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The more accurate feature identification, the more precise reservoir characterisation.

Porosity, permeability and other rock properties could be estimated and classified by analytical and intelligent methods. Feature selection, plays a vital role in the process of identification. In this work, two goals are followed: first, developing Bayesian Network, K2 algorithm, as a complementary means (not an alternative) to find interrelationships of petrophysical parameters.

Second, feature conditioning for estimating porosity and permeability, vug and fracture detection, and net pay determination. Due to the results, bulk density log is introduced as the most important feature for characterising the reservoir because it is found useful for identifying all the studied reservoir features.

Introduction

Manuscript Click here to download Manuscript: BN,ver8.doc The concept of Bayesian Network (BN) was firstly developed in the fields of electrical and computer engineering. [START_REF] Pearl | Fusion, propagation, and structuring in belief networks[END_REF] and [START_REF] Cooper | A Bayesian method for the induction of probabilistic networks from data[END_REF] are of pioneers in Bayesian Network (BN) who defined this concept, and introduced the methodology clearly and applicably at the time. Later on, this methodology was used in a wide range of science and technology. [START_REF] Doguc | A generic method for estimating system reliability using Bayesian networks[END_REF] utilized BN in estimating system reliability.

Khor et al constructed three different types of BN classifiers in detecting network attacks; and by comparing the results, they concluded that these three types are well equivalent in performance [START_REF] Khor | From feature selection to building of Bayesian classifiers: A network intrusion detection perspective[END_REF]. BN is also used in some other fields like forecasting price in stock market [START_REF] Zuo | Stock price forecast using Bayesian network[END_REF]. It is some years that BN has been entered in geoscience studies. Based on the records of Scopus database; among all fields of earth science, remote sensing benefits from BN the most.

In petroleum industry, BN is used to assess situations and conditions probabilistically, e.g. in downstream it is used in circulation monitoring system [START_REF] Mansure | A Probabilistic Reasoning Tool for Circulation Monitoring Based on Flow Measurements[END_REF]; safety instrumentation and risk reduction at wellsite [START_REF] Kannan | Bayesian Networks: Application in safety instrumentation and risk reduction[END_REF]; identifying candidate wells for gel-polymer treatment [START_REF] Ghoraishy | Application of Bayesian networks for predicting the performance of gel-treated wells in the arbuckle formation, Kansas. 16th SPE/DOE Improved Oil Recovery Symposium 2008[END_REF]; drilling industry [START_REF] Al-Yami | Underbalanced Drilling Expert System Development[END_REF][START_REF] Al-Yami | Drilling Expert System for the Optimal Design and Execution of Successful Cementing Practices[END_REF][START_REF] Rajaieyamchee | Real time decision support in drilling operations using Bayesian Decision Networks[END_REF]; production issues and history matching [START_REF] Abdollahzadeh | Estimation of Distribution Algorithms Applied to History Matching[END_REF][START_REF] Hermann | Water Production Surveillance Workflow using Neural Network and Bayesian Network Technology: A Case Study of Bongkot North Field, Thailand[END_REF][START_REF] Khaz'ali | Bayesian network -A new probabilistic method for petroleum reservoir production prediction and history matching[END_REF]; completion [START_REF] Al-Yami | Expert System for the Optimal Design and Execution of Successful Completion Practices Using Artificial Bayesian Intelligence[END_REF]; and Enhanced Oil Recovery (EOR) [START_REF] Zerafat | Bayesian Network Analysis as a Tool for Efficient EOR Screening[END_REF] There are some publications of application of BN in upstream, specifically in basin analysis from economical evaluation of prospects [START_REF] Van Wees | A Bayesian belief network approach for assessing the impact of exploration prospect interdependency: An application to predict gas discoveries in the Netherlands[END_REF] to studying dependency relationships between geological features [START_REF] Martinelli | Bayesian networks for prospect analysis in the North Sea[END_REF][START_REF] Martinelli | Building Bayesian networks from basin-modelling scenarios for improved geological decision making[END_REF][START_REF] Rasheva | A new and improved approach for geological dependency evaluation for multiple-prospect exploration[END_REF]. In addition, there are two recently published papers in the upstream that have used BN in identifying effective logs, i.e. feature selection for determining productive zones through oil wells. Due to the results of one of articles, the ratio of LLD to LLS and individually LLD are the most effective raw features for detecting productive zones through oil wells (Masoudi et al., 2012c). Based on the results of the latter, porosity and water saturation are the most important extracted features for evaluating productive zones (Masoudi et al., 2012a).

It is worthy to mention that feature selection/ extraction is a basic and important stage in the process of identification [START_REF] Russo | Fuzzy methods for multisensor data fusion. Instrumentation and Measurement[END_REF]. It is not a good idea to consider all available information as input parameters. In another words, redundant information or duplications should be detected and removed from dataset [START_REF] Bleiholder | Data Fusion[END_REF].

The mentioned literature review reveals that newly developed concept of BN in petroleum industry is gradually going to become more and more applicable and renowned in exploratory investigations. As BN is a powerful tool to identify causal relationships between different features and phenomena, we have utilized it as a means to select effective petrophysical features for reservoir identification. The proposed procedure is based on correlation and dependency relations between reservoir properties and petrophysical parameters. In fact, we think that the deeper and the more precise understanding of interrelations and causations between parameters, the more effective feature selection, which plays an important role in success of any identification procedure; i.e. estimation, classification or clustering. Therefore, in this paper, authors follow two aims; the first one is developing the concept of dependency and Bayesian Network as an intelligent methodology for finding causality relationships and feature selection in petrophysical assessments, which is the novelty of this article. Second goal is introducing useful petrophysical parameters for identifying some reservoir properties (porosity, permeability, open fractures, vuggy porosity and net pay) within oil wells, which is a practical aid for petrophysiscists and geoscientists in their studies.

To do so, a brief review on a famous feature selection criterion, correlation coefficient, is presented following introducing available datasets; then, concept of "dependency" and methodology of "Bayesian Network" are added to make respected readers familiar with the concept and methodology. Thereafter, generated BNs and their outputs in various aspects of reservoir characterisation (estimating porosity and permeability, vug and fracture detection, and net pay determination) are included, followed by discussion and conclusion.

Datasets

In this work, petrophysical datasets of three Iranian oil-fields in Zagros Region have been studied. For the sake of confidentiality of data and information in National Iranian Oil Company (NIOC), the names of oil-fields under study (F1, F2 and F3) have not been enclosed but their approximate locations are indicated on Fig. 1. (Masoudi et al., 2012b;[START_REF] Rajabi | Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran[END_REF][START_REF] Sherkati | Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran[END_REF].

F1 is a giant field in Abadan Plain with North-South trend that has been used for evaluating net pay zones and estimating porosity and permeability. In this field, Sarvak Formation (Albian to Turonian) in six exploratory wells is studied. For fracture detection, one oil well in another giant oil-field (F2) is chosen. F2 is a Northwest-Southeast anticline in northern side of Kazerun Fault in South Dezful Area, very close to Izeh Zone. The reason why this field is selected for fracture study is availability of interpreted image logs and fullest of petrophysical data. For vug detection, a relatively small-sized anticline-shaped field (F3) in central Lurestan Area is selected. Access of authors to studied core reports is the reason for selecting this field to find causal relationship of vuggy porosity with petrophysical data. F3 has the same trend as F2, and like F1, investigation is fulfilled again within Sarvak Formation. Whereas the approximate locations could be seen in Fig. 1; summary of data and the purpose of choosing these three fields is summarized in Table 1.

Summary of available data and information in F1 are shown in Table 2. CGR, DT, NPHI, RHOB, LLD, LLS and MSFL are common well logs in all six wells; therefore, in order to incorporate maximum number of wells, other well logs are not included in this study. In addition, because there is no core data in well 6, this well is exempted from porosity-permeability study.

Also, due to lack of well test data in well 5, this well is exempted from net pay investigation.

In each of F2 and F3 fields, only one well is available. Available data in F2 are CGR, NPHI, DT, PEF, RHOB and SGR well logs, and interpretation of open fractures on image log; whereas available data in F3 are GR, Cali, RHOB, DRHO, NPHI, DT and LLD well logs, and observed vuggy porosity in cores.

A Simple Review of the Correlation Coefficient

Correlation coefficient is a well-known factor, measuring correlation (mutual relationship) between two different variables. There are different standpoints for calculating correlation coefficient: algebraic, geometric, and trigonometric. Pearson product-moment correlation coefficient is the most well-known formula for calculating correlation coefficient of two variables from algebraic viewpoint [START_REF] Lee Rodgers | Thirteen ways to look at the correlation coefficient[END_REF]. Fig. 2 shows two correlated variables; i.e. b changes when a changes in the same or reverse direction (variables in Fig. 2 are correlated in the same direction). Although correlation coefficient is a very valuable and important factor for understanding interrelations of variables, there are some insufficiencies in using it [START_REF] Bobko | A Review of the Correlation Coefficient and Its Properties, Correlation and Regression[END_REF]. does not necessarily mean that the number of children has risen too (Whereas Population Growth Rate is positive in developing countries, it is very close to zero or even negative in developed countries, and is not directly related to number of fathers or adults). But when the number of kids rises, you are 100% sure that the number of fathers (adults) has risen; because every kid needs a father to be born but fathers do not need their children for existing! Therefore, there is no mutual relation or correlation between number of fathers and children; however one of them is dependent on the other (directional relation).

Another example for insufficiency of correlation coefficient in showing interrelation of two variables, revealed in Fig. 3. If 100 people are asked to climb Damavand Mountain (highest peak in Iran with elevation of 5610 meters above the geoid), and plot the height of which they have reached against their ages, the plot would be like in Fig. 3. In fact, the acquired data is distributed between two envelopes that show possible and certain accessible heights for each age.

The shapes of these two envelopes are similar to an inverse "V", because teenagers and olds are not able in reaching high heights, whereas young people and middle-aged can even reach the peak. Correlation coefficient of dataset of this plot is something close to zero but without any shadow of doubt, there is a relationship between maximum accessible height and age in mountain climbing, while they are not correlated due to correlation coefficient.

Fig. 3. Dependency between age and accessible height for a man.

A practical example of this inefficiency in petrophysics could be found on cross-plot of Calliper-Vug and RHOB-Vug on Fig. 8. In these two cross-plots, there is no mutual relationship between two plotted variables as in Fig. 3, later we show that both Calliper and RHOB are important features for vug detection.

What Is Dependency?

This work introduces dependency between variables as an alternative for finding related variables, especially when there is no mutual relationship like relationship of father and child. Now, what is dependency? Each field has its own definition of dependency, and they are close to each other. Oxford dictionary states that "dependence" means "the state of relying on or being controlled by someone or something else" (OxfordDictionaries, 2010). From mathematical viewpoint, probabilistic is a means for evaluating dependency of variables on each other.

Probabilistically, two variables are called independence, when the joint probability of them is equal to product of their own probability [START_REF] Olofsson | Probability, statistics, and stochastic processes[END_REF]:

(1)

In the above equation, A and B are independent sets. Bayesian Probability is theory of studying conditional probability between two or more dependent variables, which uses Bayes rule for calculating evidential probabilities [START_REF] Duda | Pattern Classification[END_REF]. Bayesian Network, which is introduced here in order to find out dependency relation between petrophysical variables, is mainly based on Bayesian theory of conditional probabilities.

Methodology

Bayesian Network

Consider five measured variables (named a 1 to a 6 ) that are supposed to be effective on another unknown variable, called b, and each of these seven parameters can admit four different states. Therefore there are four powered seven (i.e. 16'384) possible states, and it is not only hard to compute and consider all these states (an NP-hard problem), but also impossible in the case of lack of complete and comprehensive dataset of records.

Bayesian Network is a directed acyclic graph that nodes represent variables and edges show direct dependencies between the linked variables. Now, suppose that dependency relationships between those previously mentioned seven variables can be represented as in Fig. 4. Based on this graph, the variable b is only dependent on the variables a 3 , a 4 and a 5 . Also, it is simple to formulate probability of b as:

(2)

(3) That P(x) is probability of occurrence of x, is joint probability, i.e. probability of occurrence of x and y simultaneously, is probability of x, considering y, i.e. conditional probability. The first equation is inferred from independency of the variable a 5 and set of variables a 3 and a 4 . For better understanding of equation 3, respected readers are referred to [START_REF] Pearl | Fusion, propagation, and structuring in belief networks[END_REF]. There are two methodologies for constructing BNs: constraint-based methods and scorebased methods [START_REF] Lauría | An Information-Geometric Approach to Learning Bayesian Network Topologies from Data[END_REF]. The former is used in cases that user is confident about the causal relationships between variables. For instance Total Organic Carbon (TOC) is a prerequisite for oil generation, and none of specialists believe that oil could be generated without having some least amount of TOC [START_REF] Al-Ameri | Petroleum system analysis of the Mishrif reservoir in the Ratawi, Zubair, North and South Rumaila oil fields, southern Iraq[END_REF]. Furthermore there is a dependency relation between TOC and oil generation. In fact, constraint-based methods are judgmental methods that an expert is responsible for [START_REF] Martinelli | Bayesian networks for prospect analysis in the North Sea[END_REF].

In some cases, it is difficult or even impossible for a user to determine dependency relations between variables. In these cases, data-driven approaches are used to find the most probable state of dependency between each pair of variables. In score-based methods, a calculated score is set as a criterion to find the dependency relation between two variables. For using score-based methods, two elements should be specified: search procedure and scoring metric. Scoring function should be associated with probability of a candidate directed acyclic graph, and search procedure is considered as an optimization problem. Greedy hill-climbing algorithm, K2 algorithm, simulated annealing optimization, Monte Carlo are some of those score-based methods, known as heuristic approaches to construct a BN [START_REF] Cooper | A Bayesian method for the induction of probabilistic networks from data[END_REF][START_REF] Lauría | An Information-Geometric Approach to Learning Bayesian Network Topologies from Data[END_REF][START_REF] Niedermayer | An introduction to Bayesian networks and their contemporary applications[END_REF]. In this work, K2 algorithm is used in order to construct BNs.

K2 Algorithm

K2 algorithm is a score-based method for constructing BNs, although it is not completely free of constraint. Two constraints should be considered prior to running K2 algorithm. The first one is to state the maximum possible parents that each node can have; the other is providing a true initial order of variables by user that variables are not dependent in reverse order. E.g. if the initial order of (a 1 , a 2 , a 3 , … , a n ) is provided by user, a j could be dependent on a i (i<j); though a i cannot be dependent on a j but if a i and a j are mutually correlated. After considering these two constraints, following algorithm should be applied on the dataset [START_REF] Doguc | A generic method for estimating system reliability using Bayesian networks[END_REF]:

Algorithm K2(T,u):

Input: dataset of observations, T, and maximum possible number of parents for each node, u.

Output: Bayesian Network, BN.

(1) For each variable in input dataset, T

(1-1) Create node Ai as i-th variable, and add it to BN

(1-2) Create an empty set as set of parents (Pa i ) of A i

(1-3) Calculate by:

(4)

Where, is number of times that A i and A j are in a specific state of k. d i is number of states of A i . Finally, q i is number of possible parents, i.e. .

(1-4) While number of elements of Pa i is not larger than u:

(1-4-1) Assume X z as a parental node of X i

(1-4-2) Calculate

(1-4-3) If the score of is larger than , fix A z as a permanent node of A i , otherwise, remove it from parental set (Pa i ).

(2) Return BN

Results

In this section, correlation coefficient and Bayesian Network are utilized to find out effective features for reservoir identification. In the first part, important features for porosity and permeability estimation are determined, and in the second, third and fourth parts, useful features for fracture and vug detection and net pay assessment are determined respectively.

Causal Relationships in Porosity and Permeability Estimation

Estimating porosity and permeability of reservoir rocks is very essential in reservoir characterization, static and dynamic modelling. There are many investigations about estimating porosity and permeability of reservoirs. The input features, used for estimating these two parameters have not remained unchanged during time. Table 3 shows different datasets, introduced for porosity and permeability estimation in chronological order.

In order to find out, appropriate features for estimating porosity and permeability, scatter plots of all logs, and porosity and permeability of core analysis are plotted on Fig. 5 Due to criterion of correlation coefficient, porosity is relatively well-correlated to Log(Perm) and RHOB. Based on constructed BN, porosity is related to Log(Perm) (child) and RHOB (parent) in the first order. Therefore, both criteria, unanimously agree that the first two features, related to porosity are Log(Perm) and RHOB. Again due to correlation coefficient, Log(Perm) is relatively well-correlated with porosity and LLD. BN approves that porosity is the most influential factor for estimating Log(Perm), whereas defines RHOB in the second stage.

It is relatively easy to come on an agreement in feature selection for porosity because priorities of both criteria are very close to each other. Three features of RHOB, DT and NPHI are the most related features to porosity; then, LLD and CGR. For Log(Perm), it is a bit tricky. The two mostly related features for permeability estimation are porosity and RHOB. After these two, LLD, NPHI and DT could be named.

Causal Relationships for Fracture Detection

Studying fractures is much more complex than porosity and permeability due to wild nature of fractures and variety of fracture geometry. Image logs are main means to identify and characterize fractures [START_REF] Ja'fari | Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system[END_REF], although in case of lack of this information source, traditional well logs are used (Table 4). Surprisingly, based on both criteria, priorities of features for fracture identification are the same, except in the places of CGR and PEF.

Causal Relationships for Vug Detection

Like fractures, image logs are most reliable tools for vug detection. It is worthy to mention that vug pores are visible in cores likewise, whereas fractures could not be studied in cores due to low core recovery within fractured intervals. In addition, vug pores are not investigated as much as fractures so far (Table 4), due to their relatively low importance, comparing to fractures. By the way, for selecting appropriate features for vug detection, scatter Calliper log is the most important feature for vug detection (Fig. 9 (a)); NPHI, DT, RHOB and GR are other important features in order.

Causal Relationships for Net Pay Determination

Determining productive zones is a very critical stage in static reservoir modelling.

Petrophysical net pay determination is usually done by cut-off method. Some of utilized features in literature are included in Table 5.

For net pay detection, production rate, derived from production test is utilized as criteria of productivity: In order to satisfy the second goal of the paper, which is providing results of feature selection in order to benefit petrophysiscists of, selected features for reservoir characterization are summarized in Table 6. 1 st stage features are those features that have high priority due to both criteria; 2 nd stage features are those effective features that do not have the same importance as 1 st stage features. For fracture detection, there is another column named 3 rd stage features that are not as important as 2 nd stage features. It is worthy to mention that bulk density (RHOB) is the most frequent feature in this table; therefore, the most important log for reservoir characterization.

Tables 3, 4 and 5 are included in the current work in order to validate obtained results, i.e. proposed input features for reservoir study, Table 6. Comparing the current (Table 6) and previous works (Tables 3, 4 and5) reveals that selected features (Table 6) are reasonable for porosity, permeability, fracture, vug and net pay studies; furthermore, combining BN and correlation coefficient is a successful way for feature extraction in reservoir characterisation.

Conclusion

Although correlation coefficient is a very useful and easy to use criterion to find and quantify mutual relationships between different variables, there are some pitfalls when using it.

In this work, Bayesian Network is introduced as a complementary means (not an alternative) to find out dependency relations; therefore, finding causal relationships and feature selection in 
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 1 Fig. 1. Map of Zagros Region and main faults of the region. Modified after (Masoudi et al.,
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 4 Fig. 4. A Bayesian Network, showing dependency relation of seven variables of a 1 to a 6 and b.
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 5 Fig. 5. Relationships between features in Sarvak Formation of F1 for porosity and permeability estimation.

  Like before, to find out appropriate features for fracture study, scatter plots of all logs, and identified open fracture on image logs are shown on Fig. 6. Then, correlation coefficients between each pair of variables are calculated and are shown on each plot. Due to correlation coefficients, DT and SGR are the most important features for fracture identification in F2; then, CGR and RHOB.
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 67 Fig. 6. Correlation chart and histograms in Sarvak Formation of F2.

  plots of all logs, and observed vug pores are shown on Fig. 8. Then, correlation coefficients between each pair of variables are calculated and shown on each plot. Due to correlation coefficients, NPHI, DT and RHOB are the most important features for vug detection in F3.
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 89 Fig. 8. Correlation chart in and Sarvak Formation of F3.
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 10 Fig. 10. Relationships between features in Sarvak Formation of F1 for net pay detection.
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Table 1 .

 1 The table shows what reservoir properties are studied in which field

	Figure4

Table 2 .

 2 Summary of dataset of F1 oil field, available for evaluating causality relationships for assessing porosity, permeability and net pay zones

	Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

Table 3 .

 3 Petrophysical parameters for porosity estimation in various references

	Table3		
		Used Parameters for Estimation	Source
		NPHI, Density, Sonic, Resistivity	(Helle et al. 2001)
	Porosity	DT, GR, ILD, ILS, NPHI, RHOB	(Jalali Lichaei and Nabi Bidhendi 2006)
		CGR, DT, LLD, LLS, MSFL, NPHI, RHOB	(Masoudi et al. 2011b)
		NPHI, Density, Sonic, Resistivity	(Helle et al. 2001)
		Depth, DT, GR, ILD, ILS, RHOB, Sw, Porosity	(Jalali Lichaei and Nabi Bidhendi 2006)
		NMR	(Fethi et al. 2010; Timothy et al. 2008)
		SGR, CGR, RHOB, TNPH (Thermal Neutron Porosity),	
	Permeability	Rs (medium resistivity), Rt (deep Resistivity), Rxo (shallow resistivity), DT, VCLAY (clay volume) Saturation, Gamma, Neutron, RHOB, PEF, DT, Resistivity	(Shahvar et al. 2009) (Saemi et al. 2007)
		Gamma, DT, Nphi, RHOB, LLD/LLS	(Ibrahim Sami and Adel 2010)
		NPHI, RHOB, DT, LLD, SGR, CGR	(Mehri 2010)
		CGR, DT, LLD, LLS, MSFL, NPHI, RHOB	(Masoudi et al. 2011b)

Table 4 .

 4 Petrophysical parameters for evaluating secondary porosity

	Table4		
		Used Parameters for Identification	Source
		Water Saturation, GR	(Tokhmechi et al., 2009)
	Fracture	Calliper, DT, RHOB, PEF	(Tokhmchi et al., 2010)
		DT, RHOB, NPHI, Resistivity	(Ja'Fari et al., 2012)
	Vug	NPHI, DT, GR, Calliper NPHI, DT, GR, RHOB	(Asgarinezhad et al., 2011) (Asgari-Nezhad et al., 2012)

Table 5 .

 5 Petrophysical parameters for net pay determination in various references

	Table5	
	Used Parameters for detection	Source
	Shale Volume, Porosity, Water Saturation	(Jensen and Menke 2006; Mahbaz et al. 2011; Worthington 2010)
	Permeability, Porosity, Viscosity, Compressibility	(Masoudi et al. 2011b)
	Porosity, Water Saturation, Shale Volume	(Masoudi et al. 2012a)
	Ratio of LLD to LLS and LLD	(Masoudi et al. 2012c)

Table 6 .

 6 Result of feature selection for porosity, permeability, fracture detection, vug detection and net pay determination due to correlation coefficient and Bayesian Network
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