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Abstract A major use of DFN models for industrial applications is to evaluate permeability and flow
structure in hardrock aquifers from geological observations of fracture networks. The relationship between
the statistical fracture density distributions and permeability has been extensively studied, but there has
been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random
(i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where
fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and
fracture arrest. This so-called ‘‘kinematic fracture model’’ is characterized by a large proportion of
T intersections, and a smaller number of intersections per fracture. Several kinematic models were tested
and compared with Poisson DFN models with the same density, length, and orientation distributions.
Connectivity, permeability, and flow distribution were calculated for 3-D networks with a self-similar power
law fracture length distribution. For the same statistical properties in orientation and density, the
permeability is systematically and significantly smaller by a factor of 1.5–10 for kinematic than for Poisson
models. In both cases, the permeability is well described by a linear relationship with the areal density p32,
but the threshold of kinematic models is 50% larger than of Poisson models. Flow channeling is also
enhanced in kinematic DFN models. This analysis demonstrates the importance of choosing an appropriate
DFN organization for predicting flow properties from fracture network parameters.

1. Introduction

In crystalline rocks and sedimentary layers with low matrix porosity, most, if not all, flow takes place within
fractures, and the fracture network constitutes the basic structure that defines both permeability and flow
path organization. Thus predicting both, which is required for groundwater management or environmental
risk assessment, is intimately related to our ability to provide pertinent models of fracture networks. A
modeling strategy basically consists in generating 3D fracture networks with the statistical properties
derived from field observations [Cacas et al., 1990a, 1990b; Cvetkovic et al., 2004; Dershowitz and Einstein,
1988; Follin et al., 2013; Jing and Stephansson, 2007]. This discrete fracture network (DFN) approach, which is
widely used to generate equivalent media, is complementary to continuum heterogeneous approaches [de
Dreuzy et al., 2012; Hsieh, 1998; Long et al., 1982; Neuman, 2005; Selroos et al., 2002] and allows for a better
integration of geological data into flow models [Follin et al., 2013].

The difficulty is on the one hand that fractures are complex objects, ubiquitous at all scales, and on the oth-
er hand that direct observations of fracture networks are relatively scarce, since limited to surface outcrops,
tunnel wall, and core drilling. A big challenge is to find DFN statistical models that are universal enough to
be inferred from measures made at a few (small) local places and extrapolated to the rest of the 3-D
domain. Upscaling statistical distribution at large scale and for large fractures is in particular a fundamental
issue that has been addressed by several studies [Crampin, 1999; Davy et al., 2006; Turcotte, 1986]. The
importance of fracture density, orientation, length, and transmissivity distributions has been extensively
assessed [de Dreuzy et al., 2001a, 2001b, 2002, 2012; Erhel et al., 2009b; Margolin et al., 1998; Park et al.,
2001]. But only a few studies address the issue of spatial correlations—thus of the details of fracture net-
work organization—although they are potentially of great importance for flow [Darcel et al., 2003; Davy
et al., 2010]. Most of the studies based on a DFN description of fracture networks (references cited above)

Key Points:
� Connectivity of Poisson models is

greater than mechanical models
� Permeability of kinematically defined

model is lower than Poisson models
� For the kinematically defined models,

flow channeling is lower than
Poisson models

Correspondence to:
P. Davy,
philippe.davy@univ-rennes1.fr

Citation:
Maillot, J., P. Davy, R. Le Goc, C. Darcel,
and J.R. de Dreuzy (2016),
Connectivity, permeability, and
channeling in randomly distributed
and kinematically defined discrete
fracture network models, Water Resour.
Res., 52, doi:10.1002/2016WR018973.

Received 23 MAR 2016

Accepted 9 OCT 2016

Accepted article online 13 OCT 2016

VC 2016. American Geophysical Union.

All Rights Reserved.

MAILLOT ET AL. PERMEABILITY OF DISCRETE FRACTURE NETWORK 1

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2016WR018973
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


assume that fractures are randomly placed into the studied domain given a certain density. This assumption
is referred thereafter as the Poisson model (PM).

In this paper, we aim at testing an advanced DFN model, which mimics the growth of fractures with
simplified kinematic rules of nucleation, growth, and arrest [Davy et al., 2010, 2013]. The model success-
fully describes two striking properties of natural fracture systems clearly important for connectivity and
flow:

1. the large occurrence of T intersections (a fracture ends up on another), which is a significant difference
with Poisson models;

2. the power law distribution of fracture lengths, which naturally emerges from the growth and arrest rules
(as it should do in natural fracture systems).

These models are further named ‘‘kinematic fracture models’’ (KFM) since they provide a kinematic history
of fractures (see next section); they are compared with their equivalent ‘‘Poisson’’ models (PM) (with same
fracture density, same length and orientation distributions, but different organization) to test the impor-
tance of fracture organization.

The study is performed for 3-D fracture networks, for which efficient numerical methods have only been
recently developed [Erhel et al., 2009b], but in which only very few investigations have yet been performed
[see, however, de Dreuzy et al., 2012; Wellman et al., 2009]. Hydraulic properties are calculated for simplified
models of transmissivity distributions per fracture: constant, lognormal with varying standard deviation,
and in both cases, a single transmissivity value per fracture.

We pay a special attention to flow localization/channeling issues, which is known to be a characteristic of
fractured aquifer [Martinez-Landa and Carrera, 2005; Tsang and Neretnieks, 1998]. The capacity of DFN
models to reproduce flow channeling is essential to accurately estimate the hydraulic properties [Kerrou
et al., 2008; Ronayne and Gorelick, 2006; Trinchero et al., 2008].

This paper is organized as follows. First, the DFN kinematic and Poisson models are described, as well as
indicators and metrics used to characterize the flow properties. Second, we present results about the
geometry and connectivity properties of DFN models. Third, we present results on flow properties calcu-
lated by assuming a constant transmissivity throughout all fractures; in this case, the permeability
reveals the effective connectivity properties of the medium [de Dreuzy et al., 2001a; Renshaw, 1999]. Last,
we analyze the hydraulic properties calculated with a lognormal transmissivity distribution and different
log standard deviation. Widening the transmissivity distribution favors channeling, but may either
enhance or reduce the bulk permeability, depending on the fracture network structure [de Dreuzy et al.,
2010; Desbarats, 1992; Knudby and Carrera, 2005; Ronayne and Gorelick, 2006; Scheibe and Yabusaki,
1998].

2. Models and Methods

The DFN method is a discrete approach where the geological medium is approximated by a network of
fractures, on which flow and mechanical properties are calculated [Long et al., 1982]. Considering the diffi-
culty to get an exhaustive description of fractures, DFN is built from a statistical description of fracture prop-
erties (size, orientations, aperture, etc.) and generally within the Poisson hypothesis, which assumes
that fractures are independent of each other [Berkowitz, 1995, 2002; Cacas et al., 1990a, 1990b; Jing and
Stephansson, 2007; Long et al., 1985; Long and Billaux, 1987; McClure and Horne, 2013].

2.1. Poisson Models
The term ‘‘Poisson’’ refers to the Poisson distribution, which describes the distribution of a set of elements
randomly distributed in a volume [Poisson, 1837]. Here the distribution applies to the position of the frac-
ture centers under a known bulk density (number of elements per unit volume). Fractures are thus elements
considered independent of each other. These models have been studied theoretically with lognormal frac-
ture size distribution [Andersson and Dverstorp, 1987; Cacas et al., 1990a; Long and Billaux, 1987], or power
laws [Bour et al., 2002; Davy et al., 1990; Davy, 1993; Gudmundsson, 1987; Odling, 1997; Scholz and Cowie,
1990; Segall and Pollard, 1983].
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2.2. Kinematic DFN Models
Although convenient, the Poisson hypothesis is clearly inconsistent with some basic characteristics of frac-
ture networks, such as the large number of T intersections [Hardebol et al., 2015; Sanderson and Nixon,
2015], and it is not yet clear if this affects the ability of Poisson models to predict flow in fracture networks.
To challenge this question, we use a recent DFN methodology developed by Davy et al. [2010, 2013], which
both mimics geological fracturing processes, and allows for fast and simple stochastic simulations. In this
approach, fracture networks are generated in a three-stages process: nucleation of initial cracks, fracture
growth, and arrest. This ‘‘life cycle’’ involves processes at the fracture scale (e.g., stress enhancement and
damaging at the fracture tips), as well as interactions between concurrently growing fractures that eventual-
ly lead to stopping fracture growth on ‘‘T’’ configurations. These models naturally produce, from very few
kinematic rules inspired from mechanical considerations, the widely observed power law length distribu-
tions for both fault and joint networks [Bonnet et al., 2001]. We refer to both original papers for a complete
description of the model, and of its capacity to generate networks with realistic properties. We only give
below a short summary.

The first stage of this kinematic model is nucleation, which is assumed to be a random process defined by a
distribution of nuclei positions, orientations and lengths, and a nucleation rate _nN5 dnN

dt , where nN is the
number of nuclei per unit volume. Once created, a fracture grows at a rate defined by Charles’ law [Atkinson
and Meredith, 1987; Charles, 1958]:

dl
dt

5Cla; (1)

where l is the fracture length, C the growth rate, and a is the growth exponent. Without a limit to this
growth process, the growth regime eventually leads to a power law density distribution of fracture sizes
such that:

n lð Þ5
_nN

C
� l2a; (2)

where n lð Þdl is the number of fractures per unit volume, whose size is in the range l; l1dl½ �.

Davy et al. [2010] demonstrate that, although complex, the arrest process is dominated by a hierarchical
rule, where the large fractures can stop smaller ones, while the reverse is unlikely. Such rule obviously sim-
plifies the mechanical reasons for stopping fracture growth, but it roughly describes the main mechanical
interactions between fractures, and it is statistically consistent with the large number of commonly
observed T-like fracture intersections. The fracture arrest rule potentially occurs after hitting the first larger
fracture (mode A with one ‘‘T’’ termination maximum per fracture), or it continues in the opposite direction
of the first intersection until it intersects a second larger fracture (mode B with two ‘‘T’’ terminations maxi-
mum per fracture). This arrest rule leads to a quite universal fracture density distribution:

n lð Þ5a � l2 D11ð Þ; (3)

where D is the dimension of the DFN (here D 5 3) and a a density term that depends on the fracture orien-
tation distribution and the details of the arrest rule (mode A or B, see above) [Davy et al., 2013].

A fracture is in a growing state (equation (1), and eventual distribution described by equation (2)) when its
size remains smaller than the distance to others. Thus equation (2) statistically characterizes a sparse net-
work of small unconnected fractures. In contrast, arrested fractures form a network of connected fractures,
whose density given by equation (3) is the largest one that can be obtained with these models. The eventu-
al length distribution depends on the generation time, and thus on the total number of generated fractures.
Equation (3) is the eventual length distribution if the process is continued up to the point where all fractures
are arrested. Before this limit, there is a transition scale between the sparse and dense regime, which corre-
sponds to a critical length scale lc . This transition scale is also a connectivity scale, which decreases during
the network growth. Davy et al. [2010] showed from an analysis of the percolation parameter (see also
below) that the sparse regime should have little effect on permeability.

In addition to the arrest mode (A or B), the nature of the growth regime (ratio C= _nN) is critical to the eventu-
al dense regime structure. If C is much larger than _nN , the time for a fracture to grow is short compared

Water Resources Research 10.1002/2016WR018973

MAILLOT ET AL. PERMEABILITY OF DISCRETE FRACTURE NETWORK 3



with the time between the appearance of successive nuclei. Thus fractures grow one by one in a sequential
mode, and most of the intersections are of ‘‘T’’ type. In contrast, if C is smaller than _nN , a large number of
fractures grow concomitantly, which produces a large number of ‘‘X’’ intersections when a larger fracture
intersects a smaller one. The former growth mode will be called thereafter sequential (S), the latter competi-
tive (C).

The possibility to contain both ‘‘T’’ and ‘‘X’’ intersections is one main characteristic of these kinematic mod-
els. On the contrary, Poisson models have only ‘‘X’’ intersections. When large fractures grow through smaller
ones ‘‘X’’ intersections are created while ‘‘T’’ intersections are created when small fractures are arrested by
larger ones. A representation of both types of intersections is given in Figure 1. Changing the parameters of
arrest mode, nucleation, and growth will therefore lead to different geometrical structures.

2.3. Selected Models and Parameters
The study is performed in 3-D with disk-shaped fractures. For the kinematic model, we limit the present
analysis to the dense regime (above lc). Over that range, all fractures are arrested and thus connected at
least to another one. The sparse regime contribution (below lc), where fractures are statistically not con-
nected, is not analyzed further in this study. As a consequence, the present analysis relies on one single
power law model of exponent 24 for the fracture size distribution and also on several different spatial
structures and densities. The density term a is related to details of the kinematic model rules and DFN spa-
tial structure. Several kinematic models are defined, of arrest mode A or B and growth mode C or S, leading
to four kinematic fracture model variations named KFMAS, KFMAC, KFMBS, and KFMBC. For the four
models:

1. As in Davy et al. [2013], we assume that nuclei are randomly distributed in position with a uniform proba-
bility in the generation domain. More sophisticated models will be developed in a future work to take
account of the distribution of stresses around fractures [Bonneau et al., 2016].

2. The initial nuclei pole orientation distribution is isotropic and so is the final DFN pole orientation distribu-
tion [Davy et al., 2013].

3. The initial nuclei length distribution is a tight power law with a very small exponent of 25.
4. The growth law parameters are C51 and a53 (equation (2)). The difference between sequential and

competitive models is obtained by changing the nucleation rate.
5. The T-intersection size is taken constant as 1=20 of the minimum fracture size.
6. The ratio between the smallest fracture and the system size is at least equal to 10. This range is large

enough to give a permeability independent of L (in other words, L is larger than the Representative Ele-
mentary Volume [Long et al., 1982]).

Figure 1. (a) schematic 3-D representation of five fractures of the total DFN. (b) In-plane representation of the largest fracture F1 (see
Figure 1a), and its intersection with F3, F4, and F5. All the intersections in F1 are of T-type, meaning that F3, F4, and F5 are smaller fractures
that abut on it. (c) In-plane representation of the fracture F2, and intersections with F3 and F4. All the intersections in F2 are of X-type,
meaning that F3 and F4 are smaller fractures that were cut through during the growth of F2.
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For all networks, we assume that the transmissivity within each facture is constant. de Dreuzy et al. [2012]
have studied the effect of a distribution of apertures within a fracture, and shown that it can be replaced by
a single transmissivity value for each fracture if the system size is larger than about 20 times the correlation
length of aperture variation. We assume that this hypothesis applies to the studied DFN. Transmissivity can
vary from one fracture to another. In this study, we assume that the transmissivity per fracture follows a log-
normal distribution, whose log standard deviation r varies from 0 (section 4, where transmissivites are con-
stant) up to 2 (section 5).

For each kinematic model, an equivalent Poisson model is defined, with the same density, size, and orienta-
tion distributions. They differ only in the spatial structure (random fracture positions in the Poissonian
hypothesis, and arising from the interactions between fractures in this kinematic approach).

2.4. DFN Metrics
The DFN metrics listed in this section refer to both geometrical and effective hydraulic properties
quantities.

The connectivity properties of power law distributed Poisson models have been intensively studied by Bour
and Davy [1997, 1998], de Dreuzy et al. [2000], and Nakaya and Nakamura [2007]. It was demonstrated that
the exponent of the length distribution is critical for determining how the different classes of fracture
length participate in the bulk connectivity. An exponent of 24, as it is here (equation (3)), is precisely the
limit between systems controlled by the largest fractures (exponents larger than 24) and systems con-
trolled by the smallest, for which percolation theory applies (exponents smaller than 24). For exponent
equal to 24, all logarithmic classes of fracture length contribute equally to percolation [Bour and Davy,
1998]. In any case, a relevant metrics to quantify the connectivity is the percolation parameter defined as:

p5

ð
l

p2

8
l3 n lð Þdl5

1
V

X
F

p2

8
l3
F ; (4)

where V is the volume of the studied system, and lf the length of fracture f .

For 3-D random disks, bulk connectivity is obtained when the percolation parameter is larger than a thresh-
old value pc52:5 [de Dreuzy et al., 2000].

A second DFN geometrical metrics is the total fracture surface per unit volume. It is often named p32 [Der-
showitz and Herda, 1992]:

p325
1
V

X
f
Af 5

1
V

X
f

p
4

l2
f ; (5)

where Af is the area of the fracture f :

p32 is the density term that controls permeability for dense networks, where effective medium theory
applies [de Dreuzy et al., 2000; Kirkpatrick, 1973; Oda, 1985].

In addition, the following flow global metrics will be defined and used in the analyses:

1. The bulk DFN permeability K calculated for a distribution of fracture transmissivities—the special case
when all fracture transmissivities are constant is called the effective connectivity.

2. The backbone density db defined as the structure that carries flow [Stauffer and Aharony, 1992]. A more
complete definition is given in the section 4.3.

3. The flow channeling density indicator dQ, which reflects the portion of the total fracture surface where
flow is significant [Le Goc et al., 2010]. d21

Q is also a measure of the distance between the main flow paths,
directly comparable with borehole flow measurements. A complete definition of dQ is given in the sec-
tion 4.4. Note that dQ takes into account the flow intensity, while db does not.

4. The power-average exponent x, which quantifies the way permeability averages a transmissivity distri-
bution. x varies between 21 (harmonic averaging, when fractures are connected in series) and 1 (arith-
metic averaging, when fractures are in parallel). x is thus a measure of the flow structure organization
(see section 5).
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2.5. Dimensional Considerations
This study aims at being as generic as possible with results applicable to DFN systems whatever their abso-
lute size and absolute permeability. The DFN models parameters are therefore expressed as dimensionless
quantities, which allows for their generalization to any equivalent system. In this section, we develop the
dimensional analysis.

In general, the system permeability is defined from a set of fracture transmissivities Tif g, lengths lif g, and
position coordinates xif g (3N parameters, if N is the total number of fractures in the system). For the scaling
analysis, we need only two basic parameters: a characteristic transmissivity of fracture To, and a characteris-
tic length scale lo; the characteristic permeability is deduced from the two others (Ko5To=lo). The main
dimensionless variables write as K�5K=Ko, T�5T=To, l�5l=lo, x�5x=lo, p�325p32lo, etc. Two systems have the
dimensionless permeability K� if the fractures characteristics T�f

� �
, l�f
� �

, and x�f
� �

are identical. In a statisti-
cal analysis, we replace these three distributions by the distribution parameters. In this study, the distribu-
tion parameters are:

1. The fracture transmissivity distribution Tff g is characterized by a set of statistical parameters that
describe the mean, variability, and more if necessary. In the case of lognormal transmissivity distribu-
tions, two parameters are necessary, the log-average transmissivity Tm, and the dimensionless log-
variability r;

2. The fracture length distribution lff g is a power law defined by the smallest fracture size lm, the largest
fracture size lM, the exponent of the power law distribution a, and the density term a. Note that if lM is
much larger than the system size L, lM has almost no influence on the system permeability.

3. xff g is a set of position coordinates within the system (cube of edge size L), according to a position mod-
el (randomly distributed for the Poisson model, and distributed differently for the kinematic models).

From the previous description, the only significant scales here are the smallest fracture lm, and the log-
averaged transmissivity Tm. We thus use both as the characteristic length (lo5lm) and transmissivity

To5Tmð ). The system is also characterized by three other dimensionless parameters: the density a and pow-
er exponent of the length distribution, and the log-variability of fracture transmissivity r.

Written in dimensionless variables, the smallest fracture length is (by definition) l�m51, and the system size
is L�5 L

lo
510. For the ease of reference, all of the below figures and tables are written with dimensionless

values parameter values.

2.6. Numerical Method
Fractures networks are generated using the assumptions and methodology defined in 2.2 with the new
self-standing UFMLAB software. Flows are determined with the conformal mixed-hybrid finite element
methods implemented in the development platform H2OLAB [Erhel et al., 2009a]. More details about the
platform and its availability can be found in the website http://h2olab.inria.fr/.

For all models, DFN are generated in a cubic volume of edge size LG515 (volume V5153). The geometrical
and hydraulic analyses are performed in a cubic subdomain of size L510 to avoid boundary effects. In addi-
tion, kinematic models are built from nuclei of minimum size 0.5, while the studied DFN are defined after
removal of fractures smaller than lmin51 (i.e., whose length is close to nuclei sizes). For all models, fracture
sizes thus range over 1 order of magnitude between lmin51 and L510.

The steady state flow equation r Trhð Þ50 is applied in the fractures where h is the hydraulic head, and T
is the local transmissivity. As already mentioned in section 2.3, the transmissivity within each fracture is tak-
en constant or lognormally distributed. Permeameter-like boundary conditions are applied: hydraulic heads
are fixed at h51 and h50 on the two opposite faces x1 and x2 of the cubic system, while impervious con-
ditions are applied to the other cube faces. The flow equation is solved with a mixed-hybrid finite element
scheme applied on a conformal triangular mesh [Erhel et al., 2009a]. Fracture intersections smaller than the
mesh resolution are removed from the flow domain. Mesh resolution is set 10 times larger than the smallest
fracture length, and larger than T intersections. Only minor X intersections are effectively removed without
any significant modifications of the connectivity and effective permeability. Simulations are performed with
algebraic multigrid solvers that can manage thousands of fractures on PC-computers with large RAM mem-
ory [De Dreuzy et al., 2013]. For each of the 8 DFNs (4 KFM and 4 PM), statistics are obtained over a minimum
of 1000 Monte-Carlo realizations.
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3. DFN Geometry and Connectivity Properties

3.1. Density Parameters
The main geometrical characteristics of DFN models are summarized in Table 1. As predicted by equation
(3), all kinematic models are well fitted by a power law with an exponent 24 (see the length distributions
kinematic and Poisson DFN models plots in Figure 2). The dimensionless density term a, given in Table 1,
varies from 2.1 to 3.5 according (i) to the arrest rule—mode B with potentially 2 T-terminations per fracture
have a higher density than mode A with 1-T per fracture—and (ii) to the growing mode, where the density
of sequential growth is smaller than of competitive one. The equivalent Poisson models are generated from
the parameters of the kinematic model power law fits. The differences between kinematic (blue points) and
Poisson (red points) models are very small, between 1.5% and 6%.

The total number of fractures varies between 800 and about 1200 depending on models. The average of
the main properties of DFNs is presented in the Table 1. The differences in p32 reflect the differences in a
discussed above with mode-B models 40–60% higher than mode-A ones, and a difference of 23% maxi-
mum between sequential (S) and competitive (C) modes. For all DFNs, the percolation parameter p is signifi-
cantly larger than the percolation threshold pc estimated at pc � 2:5 for Poisson disks with power law
length distribution [de Dreuzy et al., 2000]. Note that a similar percolation threshold has been obtained for
the kinematic models by removing fractures one by one until disconnection.

3.2. Connectivity
The total number of intersections is
also controlled by the arrest mode, with
2–3.5 times more intersections in mode
B than in mode A, while it increases of
5–40% for type C compared with type
S. An important difference between
modes C and S is the nature of intersec-
tions. S models produces significantly
more T intersections (>90% of T) than
C models (66–74% of T).

Although the fracture distribution char-
acteristics (length, orientation, density,
and number) are similar between Pois-
son and kinematic models, the connec-
tivity is very different with 1.6–2 times
more intersections in Poisson than in
Kinematic DFN (Table 1). This is further
investigated in the next section.

Table 1. Main Geometrical Characteristics of Inematic (KFM) and Equivalent Poisson (PM) Modelsa

Kinematic Models KFMAS KFMAC KFMBS KFMBC

_n N (nucleation rate during growth) Competitive model: 81,000
Sequential model: 810

a 2:1 2:6 3:4 3:5
p32 1.59 (60.029) 1.89 (60.033) 2.59 (60.037) 2.68 (60.041)
p (percolation parameter) 5.98 (60.56) 7.68 (60.63) 10.2 (60.62) 11.39 (60.77)
nF (number of fractures) 811 (621) 840 (621) 1238 (623) 1146 (624)
nI (number of intersection) 712 (625) 1140 (638) 2534 (662) 2649 (664)
T (% of T intersections) 94% 66% 92% 74%
Equivalent Poisson Models PMAS PMAC PMBS PMBC
All other parameters are identical to kinematic models
nI (number of intersections) 1481 (692) 2094 (6117) 3908 (6180) 4170 (6190)
T (% of T intersections) 0%

aMode A (B, resp.) correspond to kinematic models where growth is defined by one (two, resp.) degree(s) of freedom. C (S, resp.)
designs competitive (sequential, resp.) model.

Figure 2. Density distribution of fracture sizes (i.e., number of fractures per unit
volume). The four kinematic models and their equivalent Poisson models are
drawn with different colors (see legend).
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The number of intersections is controlled by linear relations of the form Ni5k p322dCð Þ (Figure 3a), where
dC � 1:1 is likely the density at connectivity threshold. The k term differs between models: k50:33 for Pois-
son models, and k50:215 for kinematic models (Figure 3a). As a consequence, the difference between both
models increases with fracture density.

The number of intersections per fracture IF is another proxy for connectivity, which is basic to calculate
excluded volumes [Balberg, 1985; Balberg et al., 1984]. For Poisson models, IF lð Þ is an increasing function of l
proportional to the bulk fracture density p32 (see Appendix A). This is verified in the Figure 3b, with all Pois-
sonian models matching the expected theoretical relationship when normalized by p32. The kinematic mod-
els show the same trend as Poisson, but with two main differences: (1) whatever the fracture length, the
ratio IF lð Þ

p32
is about 2 times lower for kinematic than for Poisson models, and (2) all the kinematic models can-

not be described by a single curve although the differences are quite small.

Last, we analyze the percentage of T intersections, which is a typical characteristic of the kinematic models.
Figure 4 shows that it is about independent of the fracture length even if a slight increase can be observed
for the largest fractures. The largest percentage of T intersections (�90%) is for both sequential models,
where only one (or a couple of) fracture(s) can grow at the same time. For competitive models, the T inter-
sections represent 60% (mode A) to 75% (mode B) of the total (see Table 1 for details).

4. Hydraulic Properties at
Constant Fracture
Transmissivity

4.1. Equivalent Permeability
We first calculate the effective connectivi-
ty, i.e., the system permeability of fracture
networks when all fractures have the
same transmissivity Tf [de Dreuzy et al.,
2001a, 2001b; Renshaw, 1999]. For Pois-
son models well above percolation
threshold, the equivalent permeability
Keq should be well described by effective-
medium theories [Kirkpatrick, 1973], lead-
ing to a linear increase of Keq with p32.

Keq5k p322pQcð Þ; (6)

where k is a constant related to bound-
ary conditions and fracture orientations,

Figure 3. (a) Number of intersection normalized by the domain volume, as a function of the fracture density p32: (b) Number of intersections per fracture (IF ) normalized by the mass
density p32 as a function of fracture length. The Poisson models are symbolized in red and the kinematic models in blue. The dashed lines represent the theoretical equation developed
in the Appendix A with b50:85 (red curve, PM models), or b50:45 (blue curve, KFM models).

Figure 4. Ratio of T intersections per fracture for the four kinematic models.
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and k:pQc reflects the density of nonactive fractures. Note that this expression is given in dimensionless varia-
bles. According to the section 2.5, the ‘‘real’’ permeability is obtained by multiplying Keq by Tf=lmin, and by
dividing p32 by lmin.

As shown in Figure 5a, equation (6) applies on both Poisson and kinematic models, but with different
parameters: for PM, k50:46 and pQc51:14; for KFM, k50:4 and pQc51:5. Since the k parameter is slightly
different for both models, their difference in permeability between both models seems to slightly increase
with density. For AS, the kinematic model close to percolation threshold, the difference with the equivalent
Poisson model reaches a ratio of 10 on average, and even more for some realizations (see the log-lin plot
inserted in Figure 5a). For the models with larger density, the ratio between PM and KFM is about 1.4.

Close to the percolation threshold (represented by a black dot in Figure 5b), the permeability should vary as
a quadratic relationship K � p2pcð Þl with pc ffi 2:5 and l ffi 2 in 3-D [Mitescu and Musolf, 1983; Stauffer
and Aharony, 1992]. Figure 5b shows the relationship between permeability and percolation parameter for
both models, with quadratic (dash-dot lines) and linear (dashed lines) fits. The quadratic relationship has
been estimated as a very rough attempt to link simulation points with percolation threshold. For Poisson
models, the quadratic relationship is in a smooth continuation with the large-permeability linear relation-
ship, which makes it a plausible trend for low-permeability values. For kinematic models, quadratic and line-
ar trends are very different even for small permeability values, suggesting that the behavior close to the
percolation threshold could not follow the classical percolation theory. Note however that it is difficult to
draw definite conclusions about the behavior close to the percolation threshold with simulations whose
percolation parameters are quite large.

4.2. Flow Distribution Within the Fracture Network
We now analyze the spatial distribution of flow in the DFN structure. We focus especially on the flow
channeling, which is commonly observed in natural systems [Abelin et al., 1985], and obviously an important
feature of flow for safety assessment. Flow channeling has been mostly studied at the fracture scale [Tsang
and Neretnieks, 1998], and barely at the network scale. Considering the simplicity of models at the fracture
scale (fractures are assumed hydrologically homogeneous), we do not enter into the detail of flow in the
fracture plane. We rather perform a network-scale analysis, where each fracture F is characterized by a sin-
gle flow value, QF , which is the total flow exchanged by F with its neighbors. QF is the half the sum of the
absolute values of the flow QF;i exchanged through intersections i (equation (7)).

QF5
1
2

X
i
jQF;i j; (7)

The cumulative distribution of QF is shown in Figure 6. For all curves, we can split fractures in two groups: a
first between �1023 and the maximum flow, which corresponds to fractures well connected to boundaries,
and a second lower than �102621024, which corresponds to badly connected fractures. Most of these low-

Figure 5. (a) Permeability Keq versus p32 for all studied models; the yellow box shows same data with a logarithmic axis for permeability. (b) Permeability versus percolation parameter
for all models; the black dot indicates the percolation threshold. For both graphs, the kinematic models are in blue and their equivalent Poisson models in red. Straight dashed lines are
linear fits (see text). Dot-dash lines in the left graph are quadratic fits inspired from the percolation theory. The transparency symbols stand for each DFN simulation, and the large empty
symbols represent the property averages for each model.
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flow fractures are connected by a sin-
gle intersection to the backbone. In 2-
D, these would correspond to dead
ends with no flow. In 3-D, a residual
flow may exist due to small head gra-
dients along intersection lines. The
contribution of these ‘‘dead-end’’ frac-
tures is however negligible. For the
high-density models (KFMBC, KFMBS,
and all Poisson models), the fractures
of the first group (large flow) represent
80% of the total. In contrast to both
models MA, where fractures have a sin-
gle T intersection, this first group is
50% (KFMAC) or even less than 20%
(KFMAS), meaning that most of the
fractures are dead-ends of flow.

Figure 7 illustrates the DFN flow distri-
bution from both DFN realizations: a

KFMAS model, and its equivalent Poisson PMAS. Only fractures in the backbone are shown. Even if both
DFN have the same density (p3251:59Þ, the total surface of flowing fractures is significantly smaller in the
kinematic model, reflecting the stronger flow channeling of kinematic than of Poisson models. The main dif-
ferences between both models are (i) the number of main-flow structures (one dominant fracture in KFMAS,

Figure 6. Cumulative distribution of QF for both kinematic and Poisson models.
Each DFN are symbolized by a symbol, the Poisson DFN are in red, and kinematic
models in blue.

Figure 7. (left) Three-dimensional picture and (right) vertical cross section of flow in the (top) sequential kinematic model KFMAS and (bottom) its equivalent Poisson model. Fractures
with Qf < 1024 are symbolized by an empty disk and other fractures are colored according to their Qf value.
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several in PMAS), and (ii) the flow intensity, which is smaller in KFMAS than in PMAS (a significant number
of fractures in PMAS carries a flow larger than the largest value of KFMAS). Both effects contribute to the rel-
atively smaller permeability of kinematic models. Note that the analysis of one particular realization pre-
sented in Figure 7 is representative of the average behavior of KFMAS models only. For the other kinematic
models that are much more connected (KFMBS, KFMBC, and even KFMAC), the flow intensity in the frac-
tures that carry flow is similar to (even slightly larger) the equivalent Poisson models.

Figure 8a shows the percentage of dead-ends (left) and average flow QF lð Þ (right) for the different classes of
fractures sizes. For all the models, the percentage of dead-ends is slightly decreasing with l up to a size of
�5, which is half the system size. Unsurprisingly, the largest percentage of dead-ends is for both kinematic
models AC and AS, with up to 3 times more dead-ends than for the equivalent Poisson models, and up to
10 times more than the high-density models (model B and equivalent Poisson). For these latter model, the
percentage of dead-ends is rather similar.

Figure 8b shows the average flow per fracture normalized by total flow, h lð Þ5 QF lð Þ
Qt

, for different classes of frac-
ture sizes. The analysis is made on all fractures in the backbone (i.e., without dead-ends). The ratio between
the total and average flow, i.e., h21, is an indicator of the number of independent paths in the system.

For all models but KFMAS, the average flow per fracture increases as a power law with fracture length as
QF lð Þ � l1:66, emphasizing that small fractures contribute to introduce new paths in the system. The average
flow and thus the number of paths depend on the model density as expected, and there is not a large dif-
ference between kinematic and Poisson models except for fractures larger than half the system size.

The KFMAS model is an exception because the average flow per fracture is much higher than in any other
model, and because it increases about linearly with fracture length although the trend is characterized by
large fluctuations (Figure 8b). KFMAS is the model with the smallest density, close to percolation threshold
as shown in Figure 5. This may explain why it is so different from the others. Note that the absolute value of
the flow QF lð Þ is actually smaller for this model than for the others for all fracture lengths, but the normaliza-
tion by the total flux per realization in Figure 8b makes QF lð Þ

Qt
larger in Figure 8b.

4.3. Backbone
The backbone is the part of fracture network that carries flow. Here we define the backbone in two ways: (i)
as the dual of dead-ends defined in section 4.2, i.e., fractures whose flow QF is larger than 1024, and (ii) by
removing iteratively fractures that have only one connection with network or boundaries. Both methods
give a similar result. Note that this is not a very restrictive definition since the criteria applies to the whole
fracture, independently of the distribution of flow within the fracture plane. A more restrictive criteria based
on local flow would end up into a smaller backbone structure.

The backbone density db is a basic measure of the flow structure, worth analyzing when comparing DFN
models. db is the sum of the fracture surfaces in backbone divided by the total volume, a definition that
makes it directly comparable with p32 (see Table 2 and Figure 9).

Figure 8. (a) Average percentage of dead-ends in terms of fracture numbers and (b) average flow in the backbone normalized by total flow for different classes of fracture lengths, i.e.,
length between l; l1dl½ �. For both figures, the averages are calculated for 1000 realizations for each models. The KFM models are in blue and PM in red with symbols indicated in the
text box within each plot.
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For the Poisson models, the backbone represents 73–93% of the total fracture density. Similar values are
obtained for the kinematic models B (90–95%), but not for model A. The smallest value is for the kinematic
model AS, with only 30% of the fracture density belonging to backbone.

Figure 9a shows that db is approximatively a linear function of p32, but the slope and intercept of the fitting
functions are different for kinematic and Poisson models. At large p32, both models converge to 100% of
p32, but large differences are observed for p32 between 1.4 and 2.0. Except for the kinematic model with the
largest density (BC), with 95% fractures in the backbone, db is smaller in kinematic than in Poisson models.

In the Figure 9b, we explore the possibility for db to be a first-order control of the bulk permeability. The
blue and red curves are linear models with threshold for kinematic and Poisson models, respectively. With
the notable exception of the low-density kinematic model KFMAS, both linear fits have the same threshold
(0.65) but different slopes (0.38 for Poisson models, 0.28 for kinematic models). Thus, the differences in
backbone density are not sufficient by themselves to explain the differences in permeability.

4.4. Flow Channeling
The extreme flow channeling often observed in field experiments [Abelin et al., 1990, 1994; Follin et al.,
2013; Olsson, 1992] is difficult to replicate with classical Poisson models, and difficult to characterize in 3-D.
We use a flow channeling density indicator dQ, whose definition is inspired from Davy et al. [1995, 2010]
and from the participation ratio in the physics literature [Bell and Dean, 1970; Edwards and Thouless, 1972]:

dQ5
1
V
�
P

f �Sf � Qf
� �2P

f � Sf � Qf
2

� � ; (8)

where the surface of fracture Sf is weighted by the fracture flow Qf . The ratio in the right side of equation
(8) is a measure of the portion of the total fracture surface, where flow is significant. dQ can be directly com-
pared with the fracture density p32. Its inverse, d21

Q , defines the average distance between the main flow
paths. It can be related to the average distance between two flowing fractures in a borehole (Figure 10). A
small dQ corresponds to a large distance between the main flow paths, and thus highly channeled flow at
the network scale. Note that dQ does not depends on the flow intensity but only on the relative flow distri-
bution (i.e., multiplying the flow distribution by a constant does not change dQ).

Figure 11 shows the relation between dQ and p32 (Figure 11a), dQ and the percolation parameter p (Figure
11b), and permeability and dQ (Figure 11c) for all DFN models. For both kinematic and Poisson models, dQ

Figure 9. (a) Density of the backbone network db as a function of the fracture network density p32. (b) Relationship between the equivalent permeability and the backbone density db .
The yellow box shows the same relationship with log axis.

Table 2. Fracture Densities of the Total DFN (p32) and of the Backbone (dB) for KFM and PM DFN

Characteristic AS AC BS BC

p32 1.59 (60.029) 1.89 (60.033) 2.59 (60.037) 2.68 (60.041)
db MMð Þ 0.29 (60.097) 1.17 (60.076) 2.19 (60.081) 2.42 (60.068)
db PMð Þ 1.26 (60.05) 1.63 (60.035) 2.43 (60.02) 2.53 (60.02)

Water Resources Research 10.1002/2016WR018973

MAILLOT ET AL. PERMEABILITY OF DISCRETE FRACTURE NETWORK 12



increases with p32 but how it does can be interpreted in different
ways as discussed below. In any case, the flow channeling densi-
ty dQ of kinematic models is smaller by a factor of 1.5–3 than of
Poisson, emphasizing a stronger channeling of the former.

Figure 11b shows that dQ is linearly increasing with the percola-
tion parameter p, and that the intercept of the linear fit at dQ50
is the percolation threshold pc for both kinematic and Poisson
models although the slope of the linear relationship differs
between models. dQ is thus a proxy for p2pc .

Permeability K is strongly correlated to dQ in a relation that does
not depend much on the type of model (Figure 11c). A linear
relationship is a good fit for most of the large density models
(dashed lines in Figure 11c):

K51:4 dQ20:25ð Þ; (9)

with the notable exception of the KFMAS model, which is close
to the percolation threshold. A quadratic relationship (solid line
in Figure 11c) provides a good fit of all models, including KFMAS,
especially at low density and permeability:

Keq51:5 d2
Q; (10)

The linear (dashed line) and quadratic (solid lines) relationships
are reported in Figure 11a by combining with equation (6)
(K versus p32 linear relationship shown in Figure 5). The qua-
dratic relationship predicts that dQ vanishes with K as:

dQ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

1:5
p322pQcð Þ

r
; (11)

where pQc defines the density of fractures that do not contribute significantly to flow. The values of k and
pQc depends on the type of model (see discussion in the section following Figure 5), and lead to both blue
and red solid lines in Figure 11a. In contrast, a linear relationship K versus dQ would give a linear relationship
between dQ and p32 (dashed red line in Figure 11a) with a threshold smaller than pQc . This would predict a
nonnil channeling factor dQ around flow threshold.

Although more studies should be done to appraise the behavior of network around threshold of flow, we
guess that channeling should be maximum (dQ50) at threshold, and thus that the quadratic relationship is
a solid candidate for the K versus dQ relationship at least for networks close to threshold as KFMAS, inde-
pendently of the model type.

5. Hydraulic Properties for Variable Transmissivity

To complete the comparison between models, we introduce distributions of fracture transmissivities as it is
expected in natural systems [Follin et al., 2013; Gustafson and Fransson, 2006; €Ohberg and Rouhiainen, 2000;
Olsson, 1992]. We restrict this study to (1) a homogenous transmissivity in each fracture, and (2) a lognormal
transmissivity distribution uncorrelated to other fracture properties (i.e., fracture length and orientations).
As for similar studies [de Dreuzy et al., 2001b], the log-transmissivity distribution is characterized by an aver-
age (taken equal to 0, transmissivity of 1) and a dimensionless standard deviation r taken in the range 0–2.

We plot in Figure 12 both Keq and dQ for different values of r (kinematic models in Figure 12a, and Poisson
models in Figure 12b). For all models, increasing r leads to an increase of permeability with a decrease of
the channeling indicator dQ. In other words, systems with a distribution of transmissivity tend to be more
efficient and also more channeled than without. However, although the range of r between 0 and 2 is quite
large, the permeability does not change much for all models. Channeling is expected to be a consequence
of increasing transmissivity variability [Charlaix et al., 1987; de Dreuzy et al., 2001b]. This effect is observed

Figure 10. Illustration of the fracture and flow
distribution along a borehole. Each line symbol-
izes fracture, and the line thickness symbolizes
flow intensity. The average distance of the frac-
ture is the inverse of the fracture density d
(formally p10), while the distance between main
flow paths is the inverse of the channeling factor
dQ . dQ is necessarily smaller than d.
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for all models, but more pronounced for Poisson models than for kinematic ones. It is striking to note that
the flow structure is quite insensitive to the transmissivity variability. Moreover, the effects due the DFN
structure (Poisson versus kinematic models) remain much larger than those of increasing the variability of
transmissivity.

The dependency of flow with r reflects the flow structure organization. The power average exponent x,

defined by Keq rð Þ5Keq 0ð Þ � exp ðx � r2

2 Þ, thus quantifies the flow organization [Desbarats, 1992]: x varies

between 21 and 1, and the remarkable values of 21, 0, and 1 correspond to the harmonic (fractures in

Figure 11. Top, channeling factor dQ as a function of (a) the density of fracture p32 and (b) the percolation parameter p. (c) Equivalent permeability as a function of dQ . The dashed lines
represent linear fits, and the solid lines quadratic fits. Same legends as Figure 5 for symbols.

Figure 12. Plot of the equivalent permeability transmissivity with respect to the channeling factor for five values of r, the standard deviation of the log-transmissivity distribution: 0, 0.5,
1, 1.5, and 2. (a) The kinematic models are presented on the left graph and (b) the Poisson models on the right. The thickness of lines symbolizes the value of r, from the thickest (r52)
to the thinnest (r50).
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series), geometric, and arithmetic
means (fractures in parallel), respec-
tively. In practice, x is calculated from
the following expression [de Dreuzy
et al., 2010]:

x52� <
ln K rð Þ

K 0ð Þ

� �
ln TA

TH

� �
0
@

1
A

r

>; (12)

where TA and TH are the arithmetic
and harmonic averages of the fracture
transmissivities of the realization r. x is
then obtained by averaging over all
realizations [de Dreuzy et al., 2010]
(Figure 13). For the two denser Poisson
models (PMBC and PMBS), x is inde-
pendent of r, and about equal to 0.25,
consistent with dense 3-D on-lattice
networks studied by de Dreuzy et al.
[2010]. For all other models, x is

smaller than 0.25, increases with r, decreases with network density (already observed in de Dreuzy et al.
[2010]), and are smaller for kinematic model than for their Poisson equivalent.

The decrease of x for the kinematic models highlights an organization with less independent paths, and
more fractures in series than for the Poisson models. These configurations are conducive to the existence of
bottlenecks for flow as encountered in networks close or slightly above the percolation threshold [de Dreuzy
et al., 2010]. Model KFMAS is particularly sensitive to this critical effect, with x as small as 20.45.

The fact that x increases with r can be due to the importance of large structures on flow. Whether they
have or not a transmissivity larger or smaller than the average should affect the general flow organization.
This effect is hidden by the averaging over all configurations. We plan to address it in a future work.

6. Discussion

This study is a first attempt to analyze the consequences of replacing the random (Poisson) hypothesis com-
monly used to generate DFN by a fracture organization that results from simplified fracturing processes.
This model developed by Davy et al. [2010, 2013] produces T intersections, as ubiquitously observed in nat-
ural fracture networks [Bonneau et al., 2013; Dahi-Taleghani and Olson, 2011; Keshavarzi and Mohammadi,
2012], and ends up into a hierarchical organization (small fractures abutting large ones) and power law frac-
ture length distributions as commonly observed in natural fracture systems. One main strength of the mod-
el is to reproduce these scaling properties from a small set of parameters [Davy et al., 2010].

These kinematic models have been compared with their equivalent Poisson models (same density, length,
and orientation distribution, but fractures randomly positioned) for the range of fracture lengths that
belongs to the self-similar ‘‘dense’’ regime characterized by a power law fracture length distribution with an
exponent of 24. Different parameters have been used to general models with different dimensionless frac-
ture densities.

The first difference between kinematic and Poisson models is the number of intersections per fracture. For
the same density, Poisson models have 1.6–2 times more intersections than kinematic ones, with the same
ratio for all the classes of fracture lengths. In addition to the presence of T intersections, this reveals a large
difference in fracture organization.

Flow simulations made over more than 1000 realizations per model show significant differences between
kinematic models and their Poisson equivalents. The permeability is systematically smaller for kinematic
models by a factor 1.5–10. The main difference is that the density of fractures that do not participate in flow
is larger in the kinematic models than in their Poisson equivalents.

Figure 13. Plot of the power average exponent x as a function of r2, with r the
standard deviation of the lognormal distribution of fracture transmissivity. The
same symbols are used for the different models as in previous figures. Illustration
of flow regime is proposed for KFMAS (in blue) and PMBC (in red) for r50 and
r52.
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Another important difference between models is flow channeling. Although this is a striking characteristic
feature of geological systems [Berkowitz, 2002; Neuman, 2005; Tsang and Neretnieks, 1998], the intense
channeling observed in natural fracture systems is hardly reproduced by Poisson models, except by
decreasing fracture density down to the percolation threshold [Follin et al., 2013]. We introduce a measure
of channeling dQ derived from the participation ratio [Bell and Dean, 1970; Edwards and Thouless, 1972]. dQ

quantifies the actual contribution of the total fracture surface to flow normalized by the system volume. dQ

is a density, directly comparable (but smaller) to the total fracture density p32. The smaller is the fracture sur-
face, the higher is the channeling. For Poisson models, flow takes place in a surface that represents about
one third to one fourth of the total fracture surfaces. For kinematic models, the ratio is much smaller from
one tenth to one fifth.

The kinematic model with the smallest density, KFMAS, differs from the three others as well as from the
Poisson models, in the sense that it is an exception for most of the linear trends between permeability and
network density (Figures 9b and 11c). This is typical of a behavior close to the percolation threshold, where
nonlinear relationships are expected between flow and structure parameters. This is an important issue
since small changes in the DFN density parameters can induce large variations of flow properties. The
observation that kinematic models tend to produce networks with critical behavior despite percolation
parameter well above pc has also been reported by [Davy et al., 2010] from 2-D simulations. We note that
Poisson and kinematic models do not seem to behave similarly close to percolation threshold, as shown by
the relationship between permeability and percolation parameter (Figure 5b).

The kinematic models tend to favor in-series configuration, as shown by the dependency of permeability
with transmissivity variations (Figure 13 with negative values of x), meaning that they will be potentially
more sensitive to low-transmissivity fractures than will be the Poisson models. This is still an example of the
difference between kinematic and Poisson models, with a behavior potentially more critical for the former
than for the latter.

Enhanced channeling is consistent with observations on natural systems. Follin et al. [2013] reported that
the density of flowing fractures is about 10 times smaller than the density of ‘‘open’’ (i.e., not clogged) frac-
tures in the Forsmark site (Sweden). However, a direct comparison with field data, which is beyond the
scope of this study, must address a few issues specific to the adequacy between measures and models:

1. A comparison between model and natural systems requires to fix both the characteristic length lo (used
for all density terms, p32, dQ, and db) and transmissivity To (used for K) relevant for natural systems. In
Poisson models, lo is the lower bound of the power law length distribution, a value hardly known from
field measurements. In kinematic models, lo is the critical length lc , below which fractures are not or bad-
ly connected [Davy et al., 2010, 2013]. Darcel et al. [2014] estimated lc to vary between 1 and 20 m for the
Swedish sites of Forsmark, Laxemar, and Simpevarp also studied in Follin et al. [2013]. In any case, the
actual lo value may be very different from the scale at which the fracture density is measured (generally
the borehole scale �0.1 m).

2. The channeling measure dQ is calculated by characterizing each fracture by a single flow value QF . This is
consistent with the assumption of a unique transmissivity value per fracture, but this does not consider
potential channeling within the fracture plane that is quite a common phenomenon observed in many
field experiments [Abelin et al., 1990, 1994; Neretnieks, 1993; Olsson, 1992], laboratory studies [Birgersson
et al., 1993; Brown and Scholz, 1985; Klimczak et al., 2010], and numerical simulations [de Dreuzy et al.,
2012; Ishibashi et al., 2012; Tsang and Tsang, 1987]. dQ is thus an upper bound of the flow density that
can be measured at depth in boreholes or in tunnels.

3. Channeling is enhanced by positively correlating transmissivity with fracture length [de Dreuzy et al.,
2001b; Frampton and Cvetkovic, 2011; Hyman et al., 2015]. Although the importance of this correlation in
natural systems is still an open issue [see, for instance, Follin et al., 2013; Joyce et al., 2014], this effect
deserves being tested before deriving conclusions about flow channeling.

Note that only a few parameters of kinematic models have not been deeply investigated in this study. The
influence of the domain size L, of the size of the T intersections, and of potential correlations between trans-
missivity and fracture length will be the subject of a future study. In a future work, we plan to consider a
better description of the fracture nuclei location, which is obviously not a purely uniform random process
but should vary as a function of the distance to existing fractures [Bonneau et al., 2016].
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7. Conclusions

We have analyzed the flow properties of a new DFN model, whose spatial structure results from simplified
kinematic rules for fracture nucleation, growth, and arrest. This class of simplified kinematic DFN models are
compared with Poisson (i.e., randomly distributed) DFNs with the same geometrical characteristics (same
length and orientation distributions, same density). Four kinematic models were designed with different
rules of nucleation, growth, and arrest, leading in the dense (i.e., large-scale) regime to power law fracture
length distribution with a fixed exponent of 24, and density terms from 1 to 1.7. In this study, we analyze
DFNs with fracture lengths in the dense power law regime only. For all models, the percolation parameter is
much larger than the percolation threshold.

In the kinematic models, the number of intersections per fracture smaller by a factor 1.6–2 than in Poisson
models. In addition to the presence of T intersections, this reveals one of the main differences in the spatial
organization of fracture networks.

For both models, the permeability is well described by a linear relationship with the density p32, but the
threshold (i.e., minimum density to get a nonnil permeability) is 50% larger in kinematic than in Poisson
models. The permeability of kinematic models is 1.5–10 times smaller than in Poisson. The largest difference
is observed for models with the smallest density, whose p32 is close to threshold.

Both models also differ in the flow organization. Although the backbone (defined in section 4.3) is rather
similar for models with the largest densities, it differs significantly for models with the smallest densities,
where the number of fractures that participate in flow is significantly smaller in kinematic than in Poisson
models.

We calculate a channeling indicator dQ, which is a density measure of the surface which transports a signifi-
cant part of flow. dQ is a subset of the total fracture density and even of the backbone density. For Poisson
models, dQ represents about one third to one fourth of p32. For kinematic models, the ratio is smaller and
varies from one tenth to one fifth, emphasizing an enhanced channeling. Although dQ is model dependent,
the relationship between permeability K and dQ is likely not, and depends only on the network density. It is
quadratic at low densities, and then linear at larger ones.

All the previous results were obtained with a constant transmissivity. We also investigate the sensitivity of
permeability and channeling to a distribution of fracture transmissivities (lognormal distributions with stan-
dard deviations varying from 0 to 2), and analyze the way permeability averages this distribution. In terms
of channeling, kinematic models are less sensitive to transmissivity variability than their Poisson equivalents.
The power average exponent x, which quantifies the way averaging proceeds and thus the flow organiza-
tion, varies between 20.5 and �0 for kinematic models. Such negative values are characteristic of elements
in series, rather controlled by small transmissivity values. In contrast, x is slightly positive, between 0.1 and
0.25, for Poisson models, that is between an geometric and arithmetic averaging process.

This analysis demonstrates that choosing an appropriate DFN organization is important for predicting flow
properties from fracture network parameters. With the same density, length, and orientation distributions,
Poisson models can overestimate permeability by a factor of 10 compared to DFN models built from kinemat-
ic rules that mimic the origin of fracturing in geological formations. This is especially true for some of these
models with a large number of dead-ends, which behave as systems close to the percolation threshold.

Appendix A: Number of Intersection Per Fractures

In this appendix, we derive an analytical expression of the number of intersections per fracture IF lð Þ. We first
calculate the number of fracture F0of size l0 that intersect a fracture F of size l. This amounts to calculate the
volume surrounding F into which the center of F0 must lie to intersect it. This volume can be approximated
by a cylinder of radius l1l0=2, and height bl0, where b is a coefficient that takes account of the differential
orientation of F0 versus F:

VI5b l1l0=2ð Þ2 � l0

The number of fractures in this volume is given by the density of fractures: n l0; Vð Þ5V�al024, as in equation
(3), and the total number of intersection is obtained by summing the contribution of all fractures size 0:
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