archipelago, 

Italy): An open window on the deep-feeding system of a steady state basaltic volcano. Journal 

of Geophysical Research 108, 2336. doi:10.1029/2002JB002146 

Blower, J.D., Keating, J.P., Mader, H.M., Phillips, J.C., 2001. Inferring volcanic degassing processes 

from vesicle size distributions. Geophysical Research Letters 28, 347–350. 

Blower, J.D., Keating, J.P., Mader, H.M., Phillips, J.C., 2002. The evolution of bubble size 

distributions in volcanic eruptions. Journal of Volcanology and Geothermal Research 120, 1–

23. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Blundy, J., Cashman, K.V., Rust, A., Witham, F., 2010. A case for CO2-rich arc magmas. Earth and 

Planetary Science Letters 290, 289–301. 

Bolte, S., Cordelières, F.P., 2006. A guided tour into subcellular colocalization analysis in light 

microscopy. Journal of microscopy 224, 213–232. 

Bottinga, Y., Javoy, M., 1990a. Mid-ocean ridge basalt degassing: Bubble nucleation. Journal of 

Geophysical Research 95, 5125-5131. 

Bottinga, Y., Javoy, M., 1990b. MORB degassing: Bubble growth and ascent. Chemical Geology 81, 

255–270. 

Bourgue, E., Richet, P., 2001. The effects of dissolved CO2 on the density and viscosity of silicate 

melts: a preliminary study. Earth and Planetary Science Letters 193, 57–68. 

Castro, J.M., Burgisser, A., Schipper, C.I., Mancini, S., 2012. Mechanisms of bubble coalescence in 

silicic magmas. Bulletin of Volcanology 74, 2339–2352. 

Cluzel, N., 2007. Simulation expérimentale de l’ascension et de la vésiculation des magmas 

rhyolitiques : application à la cinétique de nucléation des bulles et implications 

volcanologiques. Ph.D. Thesis, Univ. Clermont-Ferrand 2, France. 

Cluzel, N., Laporte, D., Provost, A., Kannewischer, I., 2008. Kinetics of heterogeneous bubble 

nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic 

conduits and for pumice textures. Contributions to Mineralogy and Petrology 156, 745–763. 

doi:10.1007/s00410-008-0313-1 

Costantini, L., Houghton, B.F., Bonadonna, C., 2010. Constraints on eruption dynamics of basaltic 

explosive activity derived from chemical and microtextural study: the example of the Fontana 

Lapilli Plinian eruption, Nicaragua. Journal of Volcanology and Geothermal Research 189, 

207–224. 

Di Carlo, I., Pichavant, M., Rotolo, S.G., Scaillet, B., 2006. Experimental Crystallization of a High-K 

Arc Basalt: the Golden Pumice, Stromboli Volcano (Italy). Journal of Petrology 47, 1317–

1343. doi:10.1093/petrology/egl011 

Dixon, J.E., Pan, V., 1995. Determination of the molar absorptivity of dissolved carbonate in basanitic 

glass. American Mineralogist 80, 1339–1342. 

Dixon, J.E., Stolper, E.M., 1995. An experimental study of water and carbon dioxide solubilities in 

mid-ocean ridge basaltic liquids. Part II: applications to degassing. Journal of Petrology 36, 

1633–1646. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Dixon, J.E., Stolper, E.M., Holloway, J.R., 1995. An experimental study of water and carbon dioxide 

solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. 

Journal of Petrology 36, 1607–1631. 

Edmonds, M., 2008. New geochemical insights into volcanic degassing. Philosophical Transactions of 

the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 4559–4579. 

doi:10.1098/rsta.2008.0185 

Ferry, J.M., Baumgartner, L., 1987. Thermodynamic models of molecular fluids at the elevated 

pressures and temperatures of crustal metamorphism. Reviews in Mineralogy and 

Geochemistry 17, 323–365. 

Francalanci, L., Tommasini, S., Conticelli, S., 2004. The volcanic activity of Stromboli in the 1906–

1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of 

the plumbing system. Journal of Volcanology and Geothermal Research 131, 179–211. 

doi:10.1016/S0377-0273(03)00362-7 

Gaonac’h, H., Stix, J., Lovejoy, S., 1996. Scaling effects on vesicle shape, size and heterogeneity of 

lavas from Mount Etna. Journal of Volcanology and Geothermal Research 74, 131–153. 

Gardner, J.E., 2007. Heterogeneous bubble nucleation in highly viscous silicate melts during 

instantaneous decompression from high pressure. Chemical Geology 236, 1–12. 

doi:10.1016/j.chemgeo.2006.08.006 

Gardner, J.E., 2012. Surface tension and bubble nucleation in phonolite magmas. Geochimica et 

Cosmochimica Acta 76, 93–102. doi:10.1016/j.gca.2011.10.017 

Gardner, J.E., Denis, M.-H., 2004. Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-

silica rhyolitic melts. Geochimica et Cosmochimica Acta 68, 3587–3597. 

doi:10.1016/j.gca.2004.02.021 

Gardner, J.E., Ketcham, R.A., 2011. Bubble nucleation in rhyolite and dacite melts: temperature 

dependence of surface tension. Contributions to Mineralogy and Petrology 162, 929–943. 

doi:10.1007/s00410-011-0632-5 

Gardner, J.E., Hilton, M., Carroll, M.R., 1999. Experimental constraints on degassing of magma: 

isothermal bubble growth during continuous decompression from high pressure. Earth and 

Planetary Science Letters 168, 201–218. 

Gondé, C., Martel, C., Pichavant, M., Bureau, H., 2011. In situ bubble vesiculation in silicic magmas. 

American Mineralogist 96, 111–124. doi:10.2138/am.2011.3546 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Gonnermann, H., Manga, M., 2005. Nonequilibrium magma degassing: Results from modeling of the 

ca. 1340 A.D. eruption of Mono Craters, California. Earth and Planetary Science Letters 238, 

1–16. doi:10.1016/j.epsl.2005.07.021 

Herd, R.A., Pinkerton, H., 1997. Bubble coalescence in basaltic lava: its impact on the evolution of 

bubble populations. Journal of Volcanology and Geothermal Research 75, 137–157. 

Holloway, J.R., 1981. Volatile Interactions in Magmas, in: Newton, R.C., Navrotsky, A., Wood, B.J. 

(Eds.), Thermodynamics of Minerals and Melts, Advances in Physical Geochemistry. Springer 

New York, pp. 273–293. 

Hurwitz, S., Navon, O., 1994. Bubble nucleation in rhyolitic melts: Experiments at high pressure, 

temperature, and water content. Earth and Planetary Science Letters 122, 267–280. 

Iacono-Marziano, G., Schmidt, B.C., Dolfi, D., 2007. Equilibrium and disequilibrium degassing of a 

phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by decompression experiments. 

Journal of Volcanology and Geothermal Research 161, 151–164. 

doi:10.1016/j.jvolgeores.2006.12.001 

Johnson, E.R., Wallace, P.J., Cashman, K.V., Granados, H.D., Kent, A.J., 2008. Magmatic volatile 

contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for 

melt evolution and the plumbing systems of monogenetic volcanoes. Earth and Planetary 

Science Letters 269, 478–487. 

Khitarov, N.I., Lebedev, E.B., Dorfman, A.M., Bagdasarov, N.S., 1979. Effect of temperature, 

pressure and volatiles on the surface tension of molten basalt. Geochemistry International 16, 

78–86. 

Le Gall, N., 2015. Basaltic magma ascent and degassing – Experimental approach, 318 p. Ph.D. thesis, 

University of Orléans. 

Le Gall, N., Pichavant, M., 2016.  Experimental simulation of bubble nucleation and magma ascent in 

basaltic systems: implications for Stromboli volcano. American Mineralogist 101, 1967–1985. 

doi:10.2138/am-2016-5639 

Lange, R.A., 1994. The effect of H2O, CO2, and F on the density and viscosity of silicate melts. In: 

Carroll, M.R., Holloway, J.R. Eds., Volatiles in Magmas. Mineral. Soc. Am. Rev. in Mineral. 

30, pp. 331–369. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Lensky, N.G., Niebo, R.W., Holloway, J.R., Lyakhovsky, V., Navon, O., 2006. Bubble nucleation as a 

trigger for xenolith entrapment in mantle melts. Earth and Planetary Science Letters 245, 278–

288. 

Lesne, P., Scaillet, B., Pichavant, M., Beny, J.-M., 2011a. The carbon dioxide solubility in 

alkali basalts: an experimental study. Contributions to Mineralogy and Petrology 162, 

153–168. 

Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G., Beny, J.-M., 2011b. The H2O solubility of 

alkali basaltic melts: an experimental study. Contributions to Mineralogy and Petrology 162, 

133–151. 

Lyakhovsky, V., Hurwitz, S., Navon, O., 1996. Bubble growth in rhyolitic melts: experimental and 

numerical investigation. Bulletin of Volcanology 58, 19–32. 

Mangan, M., Sisson, T., 2000. Delayed, disequilibrium degassing in rhyolite magma: decompression 

experiments and implications for explosive volcanism. Earth and Planetary Science Letters 

183, 441–455. 

Mangan, M., Sisson, T., 2005. Evolution of melt-vapor surface tension in silicic volcanic systems: 

Experiments with hydrous melts. Journal of Geophysical Research 110, B01202. 

doi:10.1029/2004JB003215 

Mangan, M.T., Sisson, T.W., Hankins, W.B., 2004. Decompression experiments identify kinetic 

controls on explosive silicic eruptions. Geophysical Research Letters 31, L08605. 

doi:10.1029/2004GL019509 

Marianelli, P., Sbrana, A., Metrich, N., Cecchetti, A., 2005. The deep feeding system of Vesuvius 

involved in recent violent strombolian eruptions. Geophysical Research Letters 32, L02306. 

doi:10.1029/2004GL021667 

Martel, C., Iacono-Marziano, G., 2015. Timescales of bubble coalescence, outgassing, and foam 

collapse in decompressed rhyolitic melts. Earth and Planetary Science Letters 412, 173–185. 

Masotta, M., Ni, H., Keppler, H., 2014. In situ observations of bubble growth in basaltic, andesitic and 

rhyodacitic melts. Contributions to Mineralogy and Petrology 167, 1–14. 

Massol, H., Koyaguchi, T., 2005. The effect of magma flow on nucleation of gas bubbles in a volcanic 

conduit. Journal of Volcanology and Geothermal Research 143, 69–88. 

Métrich, N., Wallace, P.J., 2008. Volatile abundances in basaltic magmas and their degassing paths 

tracked by melt inclusions. Reviews in Mineralogy and Geochemistry 69, 363–402. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Métrich, N., Bertagnini, A., Di Muro, A., 2010. Conditions of magma storage, degassing and ascent at 

Stromboli: new insights into the volcano plumbing system with inferences on the eruptive 

dynamics. Journal of Petrology 51, 603–626. 

Métrich, N., Bertagnini, A., Landi, P., Rosi, M., 2001. Crystallization driven by decompression and 

water loss at Stromboli volcano (Aeolian Islands, Italy). Journal of Petrology 42, 1471–1490. 

Métrich, N., Bertagnini, A., Landi, P., Rosi, M., Belhadj, O., 2005. Triggering mechanism at the origin 

of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. 

Geophysical Research Letters 32, L103056. doi:10.1029 

Mourtada-Bonnefoi, C.C., Laporte, D., 1999. Experimental study of homogeneous bubble nucleation 

in rhyolitic magmas. Geophysical Research Letters 26, 3505–3508. 

Mourtada-Bonnefoi, C.C., Laporte, D., 2002. Homogeneous bubble nucleation in rhyolitic magmas: 

an experimental study of the effect of H2O and CO2. Journal of Geophysical Research 107, 

B4. doi:10.1029/2001JB00290 

Mourtada-Bonnefoi, C.C., Laporte, D., 2004. Kinetics of bubble nucleation in a rhyolitic melt: an 

experimental study of the effect of ascent rate. Earth and Planetary Science Letters 218, 521–

537. 

Newman, S., Lowenstern, J.B., 2002. VolatileCalc: a silicate melt–H2O–CO2 solution model written in 

Visual Basic for Excel. Computers & Geosciences 28, 597–604. 

Pichavant, M., Pompilio, M., D’Oriano, C., Di Carlo, I., 2011. Petrography, mineralogy and 

geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. 

European Journal of Mineralogy 23, 499–517. 

Pichavant, M., Di Carlo, I., Le Gac, Y., Rotolo, S.G., Scaillet, B., 2009. Experimental constraints on 

the deep magma feeding system at Stromboli volcano, Italy. Journal of Petrology 50, 601–624. 

Pichavant, M., Di Carlo, I., Rotolo, S.G., Scaillet, B., Burgisser, A., Le Gall, N., Martel, C., 2013. 

Generation of CO2-rich melts during basalt magma ascent and degassing. Contributions to 

Mineralogy and Petrology 166, 545–561. 

Pioli, L., Erlund, E., Johnson, E., Cashman, K., Wallace, P., Rosi, M., Granados, H.D., 2008. 

Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 

1943–1952 (Mexico). Earth and Planetary Science Letters 271, 359–368. 

Polacci, M., Baker, D.R., Bai, L., Mancini, L., 2008. Large vesicles record pathways of degassing at 

basaltic volcanoes. Bulletin of Volcanology 70, 1023–1029. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Polacci, M., Baker, D.R., Mancini, L., Tromba, G., Zanini, F., 2006. Three-dimensional investigation 

of volcanic textures by X-ray microtomography and implications for conduit processes. 

Geophysical Research Letters 33, L13312. doi:10.1029/2006GL026241 

Polacci, M., Baker, D.R., Mancini, L., Favretto, S., Hill, R.J., 2009. Vesiculation in magmas from 

Stromboli and implications for normal Strombolian activity and paroxysmal explosions in 

basaltic systems. Journal of Geophysical Research 114, B01206. doi:10.1029/2008JB005672 

Proussevitch, A.A., Sahagian, D.L., Tsentalovich, E.P., 2007. Statistical analysis of bubble and crystal 

size distributions: Formulations and procedures. Journal of Volcanology and Geothermal 

Research 164, 95–111. 

Richet, P., Whittington, A., Holtz, F., Behrens, H., Ohlhorst, S., Wilke, M., 2000. Water and the 

density of silicate glasses. Contributions to Mineralogy and Petrology 138, 337–347. 

Sable, J.E., Houghton, B.F., Del Carlo, P., Coltelli, M., 2006. Changing conditions of magma ascent 

and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast 

microtextures. Journal of Volcanology and Geothermal Research 158, 333–354. 

Sable, J.E., Houghton, B.F., Wilson, C.J.N., Carey, R.J., 2009. Eruption mechanisms during the 

climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural 

characteristics of the deposits. Studies in volcanology. The legacy of George Walker. 

Geological Society, London 129–154. 

Shea, T., Houghton, B.F., Gurioli, L., Cashman, K.V., Hammer, J.E., Hobden, B.J., 2010. Textural 

studies of vesicles in volcanic rocks: an integrated methodology. Journal of Volcanology and 

Geothermal Research 190, 271–289. 

Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R., Portnyagin, M.V., 2010. Solubility of 

H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500MPa. Chemical 

Geology 277, 115–125. 

Simakin, A.G., Armienti, P., Epel’baum, M.B., 1999. Coupled degassing and crystallization: 

experimental study at continuous pressure drop, with application to volcanic bombs. Bulletin 

of Volcanology 61, 275–287. 

Sparks, R.S.J., 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. 

Journal of Volcanology and Geothermal Research 3, 1–37. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Sparks, R.S.J., Barclay, J., Jaupart, C.P.M.A., Mader, H.M., Phillips, J.C., 1994. Physical aspects of 

magma degassing I. Experimental and theoretical constraints on vesiculation. American 

Society of Mineralogy Reviews 30, 413–445. 

Spilliaert, N., Allard, P., Métrich, N., Sobolev, A.V., 2006. Melt inclusion record of the conditions of 

ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank 

eruption of Mount Etna (Italy). Journal of Geophysical Research 111, B04203. 

doi:10.1029/2005JB003934 

Taylor, J.R., Wall, V.J., Pownceby, M.I., 1992. The calibration and application of accurate redox 

sensors. American Mineralogist 77, 284–295. 

Toramaru, A., 1989. Vesiculation process and bubble size distributions in ascending magmas with 

constant velocities. Journal of Geophysical Research 94, 17523–17542. 

Toramaru, A., 1995. Numerical study of nucleation and growth of bubbles in viscous magmas. Journal 

of Geophysical Research 100, 1913–1931. 

Toramaru, A., 2006. BND (bubble number density) decompression rate meter for explosive volcanic 

eruptions. Journal of Volcanology and Geothermal Research 154, 303–316. 

Toramaru, A., 2014. On the second nucleation of bubbles in magmas under sudden decompression. 

Earth and Planetary Science Letters 404, 190–199. 

Witham, F., 2011. Conduit convection, magma mixing, and melt inclusion trends at persistently 

degassing volcanoes. Earth and Planetary Science Letters 301, 345–352. 

Yamada, K., Tanaka, H., Nakazawa, K., Emori, H., 2005. A new theory of bubble formation in 

magma. Journal of Geophysical Research 110, B02203. doi:10.1029/2004JB003113 

Yoshimura, S., 2015. Diffusive fractionation of H2O and CO2 during magma degassing. Chemical 

Geology 411, 172–181. 

Zhang, Y., Stolper, E.M., 1991. Water diffusion in a basaltic melt. Nature 351, 306–309. 

Zhang, Y., Ni, H., 2010. Diffusion of H, C, and O components in silicate melts. Reviews in 

Mineralogy and Geochemistry 72, 171–225. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Figure captions 

 

Fig. 1 Three dimensional representations of the samples and methods of vesicularity 

determination used in this study. V: total volume investigated; v2: void space volume; 

v3: melt volume; v4: bubble volume. (a) Vesicularity (V
c
, Tables 3 and 4) determined 

from the total sample volume V (V
c
 = 100*v4/(v3+v4)), see text for the determination 

of v3 and v4. (b) Vesicularity (V
d
, Tables 3 and 4) determined from a delimited sub-

volume Vsub (V
d
 = 100*v4/(v3+v4)), see text for the determination of v4. The open 

bubbles located at the rim of the glass cylinder appear in black in both (a) and (b). In 

(a), these are considered as voids (v2), while in (b) these are counted as bubbles (v4). 

In (a), the trace of the sub-volume is delimited by the dashed square.  

 

Fig. 2 Representative textures of post-decompression glasses. (a) Detailed transmitted light 

microscopic photograph of a double-polished section of a sample (D31#3, Pf = 150 

MPa) showing a homogeneous distribution of newly formed small (< 5 µm) bubbles 

and no oxides or obvious heterogeneities which could have facilitated their nucleation. 

(b) Tomographic slice of a sample quenched at a pressure above the critical pressure 

of homogeneous bubble nucleation (sample D31#2, Pf = 150 MPa): the sample is 

bubble-free. (c) Tomographic slice of a sample quenched at a pressure just below the 

pressure of homogeneous bubble nucleation (sample D34#2, Pf = 100 MPa): the 

sample is densely vesiculated with small and almost homogeneously distributed 

bubbles. The black arrow indicates the bubbly rim. See Table 3 for details about the 

experimental conditions and textural results.  

 

Fig. 3 (a) Vesicularity V, (b) average bubble diameter D and (c) bubble number density per 

unit volume of melt BNDmelt plotted as a function of final pressure Pf for the post-

decompression glasses of this study. Experimental data in Tables 3 and 4. For the 

partially fragmented sample S+D38#1, data from the unfragmented part are from 

Table 4. See text for bubble diameters in the fragmented part. The three glass series 

are distinguished (see text). Series #1: black circles; series #2: gray circles; series #3: 

white circles. In (a), equilibrium vesicularities (thick black and gray lines) calculated 

respectively for pure H2O and CO2 degassing (see text) are shown for comparison with 

the experimental data. The V, D and BNDmelt values for Strombolian pumices and 

Masaya clasts (for this one only BNDmelt values are shown) are plotted (data come 

from Polacci et al., 2006, 2009 and Costantini et al., 2010, respectively) for 

comparison with the experimental data points. 
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Fig. 4 Bubble textures of series (a) #1, (b) #2 and (c) #3 glasses decompressed to 25 MPa Pf. 

Evolution of the bubble size distribution (BSD) with decreasing pressure in series (d) 

#1, (e) #2 and (f) #3 post-decompression glasses. For each series, two post-

decompression glasses are detailed, one representative of the early and the other of the 

late stage of the nucleation process. Histograms show frequencies (normalized to 100) 

of individual bubble diameters in the glass population using size classes of 10 µm 

each. Numbers in parentheses are bubble numbers for each population (n in Tables 3 

and 4). Details about experimental conditions and other textural data in Tables 3 and 4. 

 

Fig. 5 H2O and CO2 concentrations in glasses from the synthesis and decompression 

experiments. Black symbols: series #1 glasses; gray symbols: series #2 glasses; white 

symbols: series #3 glasses. Circles: pre-decompression glasses synthesized at 200 MPa 

Pin (initial pressure); rectangles: glasses decompressed to 150 MPa Pf (final pressure); 

triangles: glasses decompressed to 100 MPa Pf; squares: glasses decompressed to 50 

MPa Pf; diamonds: glasses decompressed to 25 MPa Pf. Error bars (standard 

deviations, Table 5) are indicated on the data points. Thin continuous lines: fluid-melt 

equilibrium saturation isobars (25–250 MPa); dashed curves: equilibrium 

decompression paths calculated for a series #2 and a series #3 pre-decompression melt 

assuming closed-system behavior. Isobars and decompression paths both calculated 

with VolatileCalc (Newman and Lowenstern, 2002). 

 

Fig. 6 H2O distribution profiles measured in the series #1 glasses decompressed to 150–25 

MPa Pf, perpendicular to the long axis of the cylinder as a function of the distance 

from the edge. The farthest point of each FTIR profile was acquired as close as 

possible to the other edge. Average H2O concentration data are given in Table 5. (a) 

H2O supersaturation vs. distance plot. H2O supersaturation is defined relative to the 

H2O solubility at each Pf (Lesne et al., 2011b) as: H2O supersaturation = measured 

melt H2O concentration at a specific position – H2O solubility. The dashed horizontal 

line (H2O supersaturation = 0) represents the solubility values for each Pf. Note that 

three profiles are available for the 25 MPa Pf charge (S+D38#1). The H2O distribution 

profile for sample D10#1 (Pf = 50 MPa) is illustrated in (b). 

 

Fig. 7 Typical coalescence structures frozen in sample S+D38#1 decompressed to 25 MPa Pf. 

Inter-bubble melt films (IBFs) are thinned by stretching (a), bending (b), and dimpling 

(c, d) (see also Castro et al., 2012; Martel and Iacono-Marziano, 2015). See Table 4 

for experimental conditions. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Fig. 8 H2O (a) and CO2 (b) concentrations in post-decompression glasses (Table 5) plotted as 

a function of vesicularity (expressed as vol% bubbles, V
d
 in Tables 3 and 4). In (a), 

only data for series #1 and #2 glasses are shown and data for series #2 and #3 in (b). 

Black symbols: series #1 glasses; gray symbols: series #2 glasses; white symbols: 

series #3 glasses. Rectangles: glasses decompressed to 150 MPa Pf (final pressure); 

triangles: glasses decompressed to 100 MPa Pf; squares: glasses decompressed to 50 

MPa Pf; diamonds: glasses decompressed to 25 MPa Pf. Dashed horizontal lines: pure 

H2O (a) and CO2 (b) solubilities for each Pf (Lesne et al., 2011a, b). Error bars 

(standard deviations, Table 5) are indicated within the data points. 

 

Fig. 9 Cumulative BND plots. Bubble size distributions (BSD) expressed as log-log plots of 

bubble number density (BNDmelt, in mm
-3

) vs. bubble volume for all post-

decompression glasses from this study. For each glass sample, the bubble population is 

characterized by a range of bubble size (expressed as diameters in Tables 3 and 4) and 

a bubble number density value (Tables 3 and 4). Each point along the distribution 

curve corresponds to the number of bubbles with a volume strictly larger than a given 

volume. (a) Series #1 glasses, (b) series #2 glasses, (c) series#3 glasses. Rectangles: 

glasses decompressed to 150 MPa Pf (final pressure); triangles: glasses decompressed 

to 100 MPa Pf; squares: glasses decompressed to 50 MPa Pf; diamonds: glasses 

decompressed to 25 MPa Pf. The continuous lines are power law fits and the 

continuous curves are exponential fits, both regressed with Excel software. α is the 

power law exponent. 
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Table 1. Composition of PST-9 golden pumice and starting glass  

Label PST-9
a
 Glass

b
 (n = 54) 

SiO2 49.4 50.9 (3)
c
 

TiO2 0.79 0.81 (8) 

Al2O3 15.75 15.99 (28) 

Fe2O3 1.3 nd 

FeO 6.5 7.7 (6) 

MnO 0.15 0.16 (8) 

MgO 7.96 7.21 (41) 

CaO 12.73 12.34 (24) 

Na2O 2.27 2.39 (9) 

K2O 1.85 1.90 (12) 

P2O5 0.43 0.55 (17) 

Cr2O3 – 0.03 (4) 

NiO – 0.05 (6) 

Total 99.1 97.4 (10) 
 

a
 Whole-rock analysis (from Di Carlo et al., 2006). Major elements (wt.%) analyzed by 

inductively coupled plasma atomic emission spectrometry (ICP-AES); total includes LOI 

(loss of ignition) = 0.62 wt.%; trace elements analyzed by inductively coupled plasma mass 

spectrometry (ICP-MS; Cr 259 ppm; Ni 75 ppm; Ba 920 ppm; La 45 ppm; Eu 2.0 ppm; Lu 

0.3 ppm). Analysis performed at the Centre de Recherches Pétrographiques et Géochimiques 

(CRPG, Nancy, France).  

b
 Electron microprobe analysis (normalized to 100%) of PST-9 glass, with all Fe reported as 

FeO; oxides are in wt.%. 

c
 One standard deviation in terms of last digit.  

n: number of analyses. 

nd: not determined. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Table 2. Synthesis experiments 

Run XH2Oin T (°C) P (MPa) t (min) H2O glass (wt.%) CO2 glass (ppm)  

Volatile: H2O  (#1)     

S9#1 1 1200 201.8 2795 4.91 (1) 0 (0) 

Volatile: H2O+CO2  (#2)     

S6#2 0.56 1200 202.2 2760 2.37 (1) 1011 (106) 

S13#2 0.58 1200 201.5 2878 2.45 (2) 1008 (21) 

S16#2 0.59 1200 201.8 2873 2.42 (3) 901 (104) 

Volatile: H2O+CO2  (#3)     

S6#3 0 1200 202.2 2760 0.80 (3) 852 (57) 

S13#3 0 1200 201.5 2878 1.09 (3) 923 (132) 

S16#3 0 1200 201.8 2873 1.06 (1) 840 (64) 

 

XH2Oin = initial molar H2O / (H2O + CO2) added in the charge. 

T: run temperature; P: run pressure; t: duration of the synthesis experiment. 
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Table 3. Decompression experiments: run conditions and textural information 

Sa

m

pl

e 

Start

ing 

glass 

Pin 

(M

Pa) 

Pf  

(M

Pa) 

tra

mp 

(s) 

|dP/d

t| 

(kPa/

s) 

Bubble 3D 

characterist

ics 

                  

            n pk. 

size 

(µm) 

rang

e 

(µm

) 

D 

(µ

m) 

BND
a
 

(mm
-3

) 

BNDm

elt
b
 

(mm
-

3
) 

S 

(µ

m

) 

V
c
 

(vol

.%) 

V
d
 

(vol

.%) 

VEqui. 

H2O 

(vol.

%) 

VEqui. 

CO2 

(vol.

%) 

Volatile: 

H2O (#1)  

               

D

10

#1 

S9#1 200 50 19

28 

78 38 ‒ 22‒

368 

16

1 

7.8 8.1 30

9 

2.9

3 

9.8

5 

51.0  

Volatile: 

H2O+CO2  

(#2) 

              

D

31

#2 

S16#

2 

200 150 64

2 

78 0 ‒ ‒ 0 0.0 0.0 ‒ 0.0

0 

0.0

0 

9.22 0.17 

D

23

#2 

S13#

2 

200 100 13

44 

78 169

2 

7 7‒1

09 

10 269 269 96 0.0

7 

0.1

5 

24.1 0.47 

D

34

#2 

S13#

2 

200 100 13

44 

78 322

12 

6 6‒2

7 

8 1029

7 

10331 28 0.3

2 

0.4

6 

24.1 0.47 

D

9#

2 

S6#2 200 50 19

28 

78 116

09 

23 6‒1

69 

28 970 991 62 2.1

9 

2.6

7 

51.0 1.48 

D

28

#2 

S16#

2 

200 25 23

72 

78 161

87 

16 4‒4

24 

31 4069 4935 36 17.

5 

22.

7 

72.5 3.47 

Volatile: 

H2O+CO2  

(#3) 

              

D

31

#3 

S16#

3 

200 150 64

2 

78 40 8 8‒4

2 

11 4.0 4.0 39

1 

0.0

0 

0.0

0 

9.22 0.17 

D

23

#3 

S13#

3 

200 100 13

44 

78 576

8 

7 7‒7

1 

10 836 836 66 0.0

7 

0.2

4 

24.1 0.47 

D

9#

3 

S6#3 200 50 19

28 

78 160 6 6‒1

02 

12 17 17 96 0.0

1 

0.0

2 

51.0 1.48 

D

25

#3 

S13#

3 

200 25 23

72 

78 931

03 

8 6‒4

25 

12 8569 8799 30 2.6

0 

4.9

7 

72.5 3.47 

 

Pin (initial pressure): pressure at the beginning of decompression ramp; Pf (final pressure): 

pressure at which the experiment was quenched; tramp: duration of the ramp; |dP/dt|: 

decompression/ascent rate (=10
6
(Pin-Pf)/(gdtramp)), with g = 9.81 m/s

2
 and d = 2650 kg/m

3
. 
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X-ray microtomographic data acquired on entire charges (except V
d
). 

n: number of bubbles counted in the analyzed volume. 

pk. size: main peak diameter in bubble size distribution histograms. 

range: total range of bubble diameters. 

D: average bubble diameter. 

a
 BND: bubble number density expressed in number of bubbles per mm

3
 of the total sample 

(glass + bubbles).  

b
 BNDmelt: bubble number density per melt volume (without bubbles, following Proussevitch 

et al., 2007). 

S: average spacing between bubbles calculated from BNDmelt (S = (3/4πBNDmelt)
1/3

; 

Lyakhovsky et al., 1996; Baker et al., 2006). 

c
 V: vesicularity (volume fraction of bubbles, vol.%) measured from the total sample. 

d
 V: vesicularity measured from representative sub-volumes. 

VEqui.H2O and VEqui.CO2: equilibrium vesicularities computed for the PST-9 composition 

considering the degassing of pure H2O and pure CO2, respectively (see text). 
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Table 4. Synthesis + Decompression experiments: run conditions and textural information 

Sample Pin 

(MPa) 

t 

(min) 

Pf 

(MPa) 

tramp  

(s) 

|dP/dt| 

(kPa/s) 

Bubble 3D 

characteristics 

              

      n pk. size 

(µm) 

range 

(µm) 

D  

(µm) 

BND
a
 

(mm
-3

) 

BNDmelt
b
  

(mm
-3

) 

S  

(µm) 

V
c
 

(vol.%) 

V
d
  

(vol.%) 

Volatile: H2O  (#1)              

S+D36#1 202.0 41 150 642 78 1908 25 8‒86 28 274 275 95 0.47 1.01 

S+D39#1 202.2 54 100 1344 78 776 43 10‒190 47 207 210 104 1.77 2.87 

S+D38#1 202.2 60 25 2372 78 20 ‒ 76‒414 218 9.3 10 288 7.03 25.6 

 

The synthesis + decompression experiments are divided in two steps: synthesis at Pin and 

decompression between Pin and Pf. Pin (initial pressure): pressure at the beginning of 

decompression ramp; t: duration of the synthesis step; Pf (final pressure): pressure at which 

the experiment was quenched; tramp: duration of the decompression step; |dP/dt|: 

decompression rate (=10
6
(Pin-Pf)/(gdtramp)), with g = 9.81 m/s

2
 and d = 2650 kg/m

3
. 

X-ray microtomographic data acquired on entire charges (except V
d
). 

Bubble 3D characteristics abbreviations as in Table 3. 

S+D38#1 X-ray CT data concern the unfragmented part of the charge. 
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Table 5. FTIR data 

Glass n
a
 

Thickness 

(µm)  

Absorbance 3530 

cm
-1

 

H2O 

(wt.%) 

Absorbance 1515 

cm
-1

 

CO2 

(ppm)  

Synthesis experiments 
    

Volatile: H2O  (#1) 
    

S9#1 6 29 (2)
b
 1.337 (94) 4.91 (1) 

  
Volatile: H2O+CO2  (#2) 

    

S6#2 5 31 (1) 0.698 (34) 2.37 (1) 0.070 (9) 
1011 

(106) 

S13#2 7 42 (2) 0.976 (44) 2.45 (2) 
  

 
7 52 (5) 

  
0.118 (13) 1008 (21) 

S16#2 6 32 (2) 0.734 (50) 2.42 (3) 0.065 (11) 901 (104) 

Volatile: H2O+CO2  (#3) 
    

S6#3 7 149 (1) 1.147 (48) 0.80 (3) 0.287 (18) 852 (57) 

S13#3 8 111 (5) 1.168 (75) 1.09 (3) 
  

 
5 62 (4) 

  
0.129 (21) 923 (132) 

S16#3 8 48 (3) 0.496 (34) 1.06 (1) 0.092 (12) 840 (64) 

Decompression experiments 
    

Volatile: H2O  (#1) 
    

D10#1 9 72 (5) 1.523 (85) 2.22 (4) 
  

Volatile: H2O+CO2  (#2) 
    

D31#2 10 55 (5) 0.675 (69) 1.28 (5) 0.098 (20) 786 (108) 

D23#2 5 84 (1) 0.973 (19) 1.20 (3) 
  

 
7 68 (4) 

  
0.105 (18) 678 (103) 

D34#2 7 118 (5) 1.752 (132) 1.55 (13) 
  

 
11 47 (3) 

  
0.066 (16) 613 (127) 

D9#2 12 58 (2) 1.059 (92) 1.91 (15) 0.088 (15) 668 (120) 

 
13 56 (1) 1.074 (50) 2.00 (6) 0.057 (8) 452 (65) 

 

av

.   
1.96 (12) 

 
556 (144) 

D28#2 9 61 (6) 0.566 (84) 0.95 (12) 0.029 (13) 206 (89) 

Volatile: H2O+CO2  (#3) 
    

D31#3 11 152 (8) 1.384 (90) 0.93 (1) 0.269 (37) 777 (90) 

D23#3 10 133 (7) 1.365 (73) 1.06 (2) 0.219 (43) 722 (119) 

D9#3 8 171 (1) 1.291 (65) 0.78 (4) 0.239 (19) 619 (46) 

D25#3 7 73 (4) 0.350 (40) 0.49 (4) 
  

 
6 123 (9) 

  
0.118 (14) 423 (45) 

Synthesis+Decompression experiments 
   

Volatile: H2O  (#1) 
    

S+D36#

1 
10 38 (5) 1.480 (184) 4.16 (5) 

  

S+D39#

1 
8 58 (1) 1.801 (49) 3.30 (5) 

  

S+D38#

1 

 

11 

10 

av

54 (3) 

102 (7) 

 

0.932 (58) 

1.590 (92) 

 

1.80 (6) 

1.61 (3) 

1.71 (11) 
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 . 

 

D9#2 and S+D38#1 analyzed in duplicate. Average H2O and CO2 concentrations (av.) and 

standard deviations are reported. These are calculated by using all analytical spots.  

a
 Number of analytical spots. 

b
 One standard deviation in terms of the last digit. 
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Highlights 

 Decompressions provide information on homogenous bubble nucleation in basalts 

 Use of volatile-bearing melt compositions to simulate magma ascent at Stromboli 

 Significant effect of CO2 on physical mechanisms of basaltic melt degassing 

 Both near-equilibrium and disequilibrium degassing occur in our experiments 

 Decompression textures approach those of basaltic products from explosive eruptions 


