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Abstract 

The more accurate feature identification, the more precise reservoir characterisation. 

Porosity, permeability and other rock properties could be estimated and classified by analytical 

and intelligent methods. Feature selection, plays a vital role in the process of identification. In 

this work, two goals are followed: first, developing Bayesian Network, K2 algorithm, as a 

complementary means (not an alternative) to find interrelationships of petrophysical parameters. 

Second, feature conditioning for estimating porosity and permeability, vug and fracture 

detection, and net pay determination. Due to the results, bulk density log is introduced as the 

most important feature for characterising the reservoir because it is found useful for identifying 

all the studied reservoir features. 

Keywords: feature conditioning; porosity; permeability; fracture; vug; net pay 

1. Introduction 
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The concept of Bayesian Network (BN) was firstly developed in the fields of electrical 

and computer engineering. (Pearl, 1986) and (Cooper and Herskovits, 1992) are of pioneers in 

Bayesian Network (BN) who defined this concept, and introduced the methodology clearly and 

applicably at the time. Later on, this methodology was used in a wide range of science and 

technology. (Doguc and Ramirez-Marquez, 2009) utilized BN in estimating system reliability. 

Khor et al constructed three different types of BN classifiers in detecting network attacks; and by 

comparing the results, they concluded that these three types are well equivalent in performance 

(Khor et al., 2009). BN is also used in some other fields like forecasting price in stock market 

(Zuo and Kita, 2012). It is some years that BN has been entered in geoscience studies. Based on 

the records of Scopus database; among all fields of earth science, remote sensing benefits from 

BN the most. 

In petroleum industry, BN is used to assess situations and conditions probabilistically, 

e.g. in downstream it is used in circulation monitoring system (Mansure et al., 1999); safety 

instrumentation and risk reduction at wellsite (Kannan, 2006); identifying candidate wells for 

gel-polymer treatment (Ghoraishy et al., 2008); drilling industry (Al-yami and Schubert, 2012; 

Al-Yami et al., 2010; Rajaieyamchee and Bratvold, 2009); production issues and history 

matching (Abdollahzadeh et al., 2011; Hermann et al., 2011; Khaz'ali et al., 2011); completion 

(Al-yami et al., 2011); and Enhanced Oil Recovery (EOR) (Zerafat et al., 2011) 

There are some publications of application of BN in upstream, specifically in basin 

analysis from economical evaluation of prospects (Van Wees et al., 2008) to studying 

dependency relationships between geological features (Martinelli et al., 2011; Martinelli et al., 

2013; Rasheva and Bratvold, 2011). In addition, there are two recently published papers in the 
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upstream that have used BN in identifying effective logs, i.e. feature selection for determining 

productive zones through oil wells. Due to the results of one of articles, the ratio of LLD to LLS 

and individually LLD are the most effective raw features for detecting productive zones through 

oil wells (Masoudi et al., 2012c). Based on the results of the latter, porosity and water saturation 

are the most important extracted features for evaluating productive zones (Masoudi et al., 

2012a). 

It is worthy to mention that feature selection/ extraction is a basic and important stage in 

the process of identification (Russo and Ramponi, 1994). It is not a good idea to consider all 

available information as input parameters. In another words, redundant information or 

duplications should be detected and removed from dataset (Bleiholder and Naumann, 2008). 

The mentioned literature review reveals that newly developed concept of BN in 

petroleum industry is gradually going to become more and more applicable and renowned in 

exploratory investigations. As BN is a powerful tool to identify causal relationships between 

different features and phenomena, we have utilized it as a means to select effective petrophysical 

features for reservoir identification. The proposed procedure is based on correlation and 

dependency relations between reservoir properties and petrophysical parameters. In fact, we 

think that the deeper and the more precise understanding of interrelations and causations between 

parameters, the more effective feature selection, which plays an important role in success of any 

identification procedure; i.e. estimation, classification or clustering. Therefore, in this paper, 

authors follow two aims; the first one is developing the concept of dependency and Bayesian 

Network as an intelligent methodology for finding causality relationships and feature selection in 

petrophysical assessments, which is the novelty of this article. Second goal is introducing useful 
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petrophysical parameters for identifying some reservoir properties (porosity, permeability, open 

fractures, vuggy porosity and net pay) within oil wells, which is a practical aid for 

petrophysiscists and geoscientists in their studies. 

To do so, a brief review on a famous feature selection criterion, correlation coefficient, is 

presented following introducing available datasets; then, concept of “dependency” and 

methodology of “Bayesian Network” are added to make respected readers familiar with the 

concept and methodology. Thereafter, generated BNs and their outputs in various aspects of 

reservoir characterisation (estimating porosity and permeability, vug and fracture detection, and 

net pay determination) are included, followed by discussion and conclusion.  

2. Datasets 

In this work, petrophysical datasets of three Iranian oil-fields in Zagros Region have been 

studied. For the sake of confidentiality of data and information in National Iranian Oil Company 

(NIOC), the names of oil-fields under study (F1, F2 and F3) have not been enclosed but their 

approximate locations are indicated on Fig. 1. 
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Fig. 1. Map of Zagros Region and main faults of the region. Modified after (Masoudi et al., 

2012b; Rajabi et al., 2010; Sherkati and Letouzey, 2004). 

F1 is a giant field in Abadan Plain with North-South trend that has been used for 

evaluating net pay zones and estimating porosity and permeability. In this field, Sarvak 

Formation (Albian to Turonian) in six exploratory wells is studied. For fracture detection, one oil 

well in another giant oil-field (F2) is chosen. F2 is a Northwest- Southeast anticline in northern 

side of Kazerun Fault in South Dezful Area, very close to Izeh Zone. The reason why this field is 

selected for fracture study is availability of interpreted image logs and fullest of petrophysical 

data. For vug detection, a relatively small-sized anticline-shaped field (F3) in central Lurestan 

Area is selected. Access of authors to studied core reports is the reason for selecting this field to 

find causal relationship of vuggy porosity with petrophysical data. F3 has the same trend as F2, 

and like F1, investigation is fulfilled again within Sarvak Formation. Whereas the approximate 
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locations could be seen in Fig. 1; summary of data and the purpose of choosing these three fields 

is summarized in Table 1. 

Summary of available data and information in F1 are shown in Table 2. CGR, DT, NPHI, 

RHOB, LLD, LLS and MSFL are common well logs in all six wells; therefore, in order to 

incorporate maximum number of wells, other well logs are not included in this study. In addition, 

because there is no core data in well 6, this well is exempted from porosity- permeability study. 

Also, due to lack of well test data in well 5, this well is exempted from net pay investigation. 

In each of F2 and F3 fields, only one well is available. Available data in F2 are CGR, 

NPHI, DT, PEF, RHOB and SGR well logs, and interpretation of open fractures on image log; 

whereas available data in F3 are GR, Cali, RHOB, DRHO, NPHI, DT and LLD well logs, and 

observed vuggy porosity in cores. 

3. A Simple Review of the Correlation Coefficient 

Correlation coefficient is a well-known factor, measuring correlation (mutual 

relationship) between two different variables. There are different standpoints for calculating 

correlation coefficient: algebraic, geometric, and trigonometric. Pearson product-moment 

correlation coefficient is the most well-known formula for calculating correlation coefficient of 

two variables from algebraic viewpoint (Lee Rodgers and Nicewander, 1988). Fig. 2 shows two 

correlated variables; i.e. b changes when a changes in the same or reverse direction (variables in 

Fig. 2 are correlated in the same direction). Although correlation coefficient is a very valuable 

and important factor for understanding interrelations of variables, there are some insufficiencies 

in using it (Bobko, 2001). 
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Fig. 2. The more correlated variables (here a and b), the closer dots to the dashed line. 

One easy-understanding example for showing insufficiency of correlation coefficient is in 

describing causal relationship between father and son. If the number of adults rises in a city, it 

does not necessarily mean that the number of children has risen too (Whereas Population Growth 

Rate is positive in developing countries, it is very close to zero or even negative in developed 

countries, and is not directly related to number of fathers or adults). But when the number of kids 

rises, you are 100% sure that the number of fathers (adults) has risen; because every kid needs a 

father to be born but fathers do not need their children for existing! Therefore, there is no mutual 

relation or correlation between number of fathers and children; however one of them is 

dependent on the other (directional relation). 

Another example for insufficiency of correlation coefficient in showing interrelation of 

two variables, revealed in Fig. 3. If 100 people are asked to climb Damavand Mountain (highest 

peak in Iran with elevation of 5610 meters above the geoid), and plot the height of which they 

have reached against their ages, the plot would be like in Fig. 3. In fact, the acquired data is 

distributed between two envelopes that show possible and certain accessible heights for each age. 

The shapes of these two envelopes are similar to an inverse “V”, because teenagers and olds are 
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not able in reaching high heights, whereas young people and middle-aged can even reach the 

peak. Correlation coefficient of dataset of this plot is something close to zero but without any 

shadow of doubt, there is a relationship between maximum accessible height and age in 

mountain climbing, while they are not correlated due to correlation coefficient. 

 

Fig. 3. Dependency between age and accessible height for a man. 

A practical example of this inefficiency in petrophysics could be found on cross-plot of 

Calliper-Vug and RHOB-Vug on Fig. 8. In these two cross-plots, there is no mutual relationship 

between two plotted variables as in Fig. 3, later we show that both Calliper and RHOB are 

important features for vug detection. 

4. What Is Dependency? 

This work introduces dependency between variables as an alternative for finding related 

variables, especially when there is no mutual relationship like relationship of father and child. 

Now, what is dependency? Each field has its own definition of dependency, and they are close to 
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each other. Oxford dictionary states that “dependence” means “the state of relying on or being 

controlled by someone or something else” (OxfordDictionaries, 2010). From mathematical 

viewpoint, probabilistic is a means for evaluating dependency of variables on each other. 

Probabilistically, two variables are called independence, when the joint probability of them is 

equal to product of their own probability (Olofsson, 2011): 

 

(1) 

 In the above equation, A and B are independent sets. Bayesian Probability is theory of 

studying conditional probability between two or more dependent variables, which uses Bayes 

rule for calculating evidential probabilities (Duda et al., 2000). Bayesian Network, which is 

introduced here in order to find out dependency relation between petrophysical variables, is 

mainly based on Bayesian theory of conditional probabilities. 

5. Methodology 

 5.1. Bayesian Network 

Consider five measured variables (named a1 to a6) that are supposed to be effective on 

another unknown variable, called b, and each of these seven parameters can admit four different 

states. Therefore there are four powered seven (i.e. 16’384) possible states, and it is not only hard 

to compute and consider all these states (an NP-hard problem), but also impossible in the case of 

lack of complete and comprehensive dataset of records. 

Bayesian Network is a directed acyclic graph that nodes represent variables and edges 

show direct dependencies between the linked variables. Now, suppose that dependency 
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relationships between those previously mentioned seven variables can be represented as in Fig. 

4. Based on this graph, the variable b is only dependent on the variables a3, a4 and a5. Also, it is 

simple to formulate probability of b as: 

 

 

(2) 

(3) 

That P(x) is probability of occurrence of x,  is joint probability, i.e. probability 

of occurrence of x and y simultaneously,  is probability of x, considering y, i.e. 

conditional probability. The first equation is inferred from independency of the variable a5 and 

set of variables a3 and a4. For better understanding of equation 3, respected readers are referred to 

(Pearl, 1986).  

 

Fig. 4. A Bayesian Network, showing dependency relation of seven variables of a1 to a6 and b. 
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There are two methodologies for constructing BNs: constraint-based methods and score-

based methods (Lauría, 2008). The former is used in cases that user is confident about the causal 

relationships between variables. For instance Total Organic Carbon (TOC) is a prerequisite for 

oil generation, and none of specialists believe that oil could be generated without having some 

least amount of TOC (Al-Ameri et al., 2009). Furthermore there is a dependency relation 

between TOC and oil generation. In fact, constraint-based methods are judgmental methods that 

an expert is responsible for (Martinelli et al., 2011). 

In some cases, it is difficult or even impossible for a user to determine dependency 

relations between variables. In these cases, data-driven approaches are used to find the most 

probable state of dependency between each pair of variables. In score-based methods, a 

calculated score is set as a criterion to find the dependency relation between two variables. For 

using score-based methods, two elements should be specified: search procedure and scoring 

metric. Scoring function should be associated with probability of a candidate directed acyclic 

graph, and search procedure is considered as an optimization problem. Greedy hill-climbing 

algorithm, K2 algorithm, simulated annealing optimization, Monte Carlo are some of those 

score-based methods, known as heuristic approaches to construct a BN (Cooper and Herskovits, 

1992; Lauría, 2008; Niedermayer, 2008). In this work, K2 algorithm is used in order to construct 

BNs. 

5.2. K2 Algorithm 

K2 algorithm is a score-based method for constructing BNs, although it is not completely 

free of constraint. Two constraints should be considered prior to running K2 algorithm. The first 

one is to state the maximum possible parents that each node can have; the other is providing a 
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true initial order of variables by user that variables are not dependent in reverse order. E.g. if the 

initial order of (a1, a2, a3, … , an) is provided by user, aj could be dependent on ai (i<j); though ai 

cannot be dependent on aj but if ai and aj are mutually correlated. After considering these two 

constraints, following algorithm should be applied on the dataset (Doguc and Ramirez-Marquez, 

2009): 

Algorithm K2(T,u): 

Input: dataset of observations, T, and maximum possible number of parents for each node, u. 

Output: Bayesian Network, BN. 

(1) For each variable in input dataset, T 

 (1-1) Create node Ai as i-th variable, and add it to BN 

 (1-2) Create an empty set as set of parents (Pai) of Ai 

 (1-3) Calculate  by: 

 

(4) 

Where,  is number of times that Ai and Aj are in a specific state of k. di is number of 

states of Ai. Finally, qi is number of possible parents, i.e. . 
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 (1-4) While number of elements of Pai is not larger than u: 

  (1-4-1) Assume Xz as a parental node of Xi  

  (1-4-2) Calculate  

(1-4-3) If the score of  is larger than , fix Az as a 

permanent node of Ai, otherwise, remove it from parental set (Pai). 

(2) Return BN 

6. Results 

In this section, correlation coefficient and Bayesian Network are utilized to find out 

effective features for reservoir identification. In the first part, important features for porosity and 

permeability estimation are determined, and in the second, third and fourth parts, useful features 

for fracture and vug detection and net pay assessment are determined respectively. 

6.1. Causal Relationships in Porosity and Permeability Estimation 

Estimating porosity and permeability of reservoir rocks is very essential in reservoir 

characterization, static and dynamic modelling. There are many investigations about estimating 

porosity and permeability of reservoirs. The input features, used for estimating these two 

parameters have not remained unchanged during time. Table 3 shows different datasets, 

introduced for porosity and permeability estimation in chronological order. 
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In order to find out, appropriate features for estimating porosity and permeability, scatter 

plots of all logs, and porosity and permeability of core analysis are plotted on Fig. 5 (a) and (b). 

Then, correlation coefficients between each pair of variables are calculated and shown on each 

plot. Thereafter, Bayesian Network (Fig. 5 (c)) is constructed by K2 algorithm with the order of: 

CGR, NPHI, RHOB, DT, LLD, MSFL, LLS, LLD/LLS, Porosity, Log(Perm) 

 Lognormal distribution of permeability is the reason why permeability is used in 

logarithmic scale. It is reported that it would be much better to estimate logarithm of 

permeability instead of raw permeability to have a more precise estimation of body (not 

extremes) of permeability values (Masoudi et al., 2011a). 

 

(a) Correlation Coefficients and histograms (Part I: lithologic well logs) 
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(b) Correlation Coefficients and histograms (Part II: resistivity well logs) 

 

(c) Bayesian Network 

Fig. 5. Relationships between features in Sarvak Formation of F1 for porosity and permeability 

estimation. 

Due to criterion of correlation coefficient, porosity is relatively well-correlated to 

Log(Perm) and RHOB. Based on constructed BN, porosity is related to Log(Perm) (child) and 
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RHOB (parent) in the first order. Therefore, both criteria, unanimously agree that the first two 

features, related to porosity are Log(Perm) and RHOB. Again due to correlation coefficient, 

Log(Perm) is relatively well-correlated with porosity and LLD. BN approves that porosity is the 

most influential factor for estimating Log(Perm), whereas defines RHOB in the second stage. 

It is relatively easy to come on an agreement in feature selection for porosity because 

priorities of both criteria are very close to each other. Three features of RHOB, DT and NPHI are 

the most related features to porosity; then, LLD and CGR. For Log(Perm), it is a bit tricky. The 

two mostly related features for permeability estimation are porosity and RHOB. After these two, 

LLD, NPHI and DT could be named. 

6.2. Causal Relationships for Fracture Detection 

Studying fractures is much more complex than porosity and permeability due to wild 

nature of fractures and variety of fracture geometry. Image logs are main means to identify and 

characterize fractures (Ja'Fari et al., 2012), although in case of lack of this information source, 

traditional well logs are used (Table 4). 

Like before, to find out appropriate features for fracture study, scatter plots of all logs, 

and identified open fracture on image logs are shown on Fig. 6. Then, correlation coefficients 

between each pair of variables are calculated and are shown on each plot. Due to correlation 

coefficients, DT and SGR are the most important features for fracture identification in F2; then, 

CGR and RHOB. 
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Fig. 6. Correlation chart and histograms in Sarvak Formation of F2. 

Thereafter, Bayesian Network (Fig. 7) is constructed by K2 algorithm with the order of: 

CGR, NPHI, PEF, RHOB, SGR, DT, Open Fracture 

 After indicating DT as the most effective feature on fractures, it is removed from the 

above order; then, BN is reconstructed to find out the second important feature for fracture 

detection. This process continued as it is shown in Fig. 7. Based on this figure, important features 

for fracture study are in order of: DT, SGR, PEF, RHOB, NPHI and CGR 
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(a) BN with the order of CGR- NPHI- PEF- 

RHOB- SGR- DT- Fracture 

 

(b) BN with the order of CGR- NPHI- PEF- 

RHOB- SGR- Fracture 

 

(c) BN with the order of CGR- NPHI- PEF- 

RHOB- Fracture 

 

(d) BN with the order of CGR- NPH- RHOB- 

Fracture 
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Fig. 7. Bayesian Networks in Sarvak Formation of F2. 

 Surprisingly, based on both criteria, priorities of features for fracture identification are the 

same, except in the places of CGR and PEF. 

6.3. Causal Relationships for Vug Detection 

Like fractures, image logs are most reliable tools for vug detection. It is worthy to 

mention that vug pores are visible in cores likewise, whereas fractures could not be studied in 

cores due to low core recovery within fractured intervals. In addition, vug pores are not 

investigated as much as fractures so far (Table 4), due to their relatively low importance, 

comparing to fractures. By the way, for selecting appropriate features for vug detection, scatter 

plots of all logs, and observed vug pores are shown on Fig. 8. Then, correlation coefficients 

between each pair of variables are calculated and shown on each plot. Due to correlation 

coefficients, NPHI, DT and RHOB are the most important features for vug detection in F3. 
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Fig. 8. Correlation chart in and Sarvak Formation of F3. 

Like understanding causal relationships for fracture identification, sequential procedure 

of constructing BN is used for vug detection too (Fig. 9). The first BN is constructed by the order 

of: GR- Cali- RHOB- DRHO- NPHI- DT- LLD- Vug 

 

(a) BN with the order of GR- Cali- RHOB- 

DRHO- NPHI- DT- LLD- Vug 

 

(b) BN with the order of GR- RHOB- 

DRHO- NPHI- DT- LLD- Vug 
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(c) BN with the order of GR- RHOB- DRHO- 

DT- LLD- Vug 

 

(d) BN with the order of GR- RHOB- 

DRHO- LLD- Vug 

 

(e) BN with the order of GR- DRHO- LLD- Vug 
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Fig. 9. Bayesian Networks in Sarvak Formation of F3. 

 Calliper log is the most important feature for vug detection (Fig. 9 (a)); NPHI, DT, 

RHOB and GR are other important features in order. 

6.4. Causal Relationships for Net Pay Determination 

Determining productive zones is a very critical stage in static reservoir modelling. 

Petrophysical net pay determination is usually done by cut-off method. Some of utilized features 

in literature are included in Table 5. 

For net pay detection, production rate, derived from production test is utilized as criteria 

of productivity: 

(a) Productivity of 1 means that production rate is less than 1000 barrel oil per 

day [ ] 

(b) Productivity of 2 means that production rate is between 1000 

[ ] and 1500 barrel daily [ ] 

(c) Productivity of 3 means that production rate is more than 1500 barrel per day 

[ ] 
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Like Fig. 5 (a) and (b), cross plots of F1 are plotted, and correlation coefficients are 

calculated. Due to productivity, LLD/LLS, RHOB, LLD and DT are the most effective features 

for modelling well test results. Based on dependency criterion (Fig. 10 (b)), LLD/LLS is the 

most important feature likewise. LLD and LLS are in the second stage of importance. 

 

(a) Correlation Coefficients and histograms 
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(b) Produced Bayesian Network with the order of: CGR, NPHI, RHOB, DT, LLD, MSFL, 

LLS, LLD/LLS and Productivity 

Fig. 10. Relationships between features in Sarvak Formation of F1 for net pay detection. 

In order to satisfy the second goal of the paper, which is providing results of feature 

selection in order to benefit petrophysiscists of, selected features for reservoir characterization 

are summarized in Table 6. 1
st
 stage features are those features that have high priority due to both 

criteria; 2
nd

 stage features are those effective features that do not have the same importance as 1
st
 

stage features. For fracture detection, there is another column named 3
rd

 stage features that are 

not as important as 2
nd

 stage features. It is worthy to mention that bulk density (RHOB) is the 

most frequent feature in this table; therefore, the most important log for reservoir 

characterization. 
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Tables 3, 4 and 5 are included in the current work in order to validate obtained results, 

i.e. proposed input features for reservoir study, Table 6. Comparing the current (Table 6) and 

previous works (Tables 3, 4 and 5) reveals that selected features (Table 6) are reasonable for 

porosity, permeability, fracture, vug and net pay studies; furthermore, combining BN and 

correlation coefficient is a successful way for feature extraction in reservoir characterisation. 

7. Conclusion 

Although correlation coefficient is a very useful and easy to use criterion to find and 

quantify mutual relationships between different variables, there are some pitfalls when using it. 

In this work, Bayesian Network is introduced as a complementary means (not an alternative) to 

find out dependency relations; therefore, finding causal relationships and feature selection in 

reservoir characterization. The results showed that RHOB, DT and NPHI are the most important 

features for porosity estimation; whereas Porosity and RHOB are the most effective variables on 

estimating permeability. DT and SGR are introduced as very effective features for fracture 

identification, and for vug detection, NPHI, DT, RHOB and Calliper are recommended. Finally, 

resistivity logs of LLD/LLS and LLD have been proved to be the most valuable features for net 

pay detection. 
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Table 1. The table shows what reservoir properties are studied in which field 

  Porosity Permeability Net Pay Fracture Vug 

F1: 6 wells Abadan Plain      

F2: 1 well South Dezful      

F3: 1 well Central Lurestan      

 

Table1



Table 2. Summary of dataset of F1 oil field, available for evaluating causality relationships for assessing 

porosity, permeability and net pay zones 

 Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

No. of Well Test Intervals 

3 2 4 1  1 

3  1 1   

 1 1 1  3 

P
et

ro
p

h
y

si
ca

l 
W

el
l 

L
o

g
s 

Calliper (CALI)       

Gamma Rey (GR)       

Gamma Ray Contribution from Thorium 

and Potassium (CGR) 
      

Sonic Log (DT)       

Thermal Neutron Porosity in Selected 

Lithology (NPHI) 
      

Bulk Density (RHOB)       

Bulk Density Correction (DRHO)       

Laterolog Deep Resistivity (LLD)       

Laterolog Shallow Resistivity (LLS)       

Micro-spherically-focused Resistivity 

(MSFL) 
      

Photoelectric Factor (PEF)       

C
o

re
 

T
es

ts
 Porosity       

Permeability       

 

Table2



Table 3. Petrophysical parameters for porosity estimation in various references 

 Used Parameters for Estimation Source 

P
o

ro
si

ty
 NPHI, Density, Sonic, Resistivity (Helle et al. 2001) 

DT, GR, ILD, ILS, NPHI, RHOB (Jalali Lichaei and Nabi Bidhendi 2006) 

CGR, DT, LLD, LLS, MSFL, NPHI, RHOB (Masoudi et al. 2011b) 

P
er

m
ea

b
il

it
y

 

NPHI, Density, Sonic, Resistivity (Helle et al. 2001) 

Depth, DT, GR, ILD, ILS, RHOB, Sw, Porosity (Jalali Lichaei and Nabi Bidhendi 2006) 

NMR (Fethi et al. 2010; Timothy et al. 2008) 

SGR, CGR, RHOB, TNPH (Thermal Neutron Porosity), 

Rs (medium resistivity), Rt (deep Resistivity), Rxo 

(shallow resistivity), DT, VCLAY (clay volume) 

(Shahvar et al. 2009) 

Saturation, Gamma, Neutron, RHOB, PEF, DT, 

Resistivity 
(Saemi et al. 2007) 

Gamma, DT, Nphi, RHOB, LLD/LLS (Ibrahim Sami and Adel 2010) 

NPHI, RHOB, DT, LLD, SGR, CGR (Mehri 2010) 

CGR, DT, LLD, LLS, MSFL, NPHI, RHOB (Masoudi et al. 2011b) 

 

Table3



Table 4. Petrophysical parameters for evaluating secondary porosity 

 Used Parameters for Identification Source 

F
ra

ct
u

re
 Water Saturation, GR (Tokhmechi et al., 2009) 

Calliper, DT, RHOB, PEF (Tokhmchi et al., 2010) 

DT, RHOB, NPHI, Resistivity (Ja'Fari et al., 2012) 

V
u

g
 NPHI, DT, GR, Calliper (Asgarinezhad et al., 2011) 

NPHI, DT, GR, RHOB (Asgari-Nezhad et al., 2012) 

 

Table4



Table 5. Petrophysical parameters for net pay determination in various references 

Used Parameters for detection Source 

Shale Volume, Porosity, Water Saturation 
(Jensen and Menke 2006; Mahbaz et al. 

2011; Worthington 2010) 

Permeability, Porosity, Viscosity, Compressibility  (Masoudi et al. 2011b) 

Porosity, Water Saturation, Shale Volume (Masoudi et al. 2012a) 

Ratio of LLD to LLS and LLD (Masoudi et al. 2012c) 

 

Table5



Table 6. Result of feature selection for porosity, permeability, fracture detection, vug detection and net 

pay determination due to correlation coefficient and Bayesian Network 

 1
st
 stage 2

nd
 stage 3

rd
 stage 

Porosity 

RHOB 

DT 

NPHI 

LLD 

CGR 

-- 

Permeability 

Porosity 

RHOB 

LLD 

NPHI 

DT 

-- 

Fracture 

DT 

SGR 

RHOB 

PEF 

CGR 

Vug 

NPHI 

DT 

RHOB 

Cali 

-- -- 

Net Pay 

LLD/LLS 

LLD 

LLS 

RHOB 

-- 

 

Table6


