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Abstract 

Saturn’s moon Mimas is a triaxial body orbiting close to the planet on an eccentric orbit, and 

as a consequence it is librating significantly. Libration is usually believed to enhance 

dissipation within a planetary satellite. In this paper Mimas’ poorly understood strong inward 

migration obtained by Lainey et al. (2012a) is interpreted as an effect of dissipation within the 

librating moon. Tajeddine et al. (2014) performed observations of the phase and amplitude of 

libration and proposed several interior models, from which they retained only two models 

compatible with observations: a solid body with nonhydrostatic core, or a 3-layer body 

including an inner dense core, surrounded by a water ocean and an icy solid shell. In this 

paper I combined three major observations: libration amplitude and libration phase observed 

by Tajeddine et al. (2014), and inward migration da/dt obtained by Lainey et al. (2012a). A 

further study by Lainey et al. (2015) however tends to indicate that the Mimas’ strong inward 

motion might be questioned, and therefore this paper also explores situations with smaller 

da/dt. Within the assumption that inward migration is mainly due to librational dissipation, 

the solid model with nonhydrostatic core is found to be inconsistent with the observations. In 

contrast, a 3-layer model including core, ocean and shell is compatible. The observations 

permit to determine the icy shell depth h, core equatorial flattening i and core pendulum 

quality factor QPei , provided that an assumption is made concerning the core density. Due to 

the uncertainty of da/dt inferred from observations, the value of QPei is however rather 

uncertain. Dissipation within the oceanic boundary layers is found to contribute significantly 

to the total dissipated power. 

 

1. Introduction 

Mimas, the innermost mid-sized icy moon of Saturn, has several orbital and physical 

intriguing peculiarities. Unlike the other mid-sized Saturn’s icy moons (Enceladus, Tethys, 

Dione and Rhea), it has a significant eccentricity (e≈0.02). As concerns its shape, it may be 

modeled as a triaxial ellipsoid with significant deviation from axisymmetry. For a satellite 

close to the planet, such a triaxiality, combined with orbital eccentricity, are known to 

produce significant azimuthal libration superimposed on the synchronous rotation. The 

libration amplitude measured by Tajeddine et al. (2014) was further found to be about twice 

the libration amplitude expected from the observed eccentricity and triaxiality assuming an 

homogeneous body. This led those authors to propose more complex inhomogeneous interior 

models for Mimas.  

 

As concerns the orbital properties, an unexpected large acceleration of Mimas, related to a 

secular decrease of its semi-major axis (da/dt≈-15.7x10
-15

 AU/day), was found by Lainey et 

al. (2012a) when fitting a numerical orbital model of the Saturnian moons to astrometric data 

spanning more than a century. The combination of such observations calls to explore the 

possible link between libration and secular inward migration of a planetary satellite.  
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The spin-orbit behavior of a satellite with a triaxial torque has been studied by several authors 

(Wisdom et al., 1984; Murray and Dermott, 1999; Makarov and Efroimsky, 2014; Makarov et 

al., 2016). Makarov and Efroimsky (2014) and Makarov et al. (2016) stressed the key role 

played by the physical librations in the tidal heating process. They pointed out that the 

planet’s triaxiality should be a significant factor determining the dissipation rate at spin-orbit 

resonances. Tiscareno et al. (2009) expressed the damping of free libration in terms of  a 

quality factor of the satellite. However, the orbital consequences of the dissipation of driven 

libration have not been much discussed in the literature. Here the effect of the triaxial torque 

is presented and the dissipation rate within the satellite is discussed. Among the various 

planetary moons of the solar system, those whose orbits are the most affected by librational 

dissipation are those filling several conditions, namely: irregular shape, significant 

eccentricity, and closeness to the planet. Mimas is particularly concerned by this effect. 

 

Section 2 presents the main physical bases concerning the damping of driven libration of 

triaxial satellites. Section 3 clarifies the definitions of quality factors of the librating satellite. 

In section 4 the consequences on the dynamics and possible interior model of Mimas are 

deduced.  

 

2. Basic equations for forced librations 

 

Here we consider the motion of a planetary satellite whose spin axis is normal to the plane of 

its fixed elliptical orbit with eccentricity e<<1. The satellite is assumed to be in synchronous 

rotation, and the masses of the satellite and the planet are mS and MP, respectively, with 

mS<<MP. Under the effect of eccentricity, the satellite will undergo forced librations. As 

discussed by Makarov et al. (2016), the amplitude of the eccentricity driven libration is 

defined by a combination of two different types of torques: a tidal torque and a triaxial torque. 

The tidal torque is due to the occurrence of a tidal bulge which interacts with the planetary 

potential. In contrast, the triaxial torque is due to the interaction of the permanent bulge with 

the planetary potential. In this section, we will discuss about the rate of energy dissipation 

within the moon’s interior by these torques. 

2.1. Dynamical equations in the undamped case: 

For a Keplerian orbit, it is well known that, to lowest order in e, the line drawn from the 

satellite to the empty focus of the Keplerian ellipse rotates with uniform angular frequency n, 

equal to the mean motion (Murray an Dermott, 1999, page 44). Since we assume that the 

satellite is synchronously rotating, in a classical approach, one uses a reference frame that is 

centered on the satellite and rotates with the satellite’s mean motion n. In this rotating frame 

the planet moves about its guiding centre in a 2:1 ellipse as shown in Figure 1. As a 

consequence, the torque exerted by the planet on the satellite permanent bulge will produce 

librations around the position of stationary equilibrium, which is also the line connecting the 

satellite to the empty focus, and is labeled as line F’F in Figure 1. 

As seen in Figure 1, in this satellite centered rotating frame, we introduce the following 

angles: =2esin(nt) between the directions of the planet and of the empty focus,  between 
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the moon’s long axis and the direction of the planet (optical libration), and  between 

the moon’s long axis and the direction of the empty focus (physical libration).  

Expressing the torque exerted by the planet on the permanent bulge of the moon, but ignoring 

the torque on the tidal bulge (which is 0 in the undamped case), one obtains the following 

equation of motion for  (Murray and Dermott, 1999, page 201):
  

 

 

  3

3
sin 2 0

2

PGM
C B A

r
       (1) 

 

where A<B<C are the three principal moments of inertia of the moon, C being the moment 

about the spin axis, G=6.67x10
-11

m
3
kg

-1
s

-2
 is the gravitational constant, and r is the moon-

planet distance. Since the semi-major axis a of the satellite is related to mean motion n 

through GMP/a
3
=n

2
, equation (1) can be rewritten, to lowest order of e and for small libration 

angle  (Murray an Dermott, 1999, page 216): 

 
2 22 sin( )o o e nt         (2) 

 

where  

 
2 23o n        (3) 

 

and  is the triaxiality factor: 

 

B A

C



       (4) 

 

Note that equation (2) takes into account only the leading frequency of libration, while a more 

general theory with all the frequencies involved is provided by Comstock and Bills (2003).  

Equation (2) describes a forced harmonic oscillator, whose well known solution is the forced 

libration: 

 

2 sin( )

1
1

3

e nt








     (5) 

 

One sees that, in the case where <1/3, oscillates in phase opposition with . In all cases, 

since 2esin(nt) = as seen above), equation (5) implies =-3. 

 

2.2. The effect of tidal damping in the case of very small triaxiality (<<1): 

Most moons are close enough to spherical that <<1, and thus from equation (5) the physical 

libration  approaches zero. This means that most moons remain close to synchronous 

rotation, with the long axis always pointing toward the empty focus. 
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Within such satellites, the energy dissipation rate due to the tidal torque as a function of 

eccentricity can be computed (Peale and Cassen, 1978; Yoder and Peale, 1981; Efroimsky 

and Makarov, 2014; Makarov and Efroimsky, 2014). To lowest orders in eccentricity, 

provided that the obliquity is set to zero, it may be written as: 

 
2 5

22

6

21

2

S P S

TIDE
S

k GM R
E ne

Q a
 

   (6) 

 

where RS is the satellite’s radius, QS its tidal quality factor and k2S its Love number, which 

may include a correcting factor in the case of a partially molten interior.  

A proportion 3/7 of the dissipation of equation (6) is due to the radial tide, while 4/7 of it is 

due to the librational tide (Murray and Dermott, 1999, p. 172). Since there is virtually no 

physical libration here (≈0), librational dissipation is due to the oscillation of angle  of 

Figure (1) (“optical libration”). 

Since the total orbital energy of the planet-satellite system is E=-GmSMP/2a, and the 

rotational energy associated with the spin of the corotating moon is negligible compared to 

the orbital energy, the secular inward motion of the satellite can be written:  

 

 
( / )a a E E 

     (7) 

 

and thus equation (6) may be expressed in terms of the inward motion of the satellite due to 

the tidal effect:  

 
5

22

4
21 S S P

TIDE

S S

k R M
a ne

Q a m
 

    (8) 

 

 

2.3. The effect of damping for triaxial satellites (≠0): 

As argued by Makarov and Efroimsky (2014), physical libration plays a key role in the tidal 

heating process of a close-in planetary satellite. The amplitude of physical libration being 

dependent upon triaxiality in equation (5), a body with a more pronounced triaxiality should 

generate significantly more dissipation than a similar body of a more symmetrical shape. The 

first direct cause of dissipation is the classical phase lag of the tidal bulge of the librating 

satellite with respect to the planetary forcing. In addition, the physical librations described in 

section 2.1 will produce horizontal alternating inertial forces within the moon. Yoder (1982) 

discussed the question of the induced toroidal distortion in the context of Phobos, described as 

an incompressible homogeneous sphere. Moreover, in contrast to most fluids and 

monocrystalline solids, earth materials exhibit nonlinear elastic behavior, as detailed in the 

review by Ostrovsky and Johnson (2001). The presence of soft small features referred as 

“bond system” (microcracks, grain contacts, dislocations, …) within a hard matrix (grains, 

crystals) produces a nonlinear response, characterized by hysteresis and slow dynamical 
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effects (relaxation) at microscale. In presence of the azimuthal alternating acceleration due to 

libration, the hysteretic response of the microscale bond system is expected to also contribute 

to dissipation, which will add to the dissipation produced by macroscopic (radial or toroidal) 

distortions of the body. In other words, when forced by the longitudinal physical libration, the 

material within the moon will respond with a certain delay, associated with a dissipation 

which is not related to the presence of a tidal bulge.  

Rather than detailing those complex processes involved in dissipation (radial and toroidal 

distortions, microscale hysteresis), I follow the approach by Tiscareno et al. (2009) who 

include them through a unique damping term in equation (2). Although nonlinearity is 

certainly present in the system, the lowest order approach is to account for all the damping 

processes through a linear damping term b  in equation (2), yielding the driven damped 

harmonic oscillator equation: 

 
2 22 sin( )o ob e nt          (9) 

 

where b is an unknown friction parameter. Following previous authors (Murray and Dermott, 

1999; Tiscareno et al., 2009), one may relate parameter b to the quality factor Q of the 

oscillating satellite, by first considering the free oscillator, obtained by removing the forcing 

term  2o
2
esin(nt) from the right hand side of equation (9), and applying the definition of the 

quality factor : 

 

2 o
Pe

E
Q

E




      (10) 

 

 

where the suffix Pe is used to recall that QPe is the quality factor of the pendulum described 

by equation (9). E is the energy dissipated over one cycle, and Eo is the peak energy stored 

by the oscillator during the cycle. One gets (Tiscareno et al., 2009) :

 
1/2

2

1
2 2 1

            1

o

Pe

o
Pe

Pe

b
Q

for Q
Q





 
   

 

 
   (11) 

 

In practice, this approximation may be adopted as soon as QPe≥ 2. This will be done 

henceforth in the paper.  

By substituting the trial complex solution  
exp(int)o 

  in equation (9), one can obtain the 

amplitude of the steady state response of the system: 
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  (12) 

 

this may be also written as a function of  and QPe : 

 

1/2
2

2

2

1 1
1

3 3

o

Pe

e

Q



 


  

   
   

   (13) 

 

Similarly, the phase shift with respect to the driving torque is given by: 

 

2 2
tan( )

o

nb

n






    (14) 

 

Classically for the driven damped oscillator, =-/2 at resonance (n=o), and away from 

resonance one has –≤≤0, so that the oscillator always lags the driving torque. Equation 

(14) may be rewritten: 

 

3
tan( )

(1 3 )PeQ








    (15)

 

 

if one assumes that 3 / 3 1PeQ     in equation (13), one retrieves an expression 

consistent with equation (5) valid for the undamped case: 

 

2

1 1/ 3
o

e






     (16) 

 

The work done by the drag force over a displacement d in a time dt is Cb d   , therefore the 

instantaneous rate of dissipation is 2 2 /o PeE Cb C Q      , and thus the mean rate of 

energy dissipation is  

 

 
21

2

o
o

Pe

C
E n

Q


      (17) 

 

Inserting the value of o from equations (13),  equation (17) may be transformed to: 
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2

2

2 3

1 1
1

3 3
Pe

Pe

C e n
E

Q
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

 

 
  

   
      (18)  

 

  

For   
3 / 3 1PeQ   

  , this may be approximated as: 

 

2 2 3

2

4 3

5 1
1

3

S S

Pe

m R e n
E

Q





 
 
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     (19) 

 

where the inertial momentum C has been taken as C≈(2/5)mSRS
2

. 

 

From equation (7) with orbital energy E=-mSa
2
n

2
/2

 
, equation (19) can also be expressed in  

terms of the inward motion of the satellite, yielding: 

 

2 2

2

8 3

5 1
1

3

S

Pe

R ne
a

aQ





 
 
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 

    (20) 

  

 

 

3. Pendulum quality factor QPe  and moon’s specific dissipation QS: 

 

3.1. The Phobos test: 

Tiscareno et al.(2009) identified the pendulum quality factor QPe defined above with the 

satellite’s quality factor QS. Dealing with Saturn’s icy satellites Janus and Epimetheus this led 

them to use QPe ≈100 assuming the satellite is composed of monolithic ice, or QPe≈10 

assuming rubble pile ice. I myself followed the same approach in my paper on that topic 

(Caudal, 2013). I must admit however that our approach was incorrect, as can be illustrated by 

the following paradoxical result obtained for Mars’ satellite Phobos, for which precise 

measurements of  a  have been performed. 

Given the mean density of Phobos, one can safely say that it is either a rubble-pile or, at the 

very least, a very porous and cracked body. Hence its tidal Q is of the order of 10 to 100. Let 

us use Q≈100 as a very conservative, probably overestimated value. The other useful 

parameters for the Mars-Phobos system are given in Table 1. From those parameters, 

equation (20) applied to Phobos with QPe=100 yields 8.8 /a cm year  . As a comparison, 

Phobos’ observed inward drift obtained from Table 1 is only  
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(2 / 3 ) 3.85 /a a n n cm year    , and furthermore most of this inward drift is believed to be 

due to tides within Mars (Bills et al., 2005; Lainey et al., 2007; Jacobson, 2010). 

Thus the observed moderate inward drift of Phobos (-3.85cm/year) is inconsistent with 

equation (20) if the pendulum quality factor QPe is taken as equal to the satellite’s tidal quality 

factor QS. Of course the discrepancy would be even stronger if QS=10 were taken. The reason 

is that QPe and QS represent indeed different quantities.  

 

3.2. Quality factor of a compound pendulum: 

To clarify the meaning of the pendulum quality factor QPe introduced above in section 2.3,  let 

us use again the satellite centered frame rotating with the satellite’s mean motion n. In this 

rotating frame, we have seen that the triaxial satellite is oscillating around the position of 

stationary equilibrium labeled as line F’F in Figure 1, as a result from equation (9). The 

reason for this oscillation is the interaction of the moon’s permanent quadrupole moment with 

the planetary gravity potential. Such oscillation is analogous to the oscillation of a classical 

compound pendulum oscillating in the terrestrial gravity field. The Q factor of a compound 

pendulum is classically defined in a similar fashion by equation (10), where Eo is the potential 

energy stored by the pendulum at highest elongation (also equal to the kinetic energy at zero 

elongation). For a terrestrial pendulum the energy E dissipated over one cycle is mostly due 

to air friction, and to a lesser extent to friction at the pivot. If in addition the compound 

pendulum were not a rigid body (for example if it were a body composed of a viscoelastic 

material), additional dissipation would result from inertial inelastic distortions of the body. 

This is usually however negligible compared to air and pivot friction.  

If now our oscillating satellite is regarded as a compound pendulum, air and pivot friction 

vanish, and the sole remaining source of dissipation is due to tidal and inertial distortions 

within the body The compound pendulum is damped because the moon responds sluggishly to 

the external forcing by the planet. The quality factor QPe defined above is the quality factor of 

the pendulum. In that sense the quantity Eo in equation (10) is the potential energy stored in 

the pendulum at highest elongation. 

 

3.3.Relation between QPe and QS: 

The tidal specific dissipation QS of a satellite is defined classically as 

 

2 'o
S

E
Q

E





       (21) 

 

where the energy E’o is the maximal energy stored in the tidal distortion of the body (e. g., 

Goldreich and Soter,1966). The peak elastic energy stored in the tidal bulge, including radial 

and librational component is (Murray and Dermott, 1999, p. 172): 

 
5 2263

'
4
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S
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 
  

 
     (22) 
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where S   is effective rigidity of the satellite (ratio of elastic and gravitational forces acting at 

the surface). For homogeneous solid body the tidal Love number k2 is related to   through  

2 (3 / 2) / (1 )k   . For an icy or rocky satellite, S >>1, thus the energy stored in the tidal 

deformation is mostly elastic and the gravitational contribution may be neglected, and thus 

2 3/ (2 )S Sk  . 

Conversely, the peak energy of the pendulum is (Tiscareno et al., 2009): 

 

2 21

2
o o oE C 

       (23) 

 

where o=o/(3 is the peak value of angle  defined in section 2.1. 

 

The relation between QPe and QS may be deduced from equations (10) and (21). One finds 

(for 1S  ): 

 
3
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1

3

o S S
Pe S

o S P S

E m Qa
Q Q

E R M k




   
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   
 

 

  (24) 

 

For Phobos, with the data of Table 1, this gives QPe=0.75QS/k2S . 

The question of the Love number of Phobos has been discussed by Le Maistre et al. (2013) 

who estimated the range of possible values of k2S, yielding an upper bound value of  

k2S=5.3x10
-4

 for their least rigid rubble pile model.  

As discussed above in section 2.3, a librating triaxial satellite does not experience only the 

tidal distortion depicted by the elastic energy of equation (22), but also a toroidal contribution 

and microscale effects resulting from inertial distortion of the librating body. The satellite 

thus stores an additional elastic energy. To include the poorly known effects of toroidal 

distortion and microscale effects, the Love number k2S in equation (24) should be replaced by 

a modified Love number k’2>k2. It is beyond the scope of this paper to discuss the precise 

value of k’2S. I just point out here that, given that k2S≤5.3x10
-4

 for Phobos,  even though k’2 is 

expected to be significantly higher than k2, it is likely to be still much lower than 1, so that the 

pendulum quality factor QPe defined in equation (10) must not be identified with the satellite’s 

QS factor. Henceforth in the paper I will express the results in terms of QPe rather than QS , 

thus avoiding the use of Love numbers, since it is QPe that determines the librational phase 

shift  (see equation (15)), which is an observed quantity of major importance in this paper.  

 

4. Application to Mimas: 

 

The evolution of the orbits of the main moons of Saturn have been studied by Lainey et al. 

(2012a), using astrometric data spanning more than a century. This permitted them to revisit 

the tidal dissipation within Saturn, and to obtain a dissipation ratio for Saturn 

k2/Q=(2.3±0.7)x10
-4

, which is about 10 times higher than previous estimates. When 
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performing their fitting, they also needed to include an additional constant rate da/dt on 

Mimas’ semi-major axis to conform to the data. The fitted value for the additional migration 

of Mimas (da/dt=-(15.7±4.4)x10
-15

 AU/day) was found unexpectedly high, and the authors 

mentioned that such orbital decay could have significant implications on Saturn’s rings.  

Resonances between close external satellites and ring particles located at specific radial 

distances named Linblad resonances, produce spiral density waves in the rings, leading to 

torques on the satellites (Goldreich and Tremaine,1980). However, for an external satellite, 

the migration due to Lindblad resonance would be directed outward, while instead the radial 

migration of Mimas obtained by Lainey et al. (2012a) is inward. Another resonant ring-

satellite interaction would occur if strong radial density gradients are present at the corotation 

resonance radius (Goldreich and Tremaine, 1979; Molnar and Dunn, 1995), but evidence of 

density gradient of the required strength still needs to be found. Thus, for the time being, no 

clearly identified process related to Saturn’s rings is able to provide a convincing explanation 

for such a strong observed inward migration of Mimas. 

More recently, Lainey et al. (2015) performed a new fit of their model, incorporating an 

additional set of Cassini astrometric data. When performing this new fit, they did not need to 

introduce the large negative da/dt that was required in Lainey et al. (2012a). These ambivalent 

results tend to show that Mimas’ additional inward migration da/dt should be considered as a 

poorly constrained quantity. In order to study the sensitivity of my results to da/dt, I therefore 

also tested a situation in which Mimas’ migration is a factor of 10 smaller than the one 

inferred by Lainey et al.(2012a). In that situation the additional inward migration would be of 

the same order as the outward migration due to dissipation within Saturn, and thus the net 

radial migration would virtually vanish. 

If Mimas’ physical libration is ignored, inward migration due to tidal dissipation within 

Mimas is given by equation (8). Tidal Love number k2 is related to effective rigidity   

through k2=(3/2)/(1+  ). Taking  ≈2700 and QS≈100 (Murray and Dermott, 1999, p. 173), 

and other parameters for Mimas given by Table 2, equation (8) yields da/dt≈-8.3x10
-18

 

AU/day. This is less than 3 orders of magnitude below the rate of inward migration da/dt=-

15.7x10
-15

 AU/day obtained by Lainey et al. (2012a). Therefore the role of tidal dissipation 

within Mimas can be regarded as negligible if libration is ignored.  

Mimas is however a triaxial body on an eccentric orbit. In this section we propose to interpret 

the observed inward motion of Mimas as a consequence of librational dissipation within 

Mimas. 

Tajeddine et al. (2014) have reported observations of Mimas’ librations from which they 

deduced constraints on Mimas’ interior. From the observed libration amplitude, after 

considering five interior models, they retained only two possible interiors: one model 

consisting in a nonhydrostatic dense core surrounded by a less dense icy layer, and a 3-layer 

model including a dense core, a water ocean, and an icy shell. Both types of models will be 

addressed in this section.  

 

4.1. Model with nonhydrostatic core and solid shell 

In the calculations by Lainey et al. (2012a), interactions between satellites as well as the 

effects of tides within Saturn have been already taken into account. The only process that they 
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do not address in their computation is dissipation within the satellites (excluding Enceladus). 

Mimas’ inward secular motion da/dt that they determine (see Table 2) is defined as a 

supplementary effect which needs to be added in order to fit the data. Therefore we must not 

include dissipation within Saturn when interpreting the da/dt of Table 2 since it has already 

been accounted for. In this section we intend to interpret da/dt of Table 2 as an effect of 

librational dissipations within Mimas.  

As seen in Table 2, the libration amplitude of Mimas observed by Tajeddine et al.(2014) is 

o=50.3 arc min. From equation (16) this implies an effective triaxiality ≈0.091 provided 

that dissipation is weak. Together with the secular inward migration da/dt=-15.7x10
-15

 

AU/day obtained by Lainey et al. (2012a) and other parameters of Table 2, this permit to 

deduce QPe from equation (20). One gets QPe≈26.8. It may be seen a posteriori that the weak 

dissipation assumption 3 / 3 1PeQ     is fully satisfied.  

From those values of  and QPe , the expected phase shift of libration with respect to mean 

motion can be obtained from equation (15), yielding tan()≈2.67x10
-2

, or equivalently 

≈1.53° (modulo180°). 

Tajeddine et al. (2014) have measured the libration phase at J2000 and compared it to the 

theoretical phase computed by Noyelles et al. (2011) under the undamped hypothesis (see 

Table 2). The observed phase difference =6.35° should in principle account for dissipation. 

Surprisingly, this is much higher than the expected ≈1.53° computed above, and the 

discrepancy between the expected and measured phase shift is much larger than the ±0.8° 

uncertainty of the measured phase quoted by the authors. In the low migration hypothesis 

discussed above (da/dt reduced by a factor of 10 from the one inferred by Lainey et 

al.(2012a)), one would expect ≈0.15°, and thus the discrepancy with the observed phase 

difference =6.35° would be even stronger. 

This leads us to abandon the model with nonhydrostatic core and solid shell, and to explore a 

description similar to Tajeddine et al.’s (2014) alternative approach including an internal 

ocean. 

 

4.2. Model including inner core, internal ocean, and icy shell: 

An interior model of Mimas should be able to reproduce the different observations including 

the 3 main following features: secular inward motion da/dt, libration amplitude o, and 

libration phase shift . Here we describe Mimas as being composed of an inner core mostly 

composed of silicates, surrounded by a water ocean and an icy solid shell. Each of those three 

media is supposed to be homogeneous. The densities are labeled i, O, and S for the inner 

core, ocean, and shell, respectively. Due its uncertainty, the inner core density i  was varied 

from 1500 to 3300 kg/m
3
 in the simulations, following Tajeddine et al. (2014). As concerns 

the water and ice densities O and S, they were taken as O=1000kg/m
3
, S=900kg/m

3
 in the 

standard version of the model. Model runs were also performed with different ice and water 

densities, as discussed below. The outer boundaries of those three media are modeled as 

triaxial ellipsoids with semi-axes cx<bx<ax , where subscript x stands for i, o, or s for the inner 

core, ocean, or shell, respectively. The equatorial flattening of each surface is x=(ax-bx)/ax. In 

the context where the icy shell thickness is small, Richard et al. (2014) obtained that the 
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flattening of the ocean is almost equal to the shell flattening. Assuming that this can be the 

case for Mimas, following those authors I take o≈S. Note that for an homogeneous ellipsoid, 

the equatorial flattening  is equal, to first order, to the triaxiality  introduced in section 2.  

The dynamics of this composite body may be described by the following system, where the 

visco-elastic deformations of the shell and core have been ignored (Van Hoolst et al., 2008): 

 

 

 

2 2

2 2

2 2 sin

2 2 sin

S S S S S S i S S

i i i i i S i i i

C C K e C nt

C C K e C nt

     

     

   

   
    (25) 

 

where 
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In these expressions, i and S are physical librations of core and shell, respectively. Ri and RS  

are the outer radii of core and shell, and h is the shell thickness.  

The damping of librations is introduced in a similar fashion as was done in section 2 

(equation (9), where pendulum quality factors QPeS and QPei are defined for the shell and core, 

respectively, according to equation (11). This gives: 

 
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2 2
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i i
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  (30) 

 

The question of dissipation within the ocean will be addressed below.  

The solution of this linear system of forced damped coupled oscillators is obtained by 

substituting the physical librations of the core and shell i and S by their complex 

expressions: 

 

exp(int)    ;    exp(int)S SO i iO          (31) 
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One obtains a linear system of 2 complex equations for S and i  whose solutions are 

straightforward.  

The pendulum quality factors of the core (presumably composed principally of silicates) and 

of the icy shell need not be the same, therefore several hypotheses have been tested from 

QPei/QPeS=0.1 to QPei/QPeS=10. Also, as mentioned above, different values of i were tested 

from 1500kg/m
3
 to 3300kg/m

3
. For each value of i the core radius Ri is deduced from the 

known mass and radius of Mimas. The 3 model parameters that are unknown are then: the 

shell thickness h, the inner core equatorial flattening i, and the inner core pendulum quality 

factor QPei . The whole parameter space of the input triplet (h, i, QPei) is explored, and each 

time the triplet (da/dt, O, ) is computed. This solution is then compared with the observed 

triplet (da/dt=-15.7x10
-15

AU/day, O=50.3 arc min, =6.35°). Provided that it exists, the 

input triplet that cancels the difference with the observed triplet is retained as the model 

solution.  

Figure 2 displays the result for the icy shell thickness h as a function of the core density. One 

sees that the thickness is of the order of 16 to 35 km depending upon the assumed core 

density and QPei/QPes ratio. This is of the same order as the thickness of 24km determined by 

Tajeddine et al. (2014) in their viscoelastic shell assumption, or the thickness of 32km that 

they obtain in their rigid shell assumption. However, this comparison has limited significance 

since, unlike Tajeddine et al.’s (2014) three-layer model, the inner core here is allowed to 

have a non-hydrostatic shape.  

Figure 3 displays the core equatorial flattening i as a function of core density. The inferred 

value of i is weakly sensitive to the QPei/QPeS ratio, and ranges from 0.38 to 0.21 with 

increasing core density. This quite large value indicates that a non-hydrostatic core is indeed 

necessary to account for the observations. This feature is principally due to the high phase lag 

≈6.35° obtained by Tajeddine et al. (2014).  

Figure 4 shows the pendulum quality factor QPei of the core, as a function of core density. 

QPei increases significantly for ≈80 to ≈380 for increasing core density. Its value is however 

virtually independent of the QPei/QPes ratio, except for the largest value QPei/QPeS=10 at low 

core density. In the absence of further information about the core density, one sees that there 

is a significant range of possible values for QPei . 

Once the three model parameters h, i and QPei have been determined, one can deduce all the 

other quantities of the system. For example, Figure 5 shows the libration amplitude iO of the 

inner core, as a function of core density. One sees that the core undergoes considerable 

libration, with amplitude varying from ≈2.5° to ≈14° for increasing core density if 

QPei/QPeS=1. The amplitude of libration is seen to be nearly independent upon the QPei/QPeS 

ratio if QPei/QPeS≤1 (dashed lines), but significantly dependent upon it if QPei/QPeS≥1 (dotted 

lines). 

The model was also run under the low migration hypothesis discussed above where da/dt is 

reduced by a factor of 10 from the one inferred by Lainey et al.(2012a)). The general behavior 

of the variations of the inferred parameters with inner core density (not shown) are very 

similar with the ones displayed in Figure 2 to Figure 5, although the range of values of the 

inferred parameters are modified. With this low da/dt approach, the inferred shell thickness h 

now ranges from h≈28km for core density i=1500kg/m
3 

to h≈21km for i=3300kg/m
3
. 
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Similarly the equatorial flattening i ranges from i≈0.36 to i≈0.21, and the core libration 

amplitude io ranges from io≈2.1° to io≈11.1°. Those parameters are therefore moderately 

affected by the change of da/dt. On the contrary, the inferred QPei is strongly increased as 

compared with the one of Figure 4, ranging now from QPei≈500 to QPei≈3300. 

 

From those results we conclude that  among both interior models retained by Tajeddine et al. 

(2014) (solid body with nonhydrostatic core, or 3-layer body including ocean) only the latter 

is able to reproduce the combined set of three major observations: libration amplitude O, 

libration phase and inward migration da/dt. Within the assumption that inward migration 

is mainly due to librational dissipation, this permits to determine h, i and QPei provided that 

an assumption is made concerning the core density. Due to the uncertainty of da/dt inferred 

from observations, the value of QPei is however rather uncertain. Note that unlike Tajeddine et 

al.’s (2014) three-layer model, a nonhydrostatic core is needed here in order to account for the 

observations.  

 

4.3. Dissipation within the ocean 

In the preceding section we have ignored the dissipation occurring within the ocean. The 

Reynolds number of the flow within the ocean is Re≈VL/, where V is the azimuthal velocity 

of the shell with respect to the core, L is the ocean depth, and  is the ocean kinematic 

viscosity. For the range of core densities explored in our model computations, the ocean depth 

is always larger than 5km, and the amplitude of the azimuthal deviation between core and 

shell is always larger than 2km. Assuming an ocean water viscosity of 10
-6 

m
2
/s , one gets 

Re>10
8 

which implies a turbulent boundary layer. Following Goldreich and Soter (1966), the 

rate of energy dissipation per unit area due to boundary layer turbulence may be estimated as 

OE =fO<v
3
>, where f≈0.002 is the coefficient of skin friction and v is the local velocity of 

the oceanic current. We perform the averaging of v
3
 over the spherical area and over time, and 

we get an estimate of the dissipated power by adding the powers dissipated in both the inner 

and outer boundary layers of the ocean. This gives:
 

 
3 3 5 3 5

O O iO i SO OE f n R R            (32) 

 

where iO and SO are the libration amplitudes of core and shell, respectively, and RO is the 

outer radius of the ocean. 

The result (not shown) is an increasing function of the assumed core density. In all cases we 

get OE ≤ 9x10
10 

Watts, essentially due to dissipation at the core-ocean boundary layer. As 

a comparison, the dissipated power consistent with the observed inward migration of Mimas 

is: 

 

11

2
5.65 10  

2
S P
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E Gm M Watts

a


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Such level of energy produced by librational dissipation (5.65x10
11

 Watts in equation (33)) is 

extremely high. It is two orders of magnitude higher than the observed heat flux at the South 

pole of Enceladus, and in the same order of magnitude as Europa. On would expect the 

surface of a satellite with the size of Mimas with such high energy production to look rather 

like Io. Since Mimas has almost no geological activity on its surface such high level of 

dissipation may seem questionable. It is therefore worthwhile to also explore the low 

migration hypothesis discussed above, in which da/dt is reduced by a factor of 10. In that 

case, the dissipated power is reduced accordingly, yielding E =5.65x10
10

 Watts from 

equation (33). As a comparison, dissipation in the ocean 
OE  obtained from equation (32) 

now ranges from 4.9x10
9 

Watts to 4.4x10
10

 Watts depending of core density from 1500kg/m
3
 

to 3300kg/m
3
. Thus in that case, for high density core, dissipation within the ocean boundary 

layer 
OE  becomes the dominant cause for damping.  

One concludes that dissipation within the ocean is expected to contribute significantly to the 

total dissipated power. Dissipation in the ocean has not been taken into account explicitly in 

the study performed above. The pendulum quality factors QPei and QPeS that we inferred for 

core and shell may therefore be regarded as also including the energy dissipated in the inner 

and outer oceanic boundary layers, respectively.  

 

4.4.Other hypotheses for ice and ocean density: 

As seen above, the standard values of ice and water densities were taken as S=900kg/m
3
 and 

O=1000kg/m
3
 in the model. However, ice density might be lower due to porosity, while 

ocean density might be higher due to salts. Other hypotheses were therefore also tested with 

modified shell or ocean densities, yielding somewhat modified results. 

Thus, compared with the standard version, models with S=700kg/m
3
 instead of 900kg/m

3
 

were found compatible with the observed quantities, provided that h is increased by 80% to 

30%, and i and QPei  are decreased by 24% to 3%, and 56% to 47%, respectively, depending 

on i from 1500 to 3300kg/m
3
.  

Similarly models were tested with O>1000kg/m
3
. Incidentally, for O close to 1100kg/m3 

(with S=900kg/m
3

 and i=3300kg/m
3
), the triplet (h, i, QPei) required to account for the set 

of observations approaches a resonant situation, yielding a core libration amplitude iO as 

large as ≈35°. For such specific resonance situation ocean dissipation as given by equation 

(32) would become comparable to the 5.65x10
11

 Watts given by equation (33). In that case, 

dissipation in the ocean would be sufficient to account by itself for the whole libration 

damping. One may not exclude the possibility that such resonant situations would have 

occurred incidentally during limited periods in the past.  

 

5. Conclusion and discussion 

 

The strong inward migration da/dt obtained by Lainey et al. (2012a) for Mimas is an 

intriguing feature that has not yet received convincing explanation. Mimas is a triaxial moon 

on an eccentric orbit, and as a consequence it is librating. Libration is believed to enhance 

significantly dissipation within the moon (Makarov and Efroimsky; 2014; Makarov et al., 
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2016). Mimas’ inward migration is interpreted here as an effect of dissipation within the 

librating moon. Tajeddine et al. (2014) performed observations of the phase and amplitude of 

libration and proposed several interior models, from which they retained only two models 

compatible with observations: a solid body with nonhydrostatic core, or 3-layer body 

including an inner dense core, surrounded by a water ocean and an icy solid shell. In this 

paper I combined three major observations: libration amplitude O and libration phase  

observed by Tajeddine et al. (2014), and inward migration da/dt obtained by Lainey et al. 

(2012a). A further study by Lainey et al. (2015) however tends to indicate that the Mimas’ 

strong inward motion might be questioned, and therefore this paper also explores situations 

with smaller da/dt. Within the assumption that inward migration is mainly due to librational 

dissipation, the solid model with nonhydrostatic core is found to be inconsistent with the 

observations. In contrast, a 3-layer model including core, ocean and shell is compatible. The 

observations permit to determine the icy shell depth h, core equatorial flattening i and core 

pendulum quality factor QPei , provided that an assumption is made concerning the core 

density (the visco-elastic deformation of core and shell are ignored). Depending upon the 

assumed core density between 1500 and 3300 kg/m
3
 and upon the QPei/QPeS ratio from 0.1 to 

10, the range of values are [35km-16km], [0.38-0.21], respectively for h and i. Due to the 

uncertainty of da/dt inferred from observations, the value of QPei is however rather uncertain. 

Note that unlike Tajeddine et al.’s (2014) three-layer model, the core here needs to be 

nonhydrostatic in order to account for the observations.  

Due to conservation of momentum the inward migration of Mimas should be accompanied 

with a decrease of orbital eccentricity. One may thus expect that after a while the eccentricity 

would be reduced and that the effect of libration on da/dt would eventually vanish if no other 

process acts to maintain eccentricity. This inward migration of Mimas is therefore not 

expected to be a permanent feature. In the absence of a forcing source, if only dissipation 

within the satellite is considered, the decay of eccentricity is given by (Murray and Dermott, 

1999, page 167): 

 

  
2

E
e

eE
        (34) 

 

Since E is inversely proportional to a, this implies / (2 )e a ea , and thus in the context of 

librational dissipation the eccentricity damping timescale of Mimas can be written as: 

 

22
e

e a
e

e a
         (35) 

 

Lainey et al. (2012b) have suggested that an orbital inward migration of Mimas could produce 

a division in the rings similar to the observed Cassini division. Taking a = -15.7x10
-15 

AU/day 

from Lainey et al. (2012a), equation (35) would yield e≈0.18 Myear, while the time required 

for Mimas to cover the radial extent of distance Cassini’s division (about 4830km) would be  

≈5.6 Myears. Thus, assuming that Lainey et al.’s(2012b) scenario took place temporarily in 
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the past due to enhanced dissipation within Mimas, some process should have been acting 

during that period to maintain eccentricity. 
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Table 1. Physical and orbital properties of Phobos and Mars 

 

Parameter      value       reference 

___________________________________________________________________________ 

Mars: 

Mass MP    6.42x10
23

 kg   Konopliv et al. (2006) 

Spin period TP=2/P  24.623 hours   Murray and Dermott (1999)  

 

Phobos: 

Mass mS    1.06x10
16

 kg   Andert et al. (2010) 

Radii     13x11.39x9.07 km  Willner et al. (2010) 

Mean radius R S   11.27km   quadratic mean of radii 

Normalized MOI
*
(A,B,C)  0.3362, 0.3871, 0.4773 Willner et al. (2010) 

Shape based triaxiality  0.129    =(B-A)/C 

Orbit eccentricity e   0.01511   Jacobson (2010) 

Orbit semi-major axis  a  9,375 km   Jacobson (2010) 

Mean motion n   2.28x10
-4

 rad/s  n=(GMP/a
3
)
1/2 

Secular acceleration 1/2dn/dt  1.27x10
-3

deg/yr
2
  Lainey et al. (2007)  

Libration amplitude   1.2°    Willner et al. (2010) 

* MOI= moment of inertia 
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Table 2. Physical and orbital properties of Mimas and Saturn 

 

Parameter      value       reference 

___________________________________________________________________________ 

Saturn: 

Mass MP    5.6846x10
26 

kg  Murray and Dermott (1999) 

Radius RP    60,330 km   Murray and Dermott (1999) 

Spin period TP=2/P  10.656 hours   Murray and Dermott (1999)  

Dissipation ratio k2P/QP  2.3x10
-4

   Lainey et al. (2012a) 

 

Mimas: 

Mass mS    3.7493x10
19 

kg  Jacobson et al. (2006) 

Radii     207.8x196.7x190.6 km Thomas (2010) 

Mean radius R S   198.5 km   quadratic mean of radii 

Shape based triaxiality   0.06    Dermott and Thomas(1988) 

 

Libration amplitude (measured) 50.3±1.0 arc min  Tajeddine et al. (2014) 

Libration amplitude (theoretical) 26.07 arc min   Noyelles et al. (2011) 

Librat. phase at J2000(measured) 107.7±0.8°   Tajeddine et al. (2014) 

Librat. phase at J2000(theoretical) 101.35°   Noyelles et al. (2011)  

 

Orbit eccentricity e   0.0202               Murray and Dermott(1999) 

Orbit semi-major axis  a  185,520 km   Murray and Dermott (1999) 

Secular da/dt    -15.7x10
-15

 AU/day (*) Lainey et al. (2012a) 

Orbital period T   0.9424 days   Murray and Dermott (1999) 

Mean motion n   7.72x10
-5

 rad/s  n=2/T
 

___________________________________________________________________________ 

(*) value later on questioned by Lainey et al. (2015) 
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Figure 1.  

Representation of the angles used in the paper in a satellite centered frame rotating with the 

satellite’s mean motion n:  physical libration , optical libration , and angle =2esin(nt). 

 

Figure 2. 

Shell thickness h consistent with the observations, as a function of assumed core density. 

Solid line: QPei/QPeS=1 assumed; dashed lines: QPei/QPeS=0.1 or 0.33 assumed; dotted lines: 

QPei/QPeS=3. or 10. assumed.  

 

Figure 3. 

Same as Figure 2, but core equatorial flattening i is displayed. 

 

Figure 4. 

Same as Figure 2, but librational quality factor QPei is displayed.  

 

Figure 5. 

Same as Figure 2, but the amplitude iO of the inner core libration is displayed. 
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Figure 2. 

Shell thickness h consistent with the observations, as a function of assumed core density. 

Solid line: QPei/QPeS=1 assumed; dashed lines: QPei/QPeS=0.1 or 0.33 assumed; dotted lines: 

QPei/QPeS=3. or 10. assumed.  
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Figure 3. 

Same as Figure 2, but core equatorial flattening i is displayed. 
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Figure 4. 

Same as Figure 2, but librational quality factor QPei is displayed.  
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Figure 5. 

Same as Figure 2, but the amplitude iO of the inner core libration is displayed. 

 

 

 


