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Abstract. This study presents the evaluation of a technique
to estimate cloud condensed water content (CWC) in tropi-
cal convection from airborne cloud radar reflectivity factors
at 94 GHz and in situ measurements of particle size distri-
butions (PSDs) and aspect ratios of ice crystal populations.
The approach is to calculate from each 5 s mean PSD and
flight-level reflectivity the variability of all possible solutions
of m(D) relationships fulfilling the condition that the simu-
lated radar reflectivity factor (T-matrix method) matches the
measured radar reflectivity factor. For the reflectivity simu-
lations, ice crystals were approximated as oblate spheroids,
without using a priori assumptions on the mass–size rela-
tionship of ice crystals. The CWC calculations demonstrate
that individual CWC values are in the range ±32 % of the
retrieved average CWC value over all CWC solutions for
the chosen 5 s time intervals. In addition, during the air-
borne field campaign performed out of Darwin in 2014, as
part of the international High Altitude Ice Crystals/High Ice
Water Content (HAIC/HIWC) projects, CWCs were mea-
sured independently with the new IKP-2 (isokinetic evap-
orator probe) instrument along with simultaneous particle
imagery and radar reflectivity. Retrieved CWCs from the
T-matrix radar reflectivity simulations are on average 16 %
higher than the direct CWCIKP measurements. The differ-

ences between the CWCIKP and averaged retrieved CWCs
are found to be primarily a function of the total number con-
centration of ice crystals. Consequently, a correction term is
applied (as a function of total number concentration) that sig-
nificantly improves the retrieved CWC. After correction, the
retrieved CWCs have a median relative error with respect to
measured values of only−1 %. Uncertainties in the measure-
ments of total concentration of hydrometeors are investigated
in order to calculate their contribution to the relative error
of calculated CWC with respect to measured CWCIKP. It is
shown that an overestimation of the concentration by about
+50 % increases the relative errors of retrieved CWCs by
only +29 %, while possible shattering, which impacts only
the concentration of small hydrometeors, increases the rel-
ative error by about +4 %. Moreover, all cloud events with
encountered graupel particles were studied and compared
to events without observed graupel particles. Overall, grau-
pel particles seem to have the largest impact on high crystal
number-concentration conditions and show relative errors in
retrieved CWCs that are higher than for events without grau-
pel particles.
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1 Introduction

Clouds play an important role within the hydrological cycle,
radiative transfer, and heat balance of the Earth. Thus, im-
proving knowledge of ice hydrometeor properties and under-
standing of related processes is important for improving nu-
merical weather forecast and global climate models, as such
models use simple schemes to describe the ice hydromete-
ors’ properties. As a consequence, significant differences in
the representation of ice properties in clouds (Li et al., 2005,
2007) lead to large variations in the quantification of ice
cloud effects on climate evolution (Intergovernmental Panel
on Climate Change Fourth Assessment Report). Among dif-
ferent ice properties, the spatiotemporal distribution of cloud
condensed water content (CWC) is a key parameter for evalu-
ating and improving numerical weather prediction (Stephens
et al., 2002). Increasingly, remote sensing tools are used to
study cloud properties such as hydrometeor size distributions
(ice or water), liquid and/or ice water content, ice particle
shape (spherical, hexagonal, etc.), and precipitation rate. In
particular, the radar (at different frequencies of 5.5, 9.4, 35,
94 GHz) is the most common measurement technique used
to measure clouds properties. Radar reflectivity factors are an
integral value of all backscattering cross sections from all hy-
drometeors within the radar sampling volume, which makes
the radar a complex measurement device for estimating cloud
properties.

The methodology applied in this study to simulate 94 GHz
radar reflectivity factors is based on assumptions about indi-
vidual cloud particle properties. If hydrometeors are droplets,
then Mie solutions can be applied to the Maxwell equations;
however, this is not the case for non-spherical ice crystals.
Discrete dipole approximations (DDA; Draine and Flatau,
1994; Liu, 2008) can be used to calculate backscatter cross
sections for complex shapes and thus tackle this question
for ice crystals. However, in order to apply DDA simula-
tions to ice crystal radar reflectivity factors, a classification of
ice hydrometeor habits is essential. Unfortunately, more than
50 % of ice crystal images classified using automated or man-
ual shape recognition techniques from ground-based and air-
borne measurements are typically identified as irregular (i.e.
they are not identified as a specific habit). This statement still
holds when using very-high-resolution imaging such as from
the Cloud Particle Imager (2.3 µm resolution; e.g. Mioche,
2010).

Hogan et al. (2011) used the oblate spheroid approxima-
tion to simulate radar reflectivity factors at 3 and 94 GHz. For
their calculation of the ice fraction in horizontally oriented
oblate spheroids, these authors used a constant axis ratio
of 0.6 and used the mass–size relationship from Brown and
Francis (1995), originally from Locatelli and Hobbs (1974),
to derive CWCs and radar reflectivity factors. Even though
a mass–size relationship for ice crystals with constant coef-
ficients has been utilized, the study of Hogan et al. (2011)
claimed minimal errors between measured and simulated

radar reflectivity factors, even smaller than the calibration
uncertainty of the cloud radar.

Fontaine et al. (2014) also used the oblate spheroid ap-
proximation for ice crystals to calculate CWC in mesoscale
convective systems (MCS), and Drigeard et al. (2015) used
the Fontaine et al. (2014) results to simulate radar reflectiv-
ity factors at 5.5 GHz. Although simulations of radar reflec-
tivity factors agreed with reflectivity observations at 94 and
5.5 GHz, no direct bulk measurements of CWC were avail-
able to evaluate the retrieved CWCs.

A simpler way to calculate CWC from radar reflectivity
factors is based on empirical Z–CWC or Z–CWC–T rela-
tionships. Such relationships have been established in ear-
lier studies, either with or without direct measurements of
CWC (Protat et al., 2016, 2007; Hogan et al., 2006), for dif-
ferent types of clouds and at different geographical locations
(tropics, continental, mid-latitude). When no direct simulta-
neous measurements of CWC are available, Z–CWC (and
Z–CWC–T ) relationships are established by using constant
mass–size relationships (for CWC calculations from parti-
cle size distribution (PSD) measurements) and most of the
time these studies usem(D) coefficients suggested by Brown
and Francis (1995). As a matter of fact this would mean
that mass–size coefficients are constant and are linked nei-
ther to temperature nor to the variability of PSDs or the type
of clouds. In Fontaine et al. (2014), these simplistic assump-
tions were not used. This more sophisticated method allows
for a more dynamic solution with varying mass–size coeffi-
cients related to the variability of microphysics (PSD and as-
pect ratio of ice crystals). Fontaine et al. (2014) end up with
the retrieval of an average CWC calculated as a function of
time from multiple possible m(D) solutions for the T-matrix
simulations of the radar reflectivity factor (Ze) simulations
compared to measured Z. The method has been established
and published without validation from simultaneous direct
measurements of CWC.

During the High Altitude Ice Crystals (HAIC; Dezitter
et al., 2013)/High Ice Water Content (HIWC; Strapp et al.,
2016) airborne field campaign performed out of Darwin, the
Falcon-20 (F-20) from SAFIRE (Service des Avions Français
Instrumentés pour la Recherche en Environnement) mea-
sured on the same aircraft 94 GHz Z, PSD, aspect ratios of
hydrometeors, and independently CWC. The objective of our
study is to use this comprehensive HAIC/HIWC dataset to
evaluate the method presented by Fontaine et al. (2014).

The next section of this paper presents the dataset of the
first HAIC/HIWC airborne campaign and associated data
processing. The principle of the cloud radar reflectivity sim-
ulation method (Fontaine et al., 2014) is then briefly re-
called. The third section is dedicated to the evaluation of
the Fontaine et al. (2014) method by comparing averaged
in retrieved CWCs from the T-matrix simulations with di-
rect measurements of CWCIKP. Moreover, the study suggests
correction functions for calculated CWC (based on T-matrix
simulations of the reflectivity factors) as a function of tem-
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perature, largest size of hydrometeors in PSDs, and ice crys-
tal concentrations. Then, two further sections are dedicated to
the estimation of possible uncertainties in the measurements
leading to the corrected CWC retrievals and the impact of
graupel particles on those retrievals. Finally, the study ends
with a discussion and conclusion section.

2 Data processing

The HAIC/HIWC projects were designed to investigate the
microphysical processes responsible for engine damage ob-
served when commercial aircraft divert around convective
cores. First HIWC studies (Mason et al., 2006) indicated that
this new form of icing (now referred to as ice crystal icing)
was due to the production of high concentrations of small
ice crystals by deep convection. In this context 23 flights
were performed over the Darwin area, mainly over the ocean
north of Australia, during the monsoon season. Three of the
23 flights were dedicated to the calibration of the instruments
and are not included in this study. The dataset includes more
than 17 000 data points where all parameters are synchro-
nized and averaged over 5 s. As one of the priority of the
HAIC/HIWC projects was to measure high ice water content
and the variability of CWC as a function of distance from
the convective cores at typical altitudes flown by commercial
aircraft, the flight strategy was to fly long legs at constant al-
titude at −50, −40, −30, and −10 ◦C and to get as close
as possible to the most convective zone of the MCS (see
Fig. 2 in Leroy et al., 2017), thereby avoiding red aircraft
radar echoes at normal gain as commercial aircraft would
also do. More details on HAIC/HIWC projects and imple-
mented flight strategy can be found in Dezitter et al. (2013),
Leroy et al. (2016, 2017), Protat et al. (2016), and Strapp et
al. (2016).

In situ microphysical measurements and radar reflectivity
data used in this study were provided by three types of in-
struments, which were mounted on board the F-20 for the
HAIC/HIWC Darwin campaign.

(1) The 94 GHz multi-beam Doppler cloud radar RASTA
measured both cloud radar reflectivity factors and 3-D cloud
dynamics below and above the flight level. The uncertainty
on the measured reflectivity is about ±1 dBZ (e.g. Protat et
al., 2009). We only use radar vertical antennas (zenith, nadir)
producing vertical profiles of the radar reflectivity along the
flight trajectory. Radar reflectivity factors are interpolated
at the flight altitude using validated gates (typically 180 m
above and below the aircraft) to retrieve the most likely radar
reflectivity at flight altitude. RASTA has a vertical resolution
of 60 m and 0.7◦ beam width.

(2) Two optical array probes (OAPs), the 2-D-Stereo probe
(2-D-S) from SPEC (Stratton Park Engineering Company,
Inc.) and the Precipitation Imaging Probe (PIP) from Droplet
Measurement Technologies (DMT) were used.

(3) An Isokinetic Evaporator Probe (IKP-2: Davison et
al., 2016) that provides direct CWC measurements was also
used. The IKP-2 is a second-generation version of the pro-
totype IKP (Davison et al., 2008), which was downsized for
the F-20. The IKP-2 was developed to provide reliable mea-
surements of CWC in deep convective clouds at temperatures
colder than −10 ◦C, up to at least 10 g m−3 at aircraft speeds
of 200 ms−1, and with a target accuracy of 20 %. The IKP-2
samples the cloud particles isokinetically, evaporates them,
and measures the resulting humidity of the evaporated par-
ticles and background air. CWC (hereafter CWCIKP given
in g m−3) is then obtained by subtracting the water vapour
background measurement from the IKP-2 total hygrometer
signal. System accuracy estimates are better than 20 % for
CWC greater than 0.25 g m−3 for temperatures lower than
−10 ◦C (Davison et al., 2016). Accuracy increases with de-
creasing temperature due to the exponential decrease in back-
ground humidity, which drives much of the IKP-2 error. For
example, at−56 ◦C, system accuracy was estimated at better
than 4 % for CWC greater than about 0.1 g m−3.

The 2-D-S and the PIP record monochromatic 2-D shadow
images of cloud hydrometeors (ice and/or water) along the
flight trajectories. The 2-D-S records images of hydromete-
ors in the size range 10–1280 µm at a 10 µm pixel resolu-
tion, whereas the PIP records images in the size range 100–
6400 µm and beyond (perpendicular to photodiode array and
reconstruction of truncated images parallel to the array) at
a 100 µm pixel resolution. For both probes, PSDs were pro-
duced by image analysis into number concentrations per unit
volume of sampled air as a function of their size.

In this paper, the size of ice hydrometeors is given in terms
of the maximum diameter Dmax (e.g. see Leroy et al., 2016,
for definition). The size of truncated images and sampling
volume are corrected using the method presented in Korolev
and Sussman (2000). This reconstruction method allows ex-
trapolating hydrometeor sizes to a maximum size of 2.56 mm
for 2-D-S and to 12.8 mm for PIP.

In addition, many artefacts can bias PSD estimates from 2-
D image analysis. Therefore, supplementary post-processing
is needed to retain only the natural ice particles. One of
the most important causes of artefacts is the shattering
of hydrometeors on the tips of OAPs. During the first
HAIC/HIWC field campaign in Darwin, the newest anti-
shattering tips were used for 2-D-S and PIP to reduce the
shattering from large ice crystals. In addition, analysis of
the time-dependent (along the flight trajectory) interarrival
time spectra was performed to determine the cut-off time,
which separates natural hydrometeors images from artefact
particles (Korolev and Isaac, 2005; Field et al., 2006; Ko-
rolev and Field, 2015). It has been shown that both mitigation
techniques are needed to maximize the removal of shattering
artefacts (Jackson et al., 2014). Furthermore, OAP images
(for both 2-D-S and PIP) of splashed hydrometeors were re-
moved using the ratio between their projected surface area
and the surface defined by the box Lx×Ly (e.g. see Dx and
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Dy in Leroy et al., 2016), where Lx is the projection of the
size of each hydrometeor along the flight trajectory, and Ly is
the projection along the array of diodes. Images with an area
ratio less than 0.25 were considered as splashed particles and
removed. This threshold has been calculated statistically and
allows the removal of larger splashed ice crystals as well.

Another important correction is related to the sizing of out-
of-focus hydrometeors. In our study, the size of out-of-focus
particles was corrected using the method presented in Ko-
rolev (2007). In addition, noisy pixels (satellite pixels) which
may affect hydrometeor images were eliminated thereby ap-
plying the method described in Lawson (2011). These single-
pixel noisy pixels are not firmly attached to the hydromete-
ors’ images and therefore must be removed to get the best
estimation of the true diameter (e.g. Dmax).

Finally, high number concentrations of ice particles lead to
gaps in the sampling times of OAPs due to insufficient time
to record all hydrometeors images. This probe effect (also
called OAP overload or dead time) was taken into account
and would otherwise lead to an underestimation of the num-
ber concentration of hydrometeors. While the 2-D-S probe
overload times are directly registered, the PIP overload is es-
timated by comparing the number of images in the PIP files
to the separately registered total particle counts of particles
that passed through the laser beam. The ratio of counted par-
ticles (1-D information) to recorded particle images (2-D in-
formation) is used to correct for the concentration. During an
OAP overload, 1-D counted particles may reach 15000 while
only about 10 000 have a recorded image, which would result
in an uncertainty of 50 % on the concentration of hydrome-
teors, without overload correction (Fontaine, 2014). Further
details on post-processing of 2-D-S and PIP data are given in
Leroy et al. (2016). The individual 2-D-S and PIP PSDs were
merged into a composite PSD using the algorithm described
in Eq. (1). The resolution of the composite PSD is 10 µm (by
interpolating the PIP raw PSDs at the 2-D-S resolution), and
PSDs are averaged over 5 s time intervals for improved large
particle statistics. The transition zone for changing from 2-D-
S to PIP data in the composite spectrum (see equation below)
is from a Dmax of 805 µm (median diameter for a size bin) to
1205 µm. N(Dmax) is given per litre.

Dmax=12 845∑
Dmax=15

N (Dmax) ·1Dmax

=

Dmax<805∑
Dmax=15

N2-D-S (Dmax) ·1Dmax+C1 (Dmax)

·

Dmax<1205∑
Dmax=805

N2-D-S (Dmax) ·1Dmax

+C2 (Dmax)

Dmax<1205∑
Dmax=805

NPIP (Dmax) ·1Dmax

+

Dmax=12 845∑
Dmax=1205

NPIP (Dmax) ·1Dmax, (1)

where C1(Dmax) +C2(Dmax)= 1, with C2(Dmax) =
Dmax−805
1205−805 .

3 Retrievals of CWC from radar reflectivity
simulations

3.1 Simulations of radar reflectivity factors: Ze

This section reviews the method used in Fontaine et
al. (2014). The principle of the technique is to retrieve CWC
from simulations of radar reflectivity factors (Ze), calcu-
lated from OAP image information and compared to mea-
sured RASTA radar data. The data were collected in tropi-
cal MCSs that formed over the African continent and over
the Indian Ocean during two aircraft campaigns dedicated to
the Megha-Tropiques project (Roca et al., 2015). The main
drawback of these experiments is that they do not include
direct measurement of CWC. The Fontaine et al. (2014)
method uses oblate spheroids (Hogan et al., 2011) to approxi-
mate the backscatter cross section (Qback) of natural hydrom-
eteors. In Eq. (2) below, Ze is defined in mm6 m−3:

Ze(As, fice (Dmax))= 1000 ·
λ4

π5 · |Kw-ref|

·

Dmax=12 845∑
Dmax=15

N (Dmax) ·Qback
(
As, fice (Dmax)

)
·1Dmax, (2)

with

fice =min

1 ,
m
(
D
β
max

)
π
6 · ρice ·D3

max

 , (3)

where

m(Dmax)= α ·D
β
max, (4)

and

As=
Dmax=12 845∑
Dmax=15

As(Dmax) ·P i (Dmax) , (5)

where

P i (Dmax)=
N (Dmax) ·D

3
max ·1Dmax

Dmax=12845∑
Dmax=15

N (Dmax) ·D3
max ·1Dmax

. (6)

Note that in Eq. (2) λ is the emitted wavelength of the radar
and Kw-ref is the dielectric constant of liquid water at the
same frequency. Qback is a function of the ice fraction (fice;
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Eq. 3) in the spheroid and the axis ratio of the oblate spheroid
(here denoted As, see Eq. 5). fice is thereby a function of the
mass–size relationship (see Eq. 3). Equation (3) also limits
the mass of an ice hydrometeor to the mass of an ice sphere of
diameter Dmax. fice also allows the calculation of the dielec-
tric properties of the ice spheroids (Maxwell Garnet, 1904;
Drigeard et al., 2015).

As (Eq. 5) is the average aspect ratio of all hydrometeors
and is calculated every 5 s according to N(Dmax) and Z. Pi
(Eq. 6) is a weighting function that has been defined to ac-
count for the volume occupied by the hydrometeors in the
sampled volume. As(Dmax) for a particle is defined as the ra-
tio of the width (radius perpendicular to Dmax) divided by
Dmax. In Fontaine et al. (2014) the calculation of As only
considers all hydrometeors with sizes Dmax ≤ 2005µ which
contribute on average to 95 % of Ze (Drigeard et al., 2015).
Since the processing of 2-D-S and PIP has been further im-
proved by Leroy et al. (2016), we decided to consider all hy-
drometeors from 15 µm to 1.2845 cm for As calculation. Note
that a comparison of the As calculation utilized in Fontaine
et al. (2014) with the new As calculation results in a decrease
of As of less than 3 %, which has a negligible impact on the
retrieval results.

Note that the constant aspect ratio of 0.6 used in Hogan
et al. (2011) is rather close to the peak of the As frequency
distribution presented for African monsoon MCS and also
oceanic MCS over the Indian Ocean (Fontaine et al., 2014).
The average aspect ratio calculated for the HAIC/HIWC
dataset is 0.55, which is then very similar to respective aver-
age values for the various datasets sampled over the African
continent, United Kingdom, Indian Ocean, and north of Aus-
tralia.

In Fontaine et al. (2014) the exponent β of the m(D)
power law relationship has been constrained as a function of
time from the ice particle images. For this study, no a-priori
assumptions on the mass–size relationship of hydrometeors
have been chosen and therefore a variational approach has
been applied to calculate CWC from Ze reflectivity factor
simulations. For a given but variable exponent βi the corre-
sponding pre-factor αi is calculated to match the measured
reflectivity Z with the simulated Ze. βi is varying stepwise
between 1 to 3 by increments of 0.01. Thereby, the range
of potential solutions are explored using the oblate spheroids
approximation with the T-matrix method (Mishchenko et al.,
1996) calculating Qback of each spheroid. Hence, for a given
5 s data point, 201 calculations of αi and 201 calculations of
corresponding CWC(βi) are performed (see Eq. 10):

CWC(βi)= 103
·

Dmax=12 845∑
Dmax=15

N (Dmax) ·αi ·D
βi
max

·1Dmax. (7)

For each 5 s data point, from the 201 possible CWC(βi) val-
ues, an average value CWC is deduced (Eq. 11):

Figure 1. Condensed water content (CWC) as a function of time for
two HAIC/HIWC flights during the Darwin 2014 flight campaign.
In black is CWCIKP; in red is the average CWC deduced from all
possible simulations (varying β and constraining α) of the measured
Z. Blue-to-green colour band shows CWC(βi) calculations when β
varies from 1 (blue) to 3 (green). (a) Results for flight 9; (b) results
for flight 12.

CWC=
1
Ntot
·

βi=3∑
βi=1

CWC(βi) , (8)

where Ntot ≤ 201, since the minimum value allowed for αi is
the mass of an empty sphere (air density).

Figure 1 shows two examples (flights 9 and 12) with all
possible CWC(βi) retrievals (colour band), average CWC
(red line), and CWCIKP measured by the IKP (overlaid
black line). The example in Fig. 1a shows results from
flight 9, in which the F-20 research aircraft flew in the
more stratiform part of the cloud system (w ∼ 0 m s−1),
whereas results from flight 12 shown in Fig. 1b represent
a case with more signatures of convective updrafts. Over-
all, Fig. 1 demonstrates that the variational retrieval method
produces a large variability of possible CWC(βi) for each
5 s data point. In general, the average CWC (red line) is
close to CWCIKP. The bandwidth of all possible solutions
CWC(βi) as a function of time is calculated from the differ-
ence 1CWC=max(CWC(βi))–min(CWC(βi)) between the
maximum and the minimum values of CWC(βi). On aver-
age, it is found that1CWC accounts for 61 % of CWC (with
64 % for the median relative error) for the entire dataset (20
flights performed over Darwin area). Finally, the calculations
reveal that 80 % of the HAIC dataset satisfy the condition
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Figure 2. (a) Ratio of cumulative sum of simulated Ze over mea-
sured total Z as a function of Dmax for three chosen (αi ,βi) solu-
tions (β =1, 2, and 3). (b) Ratio of the cumulative sum of ice crystal
mass over the CWC for constant β (β = 1, 2, and 3), represented
as a function of Dmax. Full lines represent median and dashed lines
25th and 75th percentiles for entire dataset with blue lines for β = 1,
black lines for β = 2, and red lines for β = 3.

CWCIKP = CWC± 32 %, where no a priori assumptions on
mass–size relationships were applied and βi linearly varies
between 1 and 3, thereby producing equally eligible solu-
tions CWC(βi) that are finally averaged to produce a 5 s data
point for CWC.

In general, and for each given 5 s data point, maximum
CWC is obtained for β = 1 and minimum CWC for β =3.
For β = 1, ice hydrometeors below Dmax = 200 µm (some-
times even below 300 µm) may reach the maximum den-
sity of 0.917 g cm−3, while for β = 3 the density of oblate
spheroids is constant as a function of Dmax (see Eqs. 3–4),
where the density of icy spheroids is equal to 0.917× fice).

The impact of β on Ze and on the retrieved CWCs is il-
lustrated in Fig. 2. One can notice that for different values

Figure 3. (a) Relative errors of CWC with respect to CWCIKP (as
defined in Table 1) as a function of total PSD number concentration
NT. The errors are presented with and without the three suggested
correction functions for CWC. (b) Number of 5 s data points used
for the statistics on the y axis as a function of NT intervals.

of β (β = 1, 2, 3) the corresponding value of α can be found
such that the cumulative sum of Ze as a function of Dmax
normalized by the measured radar reflectivity factor Z (in
mm6 m−3; Fig. 2a.) is equal to 1. The respective cumulative
mass of ice crystals (as a function of Dmax) then is normal-
ized by CWC (Fig. 2b). This CWC ratio may deviate from 1,
whereas the normalized cumulative sum of Ze has been equal
to 1, independently of chosen β. For β =1, Ze is reached
sooner (Dmax ≈ 1700 µm) than for β = 3 (Dmax ≈ 3000 µm).
The likely explanation is that with increasing β, the backscat-
tered energy is increased for large hydrometeors and the
mass contribution of smaller hydrometeors is considerably
reduced since the contribution of numerous smaller hydrom-
eteors (compared to larger hydrometeors) on retrieved CWC
is decreasing with increasing β.

3.2 CWC deviations from T-matrix simulations of
reflectivity with respect to IKP direct
measurements

This section focuses on the potential error in CWC re-
trievals from T-matrix simulations of radar reflectivity fac-
tors (at frequency of 94 GHz) for populations of ice hy-
drometeors approximated with oblate spheroids. Therefore,
the relative errors of retrieved CWC with respect to ref-
erence CWCIKP (measured by the IKP-2 probe) are cal-
culated and then analysed as a function of microphysical
properties of ice hydrometeors such as total concentration
(NT; Fig. 3), temperature T (Fig. 4), maximum size of hy-
drometeors in PSDs (max(Dmax); Fig. 5), total cloud water
content CWCIKP (Fig. 6), and radar reflectivity factors Z
(Fig. 7). Blue lines in Figs. 3–7 (upper charts) display me-
dian trends obtained when the relative errors of CWC are
plotted as a function of the crystal number concentration NT,
the temperature T , the maximum encountered crystal size
max(Dmax), the CWCIKP, and the radar reflectivity Z. Bot-
tom and top whiskers of the error bars represent the 25th and
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Figure 4. Same as Fig. 3, but represented as a function of tempera-
ture T on the x axis.

Figure 5. Same as Fig. 3 but represented as a function of the maxi-
mum size of hydrometeors max(Dmax) on the x axis.

75th percentiles of the relative error of CWC (with respect to
CWCIKP). Lower charts in Figs. 3–7 illustrate the number of
samples used for the calculation of the respective data points
in discrete intervals of NT, T , max(Dmax), CWCIKP, and Z.
The other curves in Figs. 3–7 represent the retrieved CWCs
with applied corrections as a function of NT (red curves),
T (grey curves), and max(Dmax) (black curves) and are dis-
cussed in Sect. 3.3 with the correction functions.

From Fig. 3 (blue line) it appears that CWC resulting
from T-matrix simulations approximating ice hydrometeors
with oblate spheroids is poorer at the lower (NT < 100 L−1)
and higher (NT > 5000 L−1) ranges of number concentra-
tions. In particular, the reference CWCIKP is underestimated
for small NT and overestimated for larger NT. Furthermore,
Fig. 4 (blue line) seems to illustrate that this method increas-
ingly overestimates with decreasing temperature (blue line
in Fig. 4). For example, CWC exceeds CWCIKP at 220 K
(±5 K) by about 25 %. Finally, the relative errors of CWC
with respect to CWCIKP slightly but continuously increase
with the maximum size of hydrometeors within the respec-
tive data point (blue line in Fig. 5), where the relative error of
CWC reaches+25 % when max(Dmax)= 1 cm versus∼ 0 %
for max(Dmax)= 800 µm.

3.3 Correction functions for CWC retrievals from
T-matrix simulations of reflectivity

Because of the above findings, three different types of correc-
tions are studied in order to (i) quantify the limitations of the
oblate spheroid approximation and (ii) suggest suitable cor-
rection functions that use in situ measured quantities over the
entire dataset with CWCIKP larger than 0.1 g m−3. These cor-
rections are performed using the inverse of the original rela-
tive errors (blue lines) in Figs. 3–5 and aims at reducing the
median relative errors to 0 %. The impact of these corrections
on relative errors as a function of NT, T , and max(Dmax) is
added to Figs. 3–7.

Red lines in Figs. 3–7 represent the relative error of
CWC× f (NT) after applying a correction function f (NT)

as a function of NT with

f (NT)= 0.84 ·
(
−0.3012 · log10(NT)

3
+ 2.658 · log10(NT)

2

−7.758 · log10 (NT)+ 8.493
)
. (9)

Grey lines in Figs. 3–7 represent the relative error of CWC×
f (T ) after applying a correction function f (T ) as a function
of T with

f (T )= 0.84 · (0.006528 · T − 0.517) . (10)

Black lines in Figs. 3–7 represent the relative error of
CWC× f (max(Dmax)) after applying a correction function
f (max(Dmax)) as a function of max(Dmax) with

f (max(Dmax))= 0.84 ·
(

2.092.10−9
·max(Dmax)

2

−3.869.10−5max(Dmax)+ 1.15
)
. (11)

Without the above correction functions, retrieved initial
CWCs are larger than CWCIKP by about 19 % on average
(with a median value of +16 %; Table 1, first row). There-
fore, all three correction functions (Eqs. 9–11) have a median
factor of 0.84 in common that reduces the initial CWC such
that CWC× f (X;X =NT, T , max(Dmax)) better matches
CWCIKP. The expressions in parentheses of Eqs. (9)–(11)
try to redistribute the relative error in CWC from T-matrix
simulations over the entire range of observed NT, T , and
max(Dmax) values, but they have negligible impact on the
median relative error itself. Even though no correction func-
tions for CWC have been proposed as a function of CWCIKP
and Z, Figs. 6 and 7 illustrate the impact of NT, T , and
max(Dmax) correction functions (Eqs. 9–11) on the redistri-
bution of the relative error also as a function of CWCIKP and
Z.

Figure 3 reveals that f (NT) (Eq. 9) decreases biases of re-
trieved CWC× f (NT) over the entire NT bandwidth, while
f (T ) (Eq. 10) and f (max(Dmax)) (Eq. 11) do not change
the shapes of the relative error lines as compared to un-
corrected CWC relative errors (Fig. 3). Also, the function
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Table 1. Mean relative errors, 10th, 25th, 50th, 75th, and 90th percentiles (in %) of retrieved CWCs with respect to CWCIKP. Black numbers
are for the entire dataset and bold numbers are respective relative errors for graupel events only.

Relative error Mean 10th 25th 50th 75th 90th

CWC−CWCIKP
CWCIKP

· 100% 19 −14 2 16 32 54
(83) (6) (32) (75) (101) (133)

CWC·f (NT)−CWCIKP
CWCIKP

· 100% 2 −24 −12 −1 12 28
(16) (−25) (−7) (7) (32) (54)

CWC·f (T )−CWCIKP
CWCIKP

· 100% 4 −24 −11 1 15 34
(59) (−5) (16) (51) (77) (100)

CWC·f (max(Dmax))−CWCIKP
CWCIKP

· 100% 3 −26 −12 0 14 33
(53) (−11) (14) (44) (68) (96)

Figure 6. Same as Fig. 3 but represented as a function of CWCIKP
on the x axis.

f (NT) (Eq. 9) also generally decreases relative errors of the
CWC× f (NT) retrievals when plotted as a function of T
(Fig. 4) and as a function of max(Dmax) (Fig. 6). Further-
more, the f (T ) correction function (Eq. 10) reduces the dif-
ferences between CWC×f (T ) and CWCIKP as a function of
T (Fig. 4). However, CWCs corrected as a function of T still
show bias when presented as a function of NT (Fig. 3, grey
line) or as a function of Z (Fig. 7, grey line). Finally, the
f (max(Dmax)) correction function (Eq. 11) reduces the rela-
tive error of retrieved CWC×f (max(Dmax)) as a function of
max(Dmax) in Fig. 5 but does not have much impact on the
shape of the relative error distributions as a function of NT,
T , CWCIKP, and Z (Figs. 3, 4, 5, 7) relative to uncorrected
CWC relative errors.

In addition, rows 2–4 of Table 1 present mean (average),
median, 10th, 25th, 75th, and 90th percentiles of the relative
error after applying the correction functions, with an obvious
decrease of mean and median values and corresponding shift
of relative error distribution percentiles.

Overall, the f (NT) correction seems most efficient to re-
move the CWC bias. Heymsfield et al. (2013) showed that to-

Figure 7. Same as Fig. 3 but represented as a function of radar
reflectivity factors Z on the x axis.

tal concentrations of ice hydrometeors tend to increase with
decreasing temperature in tropical MCS for temperatures
−60 ◦C < T < 0 ◦C. This evolution of the increasing total con-
centration of hydrometeors related to decreasing tempera-
tures is therefore suggested as the key to explaining trends
in relative CWC errors as a function of NT and T .

Figure 8 summarizes the above results by showing prob-
ability distribution functions of CWC× f (X;X =NT, T ,
max(Dmax)) versus CWCIKP. Imperfections of the correc-
tions described by Eqs. (10) and (11) are clearly visible in
Fig. 8c and d, where high CWCIKP values are still over-
estimated (as in Fig. 8a) by CWC× f (T ) and CWC×
f (max(Dmax)), respectively. The correction function f (NT)

(Eq. 9) produces the best results (Fig. 8b), where the max-
imum of the probability distribution function in CWC×
f (NT) versus CWCIKP representation follows the line y = x.
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Figure 8. Probability distribution functions of CWC on the y axis calculated as a function of CWCIKP on the x axis. Probabilities are repre-
sented by the colour scale and were normalized by the number of data points. (a) No correction is applied to average CWC. (b) Correction
f (NT) described by Eq. (9) is applied to CWC. (c) Correction f (T ) described by Eq. (10) is applied to CWC. (d) Correction f (max(Dmax))
described by Eq. (11) is applied to CWC. Dashed black lines represent the shift of retrieved CWSs when Z is shifted by more or less 1 dBZ
(RASTA uncertainty; Fontaine et al. 2014).

Table 2. Relative errors of retrieved prefactor αi,fshatt and αi,50 %
with respect to αi in % for β = [1, 2, 3].

100 (αi,fshatt-αi)/αi 100 (αi,50 %-αi)/αi

1st Median 99th 1st Median 99th

β = 1 −3 % −3 % 1 % −21 % −18 % −18 %
β = 2 −3 % 0 % 0 % −20 % −20 % −18 %
β = 3 −3 % 0 % 0 % −24 % −20 % −18 %

4 Uncertainties in ice particle concentrations and
impact on results

This section investigates the impact of uncertainties in crys-
tal concentrations on the CWC retrieval, with a particular fo-
cus on shattering of ice crystals. As discussed in Sect. 3.2 the
relative errors increase with total number concentration, with
overestimations by about 50 % of CWCs for very large con-
centrations of hydrometeors, which can reach 104 hydrom-
eteors per litre in most convective parts of sampled MCS
(Fig. 3a). In order to investigate the impact of uncertainties
of number concentrations on the retrieved CWC we apply
two different types of functions on the measured PSDs, in
which both functions increase the number concentrations of
measured PSDs.
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Table 3. Relative errors of retrieved CWCi,fshatt and CWCi,50 % with respect to CWCi in % for β = [1, 2, 3].

100 (CWCi,fshatt-CWCi)/CWCi 100 (CWCi,50 %-CWCi)/CWCi

1st Median 99th 1st Median 99th

β = 1 −1 % +4% +9% +23% +29% +32%
β = 2 −1 % +3% +9% +24% +27% +30%
β = 3 +1% +1% +5% +22% +27% +30%

First, a function fshatt is applied to the PSD in order to
increase concentrations of hydrometeors in the first PSD
size bin (5–15 µm) by about 50 %, while concentrations
of hydrometeors larger than 500µ remain unchanged. The
function fshatt decreases in a logarithmic way with Dmax
from first bin to 500 µm. fshatt is applied to PSD such that
N ′(Dmax)= fshatt(Dmax)×N(Dmax) and aims to produce
new PSDs where the optimized probe tips still would have
produced shattered crystal fragments and/or removal pro-
cessing would have failed to remove numerous shattered ice
particles. Then, the retrieval method (see Sect. 3.1) is applied
to these new PSDs in order to calculate new values for αi and
subsequently CWCi (hereafter αi,fshatt and CWCi,fshatt). For
the purpose of this Sect. 4, the method was only applied for
β = [1, 2, 3] in order to get a good idea of the maximum
impact of possible shattering artefacts. Results are presented
in terms of relative errors in Table 2 for αi,fshatt and Table 3
for CWCi,fshatt, respectively. Relative errors in (%) are calcu-
lated with respect to coefficients αi and CWCi (for β = [1, 2,
3]) calculated in Sect. 3 for non-modified original N(Dmax)

size distributions and without correction functions discussed
in Sect. 3.3. (Eqs. 9 to 11). The relative errors illustrate that
the chosen concentration increase of solely small hydrome-
teor sizes has very limited impact on retrieved αi and CWCi .
Indeed, we observe that the median relative error of the pref-
actor αi,fshatt with respect to αi is roughly −3 % for β = 1
and 0 % for β = 2 and β = 3. The 1st and 99th percentiles
are shown in order to demonstrate that the relative errors in
αi,fshatt are small over the entire dataset. Consecutively, me-
dian relative errors of CWCi,fshatt with respect to CWCi are
of the order of 4, 3, and 1 % for β = 1, 2, and 3, respectively.
The 99th percentile of the relative error does not exceed 10 %
in retrieved CWC.

Second, a simple concentration uncertainty factor of 1.5 is
applied over the entire measured size range, which increases
the number concentration by 50 % such that N ′(Dmax)=

(1.5×N(Dmax)). Note that 50 % is approximatively the
missed number of ice crystal images by the PIP due to the
probe overload in high concentrations of ice crystals, though
data have been corrected for overload times (see Sect. 2 and
Fontaine, 2014). Simulations of the reflectivity factor with
modified N ′(Dmax) were performed with resulting prefac-
tor αi,50 % and derived CWCi,50 %. Results of the compar-
ison of αi,50 % and CWCi,50 % with αi and CWCi , respec-
tively, are also presented in Table 2 and Table 3. Globally,

this second scenario of concentration enhancement of origi-
nal PSD has a larger impact on retrieved prefactor (αi) and
calculated CWCi than was the case for the first scenario. In-
deed, adding 50 % to the concentrations of hydrometeors re-
sults in a median decrease of prefactor αi,50 % with respect to
αi of −18 % for β = 1 and −20 % for both β = 2 and 3. The
forced decrease in α (from αi,50 % to αi,) goes along with an
increase of CWCi,50 % with respect to CWCi by about+29 %
(for β =1) and +27 % for β = 2 and 3. Indeed, for a given
radar reflectivity factor we simulate (and measure) the same
Ze (and Z) for N ′(Dmax) (and N(Dmax)) with decreasing α
(αi,50 % compared to αi,), while the CWCi,50 % increases by
almost 30 % (CWCi,50 % case compared to CWCi). Hence, if
two different size distributions produce an identical Ze, CWC
can be significantly different. In other words, Ze may differ
significantly for the same CWC associated with two underly-
ing different size distributions even without considering un-
certainties in concentration measurements.

5 Impact of graupel on retrieved CWCs

Graupel are more spherical than pristine ice crystal shapes
and aggregates. When approximating graupel particles as
oblate spheroids in the T-matrix calculations, their density
is close to solid ice density and their aspect ratio is close to
1. Hence, observations of graupel particles dominating the
crystal populations are investigated within the entire dataset
to estimate their impact on retrieved CWCs. A detection
algorithm of virtually spherical particles has been applied
to PIP image data to select events where graupel are ob-
served. Most of these events are observed forNT > 2000 L−1,
CWC > 1 g m−3. For those events, retrieved CWCs also have
relative errors larger than 100 %. Some events are also de-
tected for NT < 2000 L−1, but with relative errors less than
30 %. Table 1 gives relative errors for graupel events only
(bracketed bold numbers). It shows mean and median rela-
tive errors of retrieved CWCs without corrections and with
correction applied from Eqs. (9) to (11). The correction as a
function of NT (Eq. 9) has the largest impact on the relative
errors (mean and median) for graupel events. Indeed, mean
relative errors of retrieved CWCs for all graupel events are
83 % (without correction) and 16 % (after f (NT) correction).
Likewise, the percentages for the median relative errors are
75 and 7 %, respectively, without and with correction. Note
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Figure 9. For three cloud categories discussed in Sect. 5, (a, c, e) show the number size distributions of ice crystals and (b, d, f) present the
respective aspect ratio distributions of ice hydrometeors as a function of crystal size on the x axis. Median distributions are indicated by a
solid line and the 25th and 75th percentiles by dashed lines. The red curves are used for events where graupel are detected, whereas blue is
used for events without graupel particles. In addition, median relative errors of retrieved uncorrected CWCs, corresponding median aspect
ratios, and number of observed events (for both graupel and non-graupel events) are added as numbers in the figures.

that corrections as functions of max(Dmax) and T are less
efficient in reducing mean and median relative errors of re-
trieved CWCs for graupel events.

In the following, three different microphysical categories
are distinguished in order to compare PSD and As(Dmax) of
observed graupel events with respective non-graupel data:

1. CWCIKP > 2 g m−3 and NT > 2000 L−1 (Fig. 9a and b),

2. 1 < CWCIKP < 2 g m−3 and NT > 2000 L−1 (Fig. 9c
and d), and

3. 1 < CWCIKP < 2 g m−3 and NT < 2000 L−1 (Fig. 9e
and f)

Figure 9 shows median, 25th, and 75th percentiles of PSDs
(Fig. 9a, c, and e) and size-dependent As(Dmax) (Fig. 9b,

d, and f). Graupel and non-graupel events are shown as red
and blue lines, respectively. From this figure, there is no ev-
idence of significant differences between median PSDs with
and without detection of graupel particles (three left figures).
However, the median aspect ratio substantially changes for
hydrometeors larger than 1mm, with increased As(Dmax) for
the graupel particle events compared to non-graupel events.
For all three graupel categories defined above, the number
of observations with graupel particles are smaller than those
without graupel particles. Indeed, for the event category
where CWCIKP > 2 g m−3 and NT > 2000 L−1 a total of 451
events without graupel particles and solely 130 events with
graupel particles are detected, with median relative errors
in uncorrected retrieved CWCs of +40 and +74 %, respec-
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tively. For the event category with 1 < CWCIKP ≤ 2 g m−3

and NT > 2000 L−1, there are 1687 and 80 graupel and non-
graupel events, respectively, with median relative error of
uncorrected retrieved CWCs of +25 and +63 %, respec-
tively. Finally, for the third category (1 < CWCIKP < 2 g m−3

and NT < 2000 L−1) only 16 events are detected with grau-
pel particles compared to 1701 events without graupel parti-
cles, with corresponding median relative errors of +10 and
+9 %, respectively. Graupel particles seem to have smaller
impact on this third category as compared to two other cat-
egories. Most of the graupel events occur for high crystal
number concentrations (NT > 2000 L−1), thereby leading to
higher median relative errors in uncorrected retrieved CWCs
as compared to the non-graupel events.

6 Discussion and conclusions

The objective of the present study was to evaluate with direct
CWC observations the CWC retrieval technique outlined in
Fontaine et al. (2014), based on matching simulated radar
reflectivity factors from PSD measurements with measured
radar reflectivity factors at 94 GHz. Since mass–size relation-
ships are considered to be unknown, the reflectivity simula-
tions explore a wide range of possible solutions of (αi,βi),
varying β in the range of 1 to 3. This produces a series of
possible CWCs for a given data point, one for each value
of β. From this series, the average value CWC over all val-
ues of β is calculated. On average it is found that the differ-
ence CWC(β = 1)−CWC(β = 3) is approximately 64 % of
the average CWC. Of the Darwin data points, 77 % meet the
condition of CWC(β = 3)≤CWCIKP ≤CWC(β = 1), which
goes along with the relation CWCIKP = CWC±32 %. How-
ever, the retrieved CWC values are generally larger than
CWCIKP by about 16 % (median value), which illustrates that
the approximation of ice oblate spheroids tends to underes-
timate the backscattered energy of real reflectivity measure-
ments of ice hydrometeors at 94 GHz, and a constant factor of
0.84 could be applied as a first-order correction of retrieved
CWC.

One of the possible explanations is that the calculation
of the average aspect ratio from 2-D images (Eqs. 5 and 6)
which has been adopted as the flattening parameter utilized
for the approximation of ice oblate spheroids might be some-
what too large. A way to investigate impact and calculation
of axis ratio for ice oblate spheroids approximations would
be to use As(Dmax) instead of As (Eq. 5) in simulations of
radar reflectivity factors.

This study also demonstrated that the total concentration
of ice hydrometeors could be used as input for a correc-
tion algorithm that minimizes differences between CWC and
CWCIKP and that this parameter was the best of several pa-
rameters evaluated for this purpose. These differences, be-
fore correction, were found to increase with increasing ice
concentration, with CWC underestimating CWCIKP at low

ice concentrations and overestimating CWCIKP at high con-
centrations.

Another attempt of explanation is the uncertainty of mea-
sured total crystal concentrations, which could partly explain
large relative errors at high concentrations. Indeed, for very
high concentrations we find a higher relative error of about
+50 % as compared to IKP measurements. However, accord-
ing to the results of Sect. 4 of this study, an uncertainty of
50 % in ice crystals concentrations can solely explain 30 %
of the relative errors. Likewise, concentration errors related
to large crystal shattering could not explain more than 35 %
of the relative errors at very high concentrations of ice hy-
drometeors. However, this cannot explain the negative rela-
tive errors for low ice crystal concentrations. Also, at very
low ice crystals concentrations oblate spheroids approxima-
tion of crystals could be not sufficiently adapted, since for
low concentrations real shapes of ice hydrometeors might be
even more important due to the lack of any averaging process
over all possible shapes and possible orientations as should
be more likely the case for higher concentrations.

Moreover, graupel particles are found to substantially af-
fect the relative errors in retrieved CWCs in high total con-
centration situations as compared to moderate total crystal
concentration situations with graupel. In the latter observed
conditions, graupel may have been less numerous and their
impact on the aspect ratio of ice hydrometeors larger than
1 mm becomes less important than at higher concentrations
(NT > 2000). Despite the fact that most graupel events are
found during high crystal concentration conditions, the cor-
rection function f (NT) appears to be very efficient in re-
ducing the relative error in retrieved CWCs when graupels
are detected. Since the suggested f (NT) correction has been
established for the entire dataset and is not exclusively de-
signed for the graupel event correction of retrieved CWCs,
median relative errors of f (NT) corrected CWCs of all grau-
pel data are of the order of 7 % compared to −1 % for the
entire dataset (see Table 1).

This study does not focus on the mass–size relationship
directly, but it is clear that the coefficients of the m(D) rela-
tionship, and particularly its exponent, considerably impact
the simulation of radar reflectivity factors on the one hand
and CWC calculation on the other hand. In this context, we
recall that Fontaine et al. (2014) obtain different CWCs for
one and the same radar reflectivity factor, which is also valid
reciprocally, where one and the same CWC is related to a
range of radar reflectivity factors, thereby varying the β ex-
ponent and corresponding prefactors α in the T-matrix sim-
ulations of the radar reflectivity factors. Hence, getting large
differences between calculated CWC (related to radar reflec-
tivity simulations) and measured CWC from IKP-2 does not
mean that the oblate spheroid approximation for Ze is wrong,
but the difference stems primarily from the choice of β (and
respective α) of the mass–size relationship. We are aware that
a singlem(D) power law is not sufficient to assimilate all the
complexity of the mass of ice hydrometeors. The main goal
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of this paper is to evaluate the Fontaine et al. (2014) method
of calculating an average CWC from all possible solutions
for (α, β) without a priori assumption. The method has been
already used in further studies: Drigeard et al. (2015) and
Alcoba et al. (2015). Finally, the method allows constraining
the effective density of ice hydrometeors and also the simu-
lation of radar reflectivity factors at different frequencies: 94,
9.4 and 5.5 GHz. The method will be used in the near future
to derive mass–size relationships for different size ranges of
the ice hydrometeors’ size spectrum.
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