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Abstract. Orbital tuning is central for ice core chronologies

beyond annual layer counting, available back to 60 ka (i.e.

thousands of years before 1950) for Greenland ice cores.

While several complementary orbital tuning tools have re-

cently been developed using δ18Oatm, δO2/N2 and air con-

tent with different orbital targets, quantifying their uncertain-

ties remains a challenge. Indeed, the exact processes linking

variations of these parameters, measured in the air trapped

in ice, to their orbital targets are not yet fully understood.

Here, we provide new series of δO2/N2 and δ18Oatm data en-

compassing Marine Isotopic Stage (MIS) 5 (between 100 and

160 ka) and the oldest part (340–800 ka) of the East Antarctic

EPICA Dome C (EDC) ice core. For the first time, the mea-

surements over MIS 5 allow an inter-comparison of δO2/N2

and δ18Oatm records from three East Antarctic ice core sites

(EDC, Vostok and Dome F). This comparison highlights

some site-specific δO2/N2 variations. Such an observation,

the evidence of a 100 ka periodicity in the δO2/N2 signal and

the difficulty to identify extrema and mid-slopes in δO2/N2

increase the uncertainty associated with the use of δO2/N2

as an orbital tuning tool, now calculated to be 3–4 ka. When

combining records of δ18Oatm and δO2/N2 from Vostok and

EDC, we find a loss of orbital signature for these two pa-

rameters during periods of minimum eccentricity (∼ 400 ka,

∼ 720–800 ka). Our data set reveals a time-varying offset be-

tween δO2/N2 and δ18Oatm records over the last 800 ka that

we interpret as variations in the lagged response of δ18Oatm

to precession. The largest offsets are identified during Ter-

minations II, MIS 8 and MIS 16, corresponding to periods

of destabilization of the Northern polar ice sheets. We there-

fore suggest that the occurrence of Heinrich–like events in-

fluences the response of δ18Oatm to precession.

1 Introduction

Past changes in climate and atmospheric composition are

recorded in a variety of ice core proxies. The EPICA

Dome C (EDC) ice core has provided the longest available

records, and documented glacial–interglacial changes in at-

mospheric greenhouse gases concentrations (Spahni et al.,

2005; Loulergue et al., 2008; Lüthi et al., 2008) and Antarc-

tic surface temperature (Jouzel et al., 2007) back to 800 ka

(thousands of years before present, present being AD 1950).

Precise and coherent ice core chronologies are critical to es-

tablish the sequence of events and to understand these past

changes. A specificity of ice core chronologies lies in the re-

quirement to calculate ice and gas chronologies, due to the
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fact that air is trapped several tens of metres below the ice

sheet surface. The air is effectively sealed-in at the so-called

lock-in depth (LID).

Ice core age scales are usually constructed using ice flow

models and different age constraints (Parrenin et al., 2001,

2004, 2007; Buiron et al., 2011). Lemieux-Dudon et al.

(2010) have developed a new dating tool (Datice) allow-

ing for the first time to produce an optimized and com-

mon chronology for several ice cores from Antarctica and

Greenland, over the past 50 ka. Using an improved version

of this dating tool, as well as an extended set of age con-

straints, Bazin et al. (2013) and Veres et al. (2013) have

established a common chronology (AICC2012 chronology)

for four Antarctic ice cores (Vostok; EDC; EPICA Dronning

Maud Land, EDML; Talos Dome ice core, TALDICE) and

one Greenland ice core (NorthGRIP, NGRIP) extending back

to 800 ka for EDC. The accuracy of the AICC2012 chronol-

ogy has been confirmed recently by an alternative bayesian

tool, IceChrono (Parrenin et al., 2015). A key limitation in

deep ice core chronologies lies in the lack of absolute age

constraints prior to layer counting in NGRIP (for ages older

than 60 ka, Svensson et al., 2008). Orbital tuning of several

parameters measured in the air trapped in ice cores (air con-

tent, δO2/N2 and δ18Oatm) has thus played a central role for

the construction of the AICC2012 chronology. Orbital tun-

ing permits to attribute ages deduced from the comparison

of the integrated summer insolation, summer solstice insola-

tion or precession variations to their observed counterparts in

air content, δO2/N2 or δ18Oatm respectively, with acceptable

uncertainties.

Orbital tuning is commonly applied to deep sea cores,

using the orbital properties of benthic foraminifera δ18O

records, which are primarily related to changes in ice vol-

ume (Imbrie and Imbrie, 1980). The most closely related

ice core parameter is δ18Oatm, δ18O of atmospheric O2. Ice

core records of δ18Oatm are strongly correlated with vari-

ations of insolation in the precession band, with a lag as-

sumed to be ∼ 5–6 ka as established for the last termination

(glacial–interglacial transition, Bender et al., 1994; Jouzel

et al., 1996; Petit et al., 1999; Shackleton et al., 2000; Drey-

fus et al., 2007). The modulation of δ18Oatm by precession

operates through the biosphere productivity and changes in

low-latitude water cycle (Bender et al., 1994; Malaizé et al.,

1999; Wang et al., 2008; Severinghaus et al., 2009; Landais

et al., 2007, 2010). The significant time offset between pre-

cession and δ18Oatm variations is not straightforward to ex-

plain. It partly depends on the 1–2 ka residence time of O2

in the atmosphere and on the complex response of the bio-

sphere productivity and the tropical water cycle to precession

changes. Caley et al. (2011) have shown lags of several thou-

sand years between the responses of Indian and Asian mon-

soon systems and orbital forcing over the last 40 ka. More-

over, variations of δ18Oatm are not only affected by the re-

sponse to orbital forcing, but also by the millennial-scale cli-

mate variability (Severinghaus et al., 2009; Landais et al.,

2007). During Terminations I and II, δ18Oatm maxima have

been linked to Heinrich stadials 1 and 11 (Landais et al.,

2013). Because of these complex interactions, the lag be-

tween δ18Oatm and precession should vary with time (Leuen-

berger, 1997; Jouzel et al., 2002). However, for dating pur-

poses, this lag has been assumed to be constant with an un-

certainty of a quarter of a precession cycle (6 ka; Jouzel et al.,

1996; Parrenin et al., 2001, 2007; Dreyfus et al., 2007).

Additionally, two other ice core parameters, the air con-

tent and the δO2/N2 ratio, have also been used for orbital

tuning, associated with a completely different underlying

mechanism. The air content and δO2/N2 measured in the air

trapped in ice cores are controlled by the enclosure process

near the close-off depth (depth of closure of ice interstices

and formation of air bubbles). At this depth, a depletion of the

O2/N2 ratio compared to the atmospheric ratio is observed

and attributed to the smaller size of O2 molecules compared

to N2 ones (Battle et al., 1996; Huber et al., 2006; Sever-

inghaus and Battle, 2006). It is expected that the entrapment

process and the associated O2 effusion or permeation effects

are linked to the physical properties of snow at this depth. Be-

cause snow metamorphism is very strong at the surface of the

ice sheet in summer (Town et al., 2008; Picard et al., 2012;

Libois et al., 2014), snow physical properties are expected

to be driven by local summer insolation. Records of δO2/N2

and air content measured at Vostok, Dome F and EDC in-

deed depict variability at orbital frequencies, which appears

in phase with local summer insolation (Bender, 2002; Kawa-

mura et al., 2007; Raynaud et al., 2007; Lipenkov et al., 2011;

Landais et al., 2012).

In summary, δ18Oatm provides a relationship between the

gas phase age and orbital forcing, due to changes in atmo-

spheric composition driven by changes in low-latitude hy-

drological cycle and biosphere productivity. Air content and

δO2/N2 provide a relationship between the ice phase age and

local insolation, due to the impact of snow metamorphism on

air trapping processes. These three dating tools have limita-

tions as detailed below.

δ18Oatm is a well-mixed atmospheric signal, allowing syn-

chronization of different ice core records. It also has the po-

tential to link ice cores with climate records from other lati-

tudes (e.g. global ice volume, low-latitude hydrological cycle

and biosphere productivity). However, due to the numerous

and complex processes affecting the δ18Oatm, this orbital dat-

ing tool is generally associated with an uncertainty of 6 ka.

An important challenge to progress on chronological issues

is to estimate the variations of the lag between δ18Oatm and

precession over the last eight glacial–interglacial cycles.

Contrary to δ18Oatm, δO2/N2 and air content are not influ-

enced by remote climate-driven signals such as low-latitude

hydrological cycle or Northern Hemisphere land ice volume.

Fujita et al. (2009) proposed a model to explain both total

air content (effusion effect) and δO2/N2 (permeation effect)

variations. This model is based on the different densification

rates of layers affected by strong surface metamorphism and
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layers affected by low surface metamorphism. The surface

metamorphism is stronger than in the rest of the firn, owing to

the higher temperature (in summer) and higher temperature

gradient (Libois et al., 2014). Thus, the impact of the differ-

ent component of the surface energy budget (air temperature,

snow albedo, penetration depth of solar radiation, . . .) is then

conserved down to the close-off depth. However, in addition

to the influence of the surface snow metamorphism on snow

and firn layering, strong modifications of layering and mi-

crostructure are also observed at several tenths of metres be-

low the surface (Hörhold et al., 2012). It has been suggested

that the pore structure at close-off, and hence potentially the

δO2/N2 and air content, is also affected by changes in dust

load (Freitag et al., 2013). Moreover, the direct effect of ac-

cumulation rate on δO2/N2 and air content cannot be ne-

glected (Hutterli et al., 2010): accumulation rate will indeed

have an influence on the permeation mechanism proposed by

Fujita et al. (2009) through (1) the increase of the pressure

difference between open and closed bubbles near the close-

off and (2) the increase of the depth of the non-diffusive

zone at the bottom of the firn (Witrant et al., 2012). Finally,

while Suwa and Bender (2008a) have confirmed the orbital

signature in the δO2/N2 record from the Greenland core

GISP2 as already observed in Antarctic records, they have

also observed an additional millennial-scale variability com-

ponent. The millennial variability of GISP2 δO2/N2 record

is in phase with accumulation rate and temperature changes

associated with the Dansgaard-Oeschger events, suggesting

a non-negligible influence of local temperature or accumu-

lation on δO2/N2 variations. In summary, the direct link

classically assumed between summer solstice insolation and

δO2/N2 variations is therefore complicated by the possible

influence of temperature, accumulation, dust load and sur-

face energy budget.

The limitations associated with the use of δO2/N2,

δ18Oatm and air content have recently motivated a first as-

sessment of the coherency between the different orbital dat-

ing tools in ice cores. Indeed, in the framework of the

AICC2012 chronology construction Bazin et al. (2013) took

advantage of available records of δO2/N2, air content and

δ18Oatm over the period 100–400 ka of the Vostok ice core

(Petit et al., 1999; Bender, 2002; Suwa and Bender, 2008b;

Lipenkov et al., 2011). Bazin et al. (2013) showed that the

final chronology was the same using one or the other or-

bital markers with uncertainties of up to 7, 4 and 6 ka for

air content, δO2/N2 and δ18Oatm respectively. However, this

first conclusion was restricted to one single ice core cov-

ering only the last 400 ka. The large uncertainties associ-

ated with the different orbital age markers in this case were

partly due to the low resolution of the existing records and

to the poor quality of the δO2/N2 data, affected by gas loss

(Landais et al., 2012). Gas loss, which occurs through micro-

cracks and/or through molecular diffusion during coring and

ice core storage at warm temperature (typically freezers at

−20 or−25 ◦C), favours the loss of O2 and alters the original

δO2/N2 signal (Kawamura et al., 2007; Bender et al., 1995;

Ikeda-Fukazawa et al., 2005). Drifts in δO2/N2 have been

shown to be related to storage duration (Kawamura et al.,

2007) and must be corrected prior to the use of the data.

Our current understanding of these three orbital dating

tools motivates further comparison of δO2/N2 and δ18Oatm

records, obtained (i) at high temporal resolution, (ii) from

different East Antarctic ice cores, (iii) under different orbital

and climatic contexts and (iv) on ice stored at a very cold

temperature (−50 ◦C) to avoid gas loss. In order to comple-

ment existing records from the Vostok and Dome F ice cores,

we have performed new measurements on the long EDC

ice core, for which only parts of the current δO2/N2 record

were obtained from samples of well-conserved ice (−50 ◦C)

(Landais et al., 2012).

For this purpose, we have performed new measurements

of δ18Oatm and δO2/N2 on ice stored at −50 ◦C (i.e. non-

affected by gas loss) on the EDC ice core over Marine Iso-

tope Stage (MIS) 5 and between 340 and 800 ka. Section

2 describes the new measurements on the EDC ice core

complementing previous data (Dreyfus et al., 2007, 2008;

Landais et al., 2012; Bazin et al., 2013; Landais et al., 2013).

Section 3 is dedicated to the analyses of the data sets, the

inter-comparison of Vostok, Dome F and EDC data over

MIS 5, as well as an investigation of the time delay between

δO2/N2 and δ18Oatm variations for the last 800 ka and their

implications for orbital tuning. The records of δ18Oatm and

δO2/N2 enable us to check the coherency of these parame-

ters for orbital tuning and to provide recommendations for

their use for ice core chronology building.

2 Analytical method and measurements

The measurements of the isotopic composition of air trapped

in well-conserved ice from EDC were performed at LSCE.

The samples were cut in Antarctica in the archive trench at

−40 ◦C maximum, and then kept at −50 ◦C during trans-

portation and storage. Measurements were performed only a

few months after their transportation from Antarctica. To pre-

vent any contamination from exchanges with ambient air due

to micro-cracks, we shave off 3–5 mm of ice on each face of

the sample (∼ 10 g of ice). Two different air extraction meth-

ods have been used, either a manual or a semi-automatic line.

The manual method consists of a melt-refreeze technique

(Sowers et al., 1989; Landais et al., 2003) for extracting the

air trapped in the ice samples. The sample is placed in a cold

flask and then the air in the flask is pumped. The trapped air

is extracted by melting and refreezing the sample and is then

cryogenically transferred in a stainless-steel tube immersed

in liquid helium.

For the semi-automatic extraction line, we proceed with

two exterior air samples and three ice samples with dupli-

cates each day. The samples are placed in cold flasks and the

air in the flasks is pumped; the air trapped in ice is extracted

by melting of the samples and left at room temperature dur-
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Figure 1. Top: EDC ice core record of water stable isotopes (δD, Jouzel et al., 2007). Middle: EDC record of δO2/N2 (black: Landais et al.

(2012), green: this study) and local summer solstice insolation (grey, reversed axis). Bottom: EDC record of δ18Oatm (reversed vertical scale)

(orange: Dreyfus et al. (2007, 2008); Landais et al. (2013), blue: this study), precession parameter (grey, reversed axis) and 65◦N summer

solstice insolation (dashed grey) both shifted by 5 ka. All EDC records are presented on the AICC2012 chronology (Bazin et al., 2013; Veres

et al., 2013). The orbital parameters are calculated using the Laskar et al. (2004) solution, with the Analyseries software (Paillard et al.,

1996).

ing 1 h minimum. The air samples are then transferred one

at a time through CO2 and water vapour traps before be-

ing cryogenically trapped into a manifold immersed in liquid

helium. An inter-comparison of the two extraction lines has

been conducted using air extracted from NGRIP ice samples.

No bias is observed between the two analytical extraction

methods.

After a waiting time of 40 min, allowing the tubes to reach

room temperature, measurements are performed with a dual

inlet Delta V plus (Thermo Electron Corporation) mass spec-

trometer. A classical run is composed of 16 measurements of

the sample in parallel with 16 measurements of a standard of

dried exterior air. We simultaneously measure δ18O, δO2/N2

and δ15N. The data are then calibrated against the mean ex-

terior air values and corrected for mass interferences follow-

ing the standard methodologies (Severinghaus et al., 2001;

Landais et al., 2003).

We were able to replicate 152 samples over 189 depth lev-

els due to the small size of samples. The δO2/N2 and 18O

measurements are corrected for gravitational fractionation

using the following equations:

δ18Oatm = δ18O− 2 · δ15N (1)

δO2/N2 = δO2/N2raw− 4 · δ15N. (2)

The final precision (pooled standard deviation) for our new

set of data is 0.02 ‰ for δ18Oatm and 0.77 ‰ for δO2/N2.

3 Results and discussion

Figure 1 shows the full EDC δ18Oatm data set, which has a

mean temporal resolution of 1.1 ka thanks to our new data

completing the records of Dreyfus et al. (2007, 2008), Bazin

et al. (2013) between 300 and 800 ka and Landais et al.

(2013) over MIS 5. The data depict variations that coincide

with those of precession, together with larger changes asso-

ciated with glacial terminations. The good overall agreement

between variations in precession and in the δ18Oatm signal

only breaks during periods of low eccentricity: between 350

and 450 ka (MIS12–11–10) and around 700 to 800 ka. As al-

ready observed by Dreyfus et al. (2007), our new data illus-

trate that precession-driven variations in δ18Oatm are reduced

during these periods of low eccentricity. Moreover, with the

addition of our new data, the tuning performed by Dreyfus

et al. (2007) between 530 and 550 ka is not as straightfor-

ward as previously presented. Still, the new ages deduced

from δ18Oatm orbital tuning stay within the original uncer-

tainty associated with this dating method and have no signif-

icant impact on the chronology construction.

The spectral analysis of the new δ18Oatm record on the

AICC2012 chronology gives a power spectrum consistent

with previous studies for EDC between 400 and 800 ka

(Dreyfus et al., 2007, on EDC 2 and EDC 3 chronologies)

as well as Vostok and Dome F records between 0 and 400 ka

(GT4 – Petit et al. (1999) and DFO-2006 – Kawamura et al.

(2007) respectively). Since the construction of the timescale

AICC2012 partly relies on δ18Oatm orbital tuning, no addi-
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tional information from the spectral analysis over the orbital

frequencies can be expected.

Our new measurements on well-conserved ice allow us to

establish a record of δO2/N2 covering MIS 5 and the pe-

riod between 340 and 800 ka (Fig. 1). Series A (392–473 ka)

and B (706–800 ka) were measured in 2007–2008 (Landais

et al., 2012) and are complemented by our new set of data

(Series C). The mean temporal resolution of the complete

δO2/N2 record is 2.37 ka over MIS 5 and 2.08 ka for the

340–800 ka period. The pooled standard deviations of each

data set vary between 0.3 and 1 ‰ (A: 0.32 ‰, B: 1.03 ‰;

C: 0.77 ‰).

When compared with the previous δO2/N2 record of EDC

affected by gas loss (Landais et al., 2012), our data show

the same timing of δO2/N2 variations that coincide with

those of local summer solstice insolation at Dome C (Ap-

pendix A). However, the relative strengths of minima and

maxima of δO2/N2 do not scale with those of summer inso-

lation. Large amplitudes of summer insolation cycles are as-

sociated with relatively small amplitudes of the correspond-

ing cycles in δO2/N2 and vice versa (Fig. 1). Moreover, only

13 % of the variance of the raw δO2/N2 data are explained by

summer solstice insolation. Finally, the new δO2/N2 record

reveals an overall decreasing trend over the last 800 ka at

EDC (0.79± 0.08 ‰ 100 ka−1), confirming the observations

of Landais et al. (2012) on their composite curve (Appendix

A). This decreasing trend has already been identified for the

last 400 ka at Vostok (0.56± 0.33 ‰ 100 ka−1) and 360 ka

at Dome F (0.56± 0.28 ‰ 100 ka−1). We conclude that the

long-term decreasing trend of δO2/N2 with time is not an

artifact due to the gas loss correction, even if it may still be

linked to the preservation of air with depth in the different ice

cores. Long-term changes in the enclosing process or modi-

fication in the atmospheric ratio O2/N2 can be evoked.

The spectral analysis of the new EDC δO2/N2 record be-

tween 340 and 800 ka (Fig. 2) depicts peaks corresponding

to the precession and obliquity bands (19–23 and 41 ka), to-

gether with a 100 ka periodicity. This 100 ka period was nei-

ther observed in δO2/N2 records from other Antarctic ice

cores (Bender, 2002; Kawamura et al., 2007) nor in the EDC

composite record of Landais et al. (2012).

The 100 ka peak is also absent from the power spectrum

of summer solstice insolation, independently of the time

window considered (Fig. 2). The 100 ka signal in δO2/N2,

most strongly imprinted between 400 and 700 ka, arises from

pronounced minima in the δO2/N2 record at 450, 550 and

650 ka. These minima occur during glacial periods charac-

terized by low eccentricity and therefore coincide with lo-

cal insolation minima (Fig. 1). The 100 ka periodicity iden-

tified in the EDC δO2/N2 record between 340 and 800 ka,

and absent from the other records spanning 0–400 ka, may

thus arise from a reduced influence of precession-driven in-

solation changes on snow metamorphism during eccentricity

minima, similarly to the reduced precession-driven signal in

δ18Oatm. The weakening of the insolation influence would

δO2/N2

Figure 2. Spectral analysis using the multi-taper method with an

interpolation step of 2 ka for δO2/N2 between 340–800 ka, obtained

with Analyseries (Paillard et al., 1996). Amplitudes are normalized

by the maximum value of each series. The δO2/N2 spectral analysis

is presented in blue and compared with the spectral analyses of local

summer solstice insolation (grey) and AICC2012 accumulation rate

(dashed green). Periods corresponding to significant peaks (F test>

90%) are indicated on the upper horizontal axis.

leave room for other factors to impact the EDC δO2/N2 such

as local climatic parameters. Indeed, records of local climate

(e.g. water stable isotopes and inferred changes in local tem-

perature and accumulation rate, dust) exhibit a strong peak

at 100 ka, characteristic of glacial–interglacial cycles (Fig. 2,

Masson-Delmotte et al., 2010; Lambert et al., 2008).

3.1 MIS 5 Antarctic inter-comparison

Our EDC δO2/N2 record displays variability in the preces-

sion and obliquity ranges, as well as minima and maxima

that highlight clear similarities with local summer insola-

tion. However, neither the modulation in amplitude nor the

100 ka signal are related to local summer insolation, pointing

to other local parameters affecting the firnification processes.

Potential candidates that may imprint on δO2/N2 with a

100 ka period would be changes in temperature, accumula-

tion rate, firn dust content or component of the surface en-

ergy budget that may affect the snow metamorphism such as

wind, albedo or solar radiation penetration depth. The influ-

ence of local changes in temperature and accumulation on the

δO2/N2 signal is supported by observations of millennial-

scale variability of δO2/N2 on the GISP2 ice core (Suwa

and Bender, 2008a). While variations in summer solstice in-
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Table 1. Summary of present day local conditions at Vostok, Dome F and EDC (Masson-Delmotte et al., 2011; Kawamura et al., 2007;

Landais et al., 2012; Lefebvre et al., 2012, this study).

Site Lat. Elevation No. of days Mean Accu. rate Mean annual 10 m wind

Long. (m a.s.l.) after 21 Dec albedo (cm weq yr−1) temp. (◦C) speed

for max temp. (m s−1)

Vostok
78◦28’S

3488 10 0.83 2.15 −55.3 4.2
106◦48′ E

Dome F
77◦19’S

3810 0 0.80 2.3 −57.0 2.9
39◦40′ E

EDC
75◦06’S

3233 5–20 0.83 ∼ 2.5 −54.5 5.4
123◦21′ E

solation are expected to be very similar in all East Antarc-

tic ice core drilling sites, differences in site characteristics

(e.g. snow properties, meteorological situation, mean cli-

mate) may cause differences in the δO2/N2 signals recorded

by the different ice cores. Consequently, we compare the

EDC δO2/N2 record with δO2/N2 records from two other

ice cores drilled on the East Antarctic Plateau: Vostok and

Dome F. In particular, for the three sites, we now benefit from

δO2/N2, δ18Oatm and water isotopic composition records

across MIS 5. The present-day conditions at these three dry

and particularly cold sites depict differences in the distance

to open ocean, elevation (within 577 m), albedo (within 3 %),

wind speed (a factor of two), accumulation (within 15 %) and

mean annual temperature (within 2.5 ◦C) (Table 1). MIS 5 is

characterized by large precession parameter variations, to-

gether with large glacial–interglacial changes in Antarctic

temperature, and is featured with warmer-than-present recon-

structed interglacial temperatures (Sime et al., 2009; Stenni

et al., 2010; Masson-Delmotte et al., 2011; Uemura et al.,

2012).

Figure 3 displays the δO2/N2 records from Dome F (trans-

ferred on AICC2012 using volcanic matching (Appendix B),

Fujita et al., 2015; Kawamura et al., 2007), EDC and Vos-

tok (both on their respective AICC2012 chronologies, Veres

et al., 2013; Bazin et al., 2013) from 100 to 150 ka. We ob-

serve the same orbital scale variations for all three records,

i.e. a δO2/N2 maximum at around 126 ka bracketed by 2

minima at 115 and 135 ka. Two major differences are still

noticeable:

– a lower δO2/N2 mean value and greater amplitude in

δO2/N2 variations at Vostok than at Dome F and EDC.

– a site-specific high frequency variability. For instance,

between 100 and 115 ka, EDC and Vostok δO2/N2

records show a double peak (significantly larger than

measurements uncertainties). This double peak is not

observed in Dome F δO2/N2 record.

The gas loss corrections applied on the Dome F and Vostok

δO2/N2 records may explain part of these discrepancies. The
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Figure 3. Inter-comparison of Vostok (green), Dome F (yellow) and

EDC (blue) data covering MIS 5 presented on AICC2012 (Bazin

et al., 2013; Veres et al., 2013), using the volcanic matching between

Dome F and EDC published by (Fujita et al., 2015). Top: water

isotopic composition (Vostok δ18Oice: Petit et al. (1999), Dome F

δ18Oice: Kawamura et al. (2007), EDC δD: Jouzel et al., 2007).

Middle: δO2/N2 records and local summer solstice insolation at

each site (Suwa and Bender, 2008b; Kawamura et al., 2007, this

study). Bottom: δ18Oatm and precession parameter shifted by 5 ka

(Suwa and Bender, 2008b; Kawamura et al., 2007; Landais et al.,

2013, this study).

resolution of the records (2.3 ka for EDC, 1.5 ka for Vostok

and 1.2 ka for Dome F between 100 and 150 ka) limits the

comparison of high-frequency variations observed between

100 and 115 ka and around 126 ka. Only high-resolution

measurements conducted on well-conserved ice could allow

us to have an objective discussion of high-frequency signals

in Antarctic ice.

Figure 3 presents the water isotopic composition, δO2/N2

and δ18Oatm on the AICC2012 timescale, using the volcanic

synchronization proposed by Fujita et al. (2015) for Dome F
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data (Appendix B). This timescale transfer removes the

original 2 ka shift for Termination II observed between the

Dome F (DFO-2006 Kawamura et al., 2007) and AICC2012

chronologies (Bazin et al., 2013). Fujita et al. (2015) have

proposed that the large age offset between the DFO-2006

and AICC2012 chronologies originates either from an over-

estimation of the surface mass balance in the glaciological

approach and/or an error in one of the δO2/N2 age con-

straints by 3 ka. At first order, EDC, Vostok and Dome F

δO2/N2 records present variations that occur simultaneously

with the ones of the local summer solstice insolation target

curves (Fig. 3). The identification of the δO2/N2 extrema

and mid-slopes within the three records indicates that the

δO2/N2 variations can be considered synchronous most of

the time, within the calculated uncertainty (3–4 ka), for the

three sites over this period (Appendix C). However, despite

the relatively good agreement between the δO2/N2 records

of the different sites, we observe a clear mismatch between

the minimum of δO2/N2 and the maximum in insolation over

the glacial inception (112–115 ka, Appendices B and C). This

mismatch may be attributed to the dating of ice core since

the δO2/N2 constraints over MIS 5 were not included in

the AICC2012 construction. Aligning δO2/N2 with insola-

tion over the glacial inception would however strongly re-

duce the lag between precession and δ18Oatm. While this is a

very plausible explanation, we may also question a possible

lag between insolation and δO2/N2 variations. Our results

from the MIS 5 comparison, as well as the significant 100 ka

period observed in the spectral analysis of δO2/N2, suggest

a potential influence of local climatic parameters on δO2/N2

variations that complicate the response of snow metamor-

phism and therefore δO2/N2 to orbital forcing.

First, we investigate how changes in layering or snow

microstructure during the firnification processes can affect

δO2/N2. Several indices indeed suggest that δO2/N2 is not

only influenced by the energy received at the surface of snow

but also by firnification processes, which themselves depend

on climatic conditions such as accumulation rate, firn tem-

perature or impurity content of the snow (Hutterli et al.,

2010). We have thus searched for local climatic influence on

δO2/N2 focusing first on accumulation rates. No significant

correlation can be identified between EDC accumulation rate

produced by AICC2012 and δO2/N2 variations (R = 0.107

between 340 and 800 ka). Another approach would be to con-

sider the accumulation rate corresponding to the gas age, fol-

lowing observations by Kobashi et al. (2015) of a significant

correlation between the δAr/N2 on the gas age and the ac-

cumulation rate for Greenland ice cores over the Holocene.

However, as our δO2/N2 record spans periods with vary-

ing insolation conditions, we would first need to correct our

δO2/N2 record from insolation variations. Such a correc-

tion cannot be performed in a simple way but should be

tested in future. Consequently, we only state here that there

is most probably a link between accumulation variations and

δO2/N2, as previously suspected, but this relation is not lin-

ear and needs to be investigated further.

Second, changes in dust concentration have been sug-

gested to potentially influence firn density and hence air trap-

ping (Hörhold et al., 2012; Freitag et al., 2013). Records of

dust concentration spanning MIS 5 are available for EDC

(Lambert et al., 2008) and Vostok (Petit et al., 1999). There

is no significant difference between the dust concentration

of Vostok and EDC regarding their amplitude and timing

of changes, so they should have the same effect at both

sites. The lack of published dust records from Dome F pre-

cludes investigations of the differences between Dome F and

Vostok–EDC. Moreover, subsurface processes and rework-

ing of surface snow by the wind are known to have an in-

fluence on actual firnification, as a result this should have an

impact on the δO2/N2 trapping process (Fujita et al., 2012),

even under glacial climatic conditions.

Third, we explore if inter-site differences in surface albedo

could explain differences in the energy input for surface

snow metamorphism (Picard et al., 2012) and hence dif-

ferences in δO2/N2 mean levels of the three sites. Sur-

face albedo is currently measured over East Antarctica

with MODIS multispectral imager on board TERRA and

AQUA satellites. Data collected since 2001 enable to com-

pare the albedo of our three sites of interest (Table 1).

For this purpose, White Sky broadband albedo data (sur-

face albedo under perfectly diffuse illumination conditions)

were extracted from MCD43A3 products (http://www.umb.

edu/spectralmass/terra_aqua_modis/v006). Only values for

which local solar noon sun zenith angle is less than 65◦ and

high-quality flags (QA= 0 in MCD43A2 products) are con-

sidered (Schaaf et al., 2011). They show similar values at

Vostok and EDC (0.83), and significantly lower values at

Dome F (0.80). This implies that, today, about 15 % more

incoming solar radiations are absorbed by Dome F surface

snow and can act on its metamorphism. However, surface

metamorphism is not simply related to surface albedo. This

can be investigated using the grain index time series devel-

oped by Picard et al. (2012). The amplitude of diurnal cycles

and grain size near the surface indicate more metamorphism

at Dome C than at Dome F. While present-day data provide a

hint for possible differences in surface snow metamorphism,

further studies are needed to better understand how the sur-

face energy budget controls the surface and subsurface snow

metamorphism, and how it can explain the differences in

δO2/N2 mean level and phasing between δO2/N2 and inso-

lation forcing at different sites.

Finally, one important assumption for the process linking

δO2/N2 and orbital forcing is that the snow metamorphism

is maximum at peak temperature (Kawamura et al., 2007) so

that summer solstice insolation curve should be taken as or-

bital target for δO2/N2 variations. At Dome F, the current

seasonal cycle of surface snow temperature measurements

shows maximum values at the summer solstice (21 Decem-

ber, Kawamura et al., 2007). At Vostok, the maximum of

www.clim-past.net/12/729/2016/ Clim. Past, 12, 729–748, 2016

http://www.umb.edu/spectralmass/terra_aqua_modis/v006
http://www.umb.edu/spectralmass/terra_aqua_modis/v006


736 L. Bazin et al.: Orbital forcing and air isotopic composition in Antarctic ice cores

surface snow temperature is observed about 10 days later,

close to 30 December (continuous measurements since 2010,

Lefebvre et al. (2012), J.-R. Petit, personal communication,

2014). At Dome C, 3 years continuous measurements of sur-

face snow temperature between 2006 and 2009 have shown

that the maximum of temperature occurs 15–20 days after

the summer solstice (Landais et al., 2012, confirmed by the

continuous measurements since then). These regional differ-

ences highlight the fact that, today, surface snow tempera-

ture does not reach its summer maximum in phase with local

summer solstice insolation. As a consequence, different inso-

lation target curves for δO2/N2 should be considered for the

different sites if the observations performed for present-day

conditions are also valid for the past. Using 15 January inso-

lation curve instead of 21 December as orbital target for the

EDC δO2/N2 record leads to a 2 ka shift of the chronology

toward younger ages over the glacial inception. Finally, by

combining the different sources of uncertainty and the scat-

tering and resolution of the δO2/N2 data, we thus recom-

mend using an uncertainty of 3–4 ka for this dating method.

3.2 δO2/N2 – δ18Oatm offset

A lag of δ18Oatm vs precession was observed over the last ter-

mination at Vostok, EDC and GISP2 with values of 5.8, 5.9

and 5.3 ka on the FGT1, EDC3 and Meese/Sowers chronolo-

gies respectively (Dreyfus et al., 2007; Petit et al., 1999; Par-

renin et al., 2004, 2007; Bender et al., 1994; Meese et al.,

1994). On the new AICC2012 chronology, the lag of δ18Oatm

with precession over Termination I is now of 5.6 ka for Vos-

tok and 5.5 ka for EDC.

During Termination II, recently published high-resolution

δ18Oatm measurements (Landais et al., 2013) together with

the AICC2012 chronology (Bazin et al., 2013) also give a

∼ 5 ka phase lag (5.2 ka) between precession and δ18Oatm.

Bazin et al. (2013) have shown an excellent agreement for the

timing of Termination II on a purely orbital ice core chronol-

ogy (AICC2012 using only ice core orbital age markers over

Termination II) and an independent speleothem chronology

based on U/Th Dating (Cheng et al., 2009). This compari-

son relies on the assumption that abrupt variations in CH4

and calcite δ18O are synchronous. While this assumption

was explicitly used to build the EDC3 chronology (Parrenin

et al., 2007; Waelbroeck et al., 2008), this is not the case for

AICC2012, which provides high confidence in the accuracy

of this chronology for Termination II.

The determination of the lag between δ18Oatm and pre-

cession for earlier terminations is more complicated. Indeed,

it requires an absolute chronology that is independent from

orbital tuning based on δ18Oatm. Similarly, determining the

phase lag between δO2/N2 and summer solstice insolation is

not possible in the absence of an alternative timescale free

from δO2/N2 constraints. However, we can still progress

on the issue of relative offsets between δ18Oatm, δO2/N2

and orbital targets by studying the relationships between

δO2/N2 and δ18Oatm. Indeed, even if the orbital targets of

both parameters are close and without significant lags be-

tween them (less than 500 years over the last 800 ka), δ18Oatm

and δO2/N2 variations are induced by very different mech-

anisms (remote for δ18Oatm, local for δO2/N2). As a conse-

quence, it is very unlikely that lags or leads of δ18Oatm and

δO2/N2 relative to their orbital targets would occur simul-

taneously. These changes should then be visible on the lead

and lag between δO2/N2 and δ18Oatm.

Based on the good agreement of the Vostok and EDC

δO2/N2 records over MIS 5, we combine the full Vos-

tok (0–400 ka) and EDC (340–800 ka) δO2/N2 and δ18Oatm

records (Fig. 4). We re-interpolate the data according to the

largest sampling resolution between the δO2/N2 and δ18Oatm

records of each sites (2.07 ka for EDC and 1.76 ka for Vos-

tok). There is a close resemblance of the interpolated and

original data. In order to calculate the relative offset be-

tween the two proxy records, we normalize the data (mi-

nus the mean, divided by the standard deviation) and filter

them using a bandpass filter with 15–100 ka period pass band

and wavelet transform. A phase delay between δO2/N2 and

δ18Oatm is then deduced through the conversion of the phase

calculated between the δO2/N2 and δ18Oatm filtered records

after cross-correlation (hereafter Matlab delay). An indepen-

dent estimate of the offset has been manually calculated from

the identification of the timing of extrema in both records fol-

lowing the same methodology as in Appendix C (hereafter

manual delay).

During periods of weak eccentricity (e.g. around 400 ka

and before 720 ka), there is no clear correspondence between

the variations of δO2/N2 and δ18Oatm compared to the varia-

tions of their orbital target curves, as previously noted (Drey-

fus et al., 2007; Landais et al., 2012). During these periods,

the variations of insolation in the precession band are prob-

ably too small to be imprinted in either δO2/N2 or δ18Oatm

records. Similarly, we prefer not to speculate on the EDC

δ18Oatm–δO2/N2 offsets between 450 and 550 ka because the

δO2/N2 record does not resemble the insolation variations

over MIS 13 (Fig. 1). Finally, the most recent 100 ka corre-

spond to a period of low eccentricity and the δO2/N2 signal

does not display any clear variability comparable to the inso-

lation curve one (before the air bubbles/clathrates transition).

As a consequence, we disregard these periods for our discus-

sion of the phase delay (they are not shown on Fig. 4). Con-

sequently, the orbital tuning through δ18Oatm and δO2/N2 is

much less reliable over the periods where the two proxies

variations do not resemble those in their respective orbital

targets. The time intervals covered by the following discus-

sion correspond to 100–350 ka (Vostok data) and 550–720 ka

(EDC data).

During the remaining intervals of intermediate to strong

eccentricity, the offset between δO2/N2 and δ18Oatm varies

between −6 and −1 ka in the Matlab delay and between −8

and+1 ka for the manually calculated one (Fig. 4). The Mat-

lab delay tends to present smoother and less marked varia-
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Figure 4. Evolution of the time delay between δO2/N2 and δ18Oatm for the periods 100–350 ka (top) and 550–720 ka (bottom). The

Vostok data are represented in green and EDC data in yellow. The filtered data are first normalized (minus the mean and divided by the

standard deviation) and then filtered using a bandpass filter with 15–100 ka period pass band and wavelet transform in Matlab. Curves A

to D correspond to Vostok and EDC ice cores data on the AICC2012 chronology. A: δD of EDC, B: δ18Oatm on reversed axis (line with

markers for raw data and plain line for filtered data), C: δO2/N2 (line with markers for raw data and plain line for filtered data), D: time delay

calculated between δO2/N2 and δ18Oatm using Matlab (plain curve) and manually (markers with error bars). Curves E to G present data

from the U1202/03 (brown) and U1308 (light blue) marine cores presented on their respective chronology. E: Ca /Sr ratio, F: Si /Sr ratio,

G: δ18O planktonic for U1302/03 and δ18O benthic for U1308. The grey rectangles mark the MIS intervals in both archives. The numbering

in curve E corresponds to the identification of Heinrich-like events as recorded by the Ca /Sr ratio of core U1302/03 and as proposed by

Channell et al. (2012). The red circles and arrows show the correspondence between the ice sheets discharge events in the marine records

with the maximum delay between δO2/N2– δ18Oatm.
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tions than the manual estimate. For Termination II, we obtain

a δ18Oatm vs δO2/N2 phase delay of 4.5 ka, which is in good

agreement with the δ18Oatm vs precession lag observed on

raw data (5.2 ka) and a zero phase between δO2/N2 and sum-

mer solstice insolation as displayed on Fig. 3. On Fig. 4, we

observe minimal offsets during MIS 6–7, the end of MIS 9,

the end of MIS 14-start of MIS 15 and the end of MIS 17.

These periods are marked by high eccentricity levels together

with intermediate ice-sheet extents (i.e. neither full glacial

conditions nor extremely warm interglacial conditions). On

the contrary, local maxima of the δO2/N2–δ18Oatm phase de-

lay are observed for Termination II (−4.5 ka), MIS 8 (−5 ka)

and MIS 16 (−2 ka). Over MIS 15, the offset calculated with

Matlab tends to increase while the manually calculated one

presents a larger variability.

Part of the variations in the offset value between δO2/N2

and δ18Oatm may be due to the uncertainty in the age differ-

ence between ice and gas ages since δ18Oatm is expressed on

a gas timescale while δO2/N2 is on an ice timescale. Such

uncertainty is largest during glacial periods, when the 1 age

is larger and the uncertainties on accumulation rate and tem-

perature (i.e. main parameters controlling the firn depth) are

larger. However, this uncertainty always stays below 1 ka,

and therefore cannot explain the observed variations in de-

lay values between δO2/N2 and δ18Oatm. We argue that the

large variations of the lag observed between δO2/N2 and

δ18Oatm are mainly due to variations in the relationship be-

tween δ18Oatm and precession as (1) there is nearly no dif-

ferences in timing of insolation and precession variations,

and (2) δO2/N2 can be considered synchronous at first or-

der with local insolation. Indeed, while the exact mechanism

linking δO2/N2 to summer solstice insolation is not yet fully

understood, there is no doubt that it involves local firn pro-

cesses with a faster response time. On the opposite, the link

between precession and δ18Oatm is not direct and involves

global modifications of the low-latitude water cycle and bio-

sphere productivity.

Many reasons are invoked to explain the phase lag be-

tween precession and δ18Oatm. As evidenced over Termina-

tions I and II and over the last 240 ka, δ18Oatm variations

are closely related to the dynamic of the low-latitude hydro-

logical cycle (Wang et al., 2008; Severinghaus et al., 2009;

Landais et al., 2007, 2010, 2013; Cheng et al., 2009). Mon-

soons are influenced by orbital forcing, with a strong imprint

of precession (Wang et al., 2008; Braconnot et al., 2008), but

also by the millennial-scale variability (Wang et al., 2001;

Marzin et al., 2013). The Heinrich event 1 is for instance as-

sociated with a weak monsoon interval (e.g. Denton et al.,

2010). Severinghaus et al. (2009) have observed a system-

atic increase of δ18Oatm during Heinrich events over the last

glacial period, these events being imprinted both in the cal-

cite δ18O and ice core δ18Oatm. Landais et al. (2013) also ev-

idence that the maximum in δ18Oatm during Terminations I

and II are directly related to the occurrence of large Heinrich

events before the abrupt increase in North Atlantic tempera-

ture. Again the δ18Oatm signal over these two terminations

parallels the calcite δ18O signals of Chinese speleothems.

Following this finding, Reutenauer et al. (2015) used out-

puts from coupled climate model and atmospheric general

circulation model equipped with water isotopes to estimate

the change of δ18Oatm induced by a freshwater input. These

calculations show that the increase of δ18Oatm during a Hein-

rich event is induced by a southward shift of the ITCZ as-

sociated with the freshwater input leading to an increase of

the δ18O of the low-latitude meteoric water in the Northern

Hemisphere. This signal is then transmitted to the δ18O of

O2 through photosynthesis of the important terrestrial bio-

sphere in low latitudes of the Northern Hemisphere during

the last glacial period. The occurrence of freshwater input

can thus delay the change in δ18Oatm induced by the sole in-

solation. This mechanism would satisfactorily explain a lag

in the perceived location of the maximum in the δ18Oatm sig-

nal compared to the sole influence of precession. Our work-

ing hypothesis is thus that we have a superposition of two

signals influencing δ18Oatm: (1) a direct effect of precession

leading to increase of δ18Oatm for increasing precession and

(2) an influence of Heinrich events, or Greenland and/or Eu-

ropean ice sheets discharge events, with the associated weak

monsoon intervals leading to an increase of δ18Oatm.

In order to test our working hypothesis, we confront

our δO2/N2–δ18Oatm calculated delay to marine records of

Northern ice sheets instabilities from cores U1302/03 and

U1308 located within the IRD belt of the North Atlantic

(Fig. 4 curves E–G Hodell et al., 2008; Channell et al., 2012;

Channell and Hodell, 2013). Sites U1302/03 and U1308

are located on the western and eastern borders of the IRD

belt respectively. Heinrich events consist of large iceberg

discharges from the Laurentide ice sheet through the Hud-

son Strait. These events are well recorded by spikes in

the Ca /Sr ratio, which traces the abundance of carbonate

grain in the sediment. On the contrary, IRD events corre-

sponding to discharges of the Greenland and/or European

ice sheets (Fennoscandian, British ice sheets mainly) are

identified by large amounts of detrital quartz in the sedi-

ment, then characterized by peaks in the Si /Sr ratio. Con-

sequently, thanks to their respective locations, the Ca /Sr

record of core U1302/03 is a good proxy for the Hudson

Strait iceberg events (Heinrich-like events), and the Si /Sr

record of core U1308 is a good representative for the Green-

land/European ice sheets destabilization events. The marine

cores data on Fig. 4 are presented on their original chronolo-

gies, constructed by tuning of their δ18O to the LR04 benthic

stack (Lisiecki and Raymo, 2005). The uncertainty associ-

ated with this dating method is estimated to be 4 ka for the

last 1 million years. Such a large uncertainty prevents us from

any comparison of the absolute timing of ice sheets discharge

events with our ice core records. However, the occurrence of

IRD events against the δ18O record of foraminifer gives us

information about their relative timing within the stratigra-

phy. We thus only discuss the occurrence of Heinrich-like
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events and Greenland and/or European ice sheets discharges

in regards to the variation of the δO2/N2–δ18Oatm offset.

We can see that major spikes in Ca /Sr and Si /Sr

recorded in the marine cores occur at roughly the same pe-

riods as the maxima in the δO2/N2–δ18Oatm phase delay.

The correspondence is especially well marked in the man-

ually calculated offsets (red circles and arrows on Fig. 4).

The δO2/N2–δ18Oatm phase delays are small over MIS 15. In

the marine records of iceberg discharges, only small but reg-

ular peaks in the Ca /Sr record are observed during this pe-

riod. For Channell et al. (2012), these peaks do not reflect the

occurrence of Heinrich-like events but most probably corre-

spond to debris flows or glacial-lake drainage events caused

by changes in hydrological budget or changes in base level.

Interpreting the chosen marine data as proxies of Lauren-

tide and Greenland and/or European ice sheets discharges,

probably associated with weak monsoon intervals as ob-

served for several Heinrich events, we suggest that for Ter-

mination II, MIS 8 and MIS 16, the δ18Oatm is strongly influ-

enced by the millennial variability in addition to the preces-

sion forcing on the low-latitude hydrological cycle.The addi-

tion of the millennial influence leads to significant observable

shifts between precession and δ18Oatm, hence δO2/N2 and

δ18Oatm. By contrast, when we detect the smallest offsets be-

tween δO2/N2 and δ18Oatm (Fig. 4), no discharge events are

observed within our marine core records. In this last case and

following our working hypothesis, δ18Oatm would be only in-

fluenced by orbital variability with, hence, a close coupling

between precession and δ18Oatm.

In summary, our data sets suggest that the offset between

δ18Oatm and precession can vary between 1 ka to more than

6 ka, with minimum values in the absence of ice sheets dis-

charge events (Heinrich-like and/or Greenland/European ice

sheets discharges). This varying lag results from the super-

position of two signals, i.e. orbital and millennial variations

affecting changes in the low-latitude water cycle (hence δ18O

of meteoric water) and the biosphere productivity. It follows

that the delay identified between δ18Oatm and precession over

Termination I and II may not apply for earlier transitions

without ice sheets discharge events. Consequently, the phase

lag between δ18Oatm and precession observed during Termi-

nation I may provide an upper estimate for the associated

uncertainty range for the use of δ18Oatm as an orbital dating

tool.

4 Conclusions and perspectives

We have presented new measurements of δO2/N2 and

δ18Oatm performed on well-conserved ice from EDC over

MIS 5 and between 340 and 800 ka. As a result, we now

have a new reference δO2/N2 curve between 340 and 800 ka

with a mean resolution of 2.08 ka, confirming earlier obser-

vations about a decreasing trend over the last 800 ka and tim-

ing of orbital scale variations. The spectral analysis of the

new δO2/N2 curve between 340 and 800 ka showed for the

first time a significant peak in the periodicity band character-

izing eccentricity and glacial–interglacial variations, hence

suggesting that processes other than local summer insola-

tion do impact δO2/N2 on glacial–interglacial scales. This

motivates further studies to unveil the processes at play for

long-term trends and at glacial–interglacial and/or eccentric-

ity timescales.

Thanks to our comprehensive data set, we have been able

for the first time to compare the sequence of events be-

tween water stable isotopes, δO2/N2 and δ18Oatm for three

Antarctic ice cores (EDC, Vostok and Dome F), over MIS 5.

The combination of δO2/N2 records from the three sites has

permitted us to estimate the uncertainty of the δO2/N2 or-

bital tuning method to be in the order of 3–4 ka. However,

differences in the mean level of δO2/N2 and their high-

frequency variability have been noticed. This study demon-

strates the strength of a multi-proxy, multi-ice cores chronol-

ogy approach for proper assessment of uncertainties of in-

dividual age markers. The mechanisms responsible for local

δO2/N2 variations still remain to be understood. This is par-

ticularly important over periods of low eccentricity when the

insolation variations are not well imprinted in the δO2/N2

records (350–450 and 700–800 ka). The δO2/N2 orbital tun-

ing method should be used in combination with other dating

methods over these periods.

We have calculated the phase delay between δO2/N2 and

δ18Oatm over the last 800 ka by coupling Vostok and EDC

data. This lag has varied from 1 to more than 6 ka with mini-

mum values occurring during MIS 6–7, the end of MIS 9, the

end of MIS 14-start of MIS 15 and the end of MIS 17, corre-

sponding to periods of intermediate ice sheet extent with no

occurrence of strong ice sheets discharge events (Heinrich-

like events and/or Greenland/European ice sheets discharge

events). Based on results observed over MIS 5, we made the

assumption that δO2/N2 is more or less synchronous with

summer solstice insolation and that the δO2/N2–δ18Oatm

varying lag is mainly induced by variations in the relation-

ship between δ18Oatm and precession. It has been shown over

Terminations I and II that the δ18Oatm response to preces-

sion peak can be delayed by Heinrich events, associated with

weak monsoon intervals. We thus propose that the variations

of the apparent lag between δ18Oatm and δO2/N2 is due to the

superposition of two influences on the δ18Oatm signal: orbital

(precession) forcing and millennial scale forcing induced by

ice sheets discharge events associated with weak monsoon

intervals on the low-latitude hydrological cycle. This δ18O

signal of meteoric water was transmitted to δ18Oatm by pho-

tosynthesis and/or respiration cycles.

In order to refine this analysis, new measurements on well-

conserved ice of δO2/N2 and δ18Oatm are needed between

160 and 340 ka for the EDC ice core, and over the last 400 ka

for Vostok and Dome F ice cores. Integrating Dome F on the

AICC2012 age scale will be crucial to improve the Antarc-

tic chronology. This methodology will then permit us to in-

vestigate properly the causes of inter-site differences during
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MIS 5, and assess if similar features arise during other time

periods. New measurements on well-conserved ice together

with constraints on past changes in dust concentration and

accumulation rates should allow us to assess whether there is

any robust link between variables that can potentially affect

metamorphism such as dust content and accumulation rate.

Moreover, further studies are needed on processes affecting

surface snow in order to better understand its metamorphism.

Finally, it is crucial to better understand how the low-latitude

water cycle and biosphere productivity influence the δ18Oatm

and its lagged response to precession in order to estimate cor-

rectly the uncertainty associated with the δ18Oatm orbital tun-

ing methods. To do so, it is necessary to improve uncertain-

ties associated with ice and marine cores chronology. The de-

velopment of multi-archive dating tools should permit us to

synchronize records from different archives and thus discuss

in more detail how the ice sheets discharge events influence

the δ18Oatm lag with precession. This will especially per-

mit to directly link δ18Oatm variations with absolutely dated

speleothem records.
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Appendix A: EDC δO2/N2 records

δO
2/N

2 (
‰

)

Age (ka B1950)

Figure A1. Comparison of the composite δO2/N2 record of Landais et al. (2012) (black) and the new δO2/N2 record measured on well-

conserved ice (green). Both are presented on the AICC2012 chronology.

We have compared the δO2/N2 composite curve of

Landais et al. (2012), corrected for gas loss, with our new

record measured only on well-conserved ice (Fig. A1). We

observe nearly the same timing of variations. We conclude

that the increased resolution and accuracy of our new data

set do not affect the position of mid-slope variations and

therefore orbital tuning. The uncertainty associated with the

mid-slope identification is always smaller than the uncer-

tainty associated with δO2/N2 orbital tuning. Note that we

have identified an error in the earlier composite curve due

to the use of gas age instead of ice age for the time period

400 to 450 ka. This error has been corrected and explains the

difference between our new record and the one of Landais

et al. (2012). Compared to the Landais et al. (2012) com-

posite curve, the new record presents a smaller amplitude

of variations, possibly because of gas loss corrections. Our

new data record a long-term decrease of δO2/N2 over time

of 0.78± 0.08 ‰ 100 ka−1, which is very close to the long-

term decrease of 0.86± 0.14 ‰ 100 ka−1, deduced from the

Landais et al. (2012) composite curve.
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Appendix B: Volcanic matching between EDC and

Dome F

Thanks to the volcanic synchronization of EDC and Dome F

of Fujita et al. (2015), we were then able to transfer

(1) Dome F data (δ18Oice, δO2/N2 and δ18Oatm ) on DFO-

2006 chronology to AICC2012 and (2) EDC data from

AICC2012 to DFO-2006 chronology (Fig. B1). As can be

seen on Fig. B1, there are numerous volcanic markers (red

markers on top) between these two cores over the whole

MIS 5 period. This volcanic synchronization is robust and

independent of any climatic assumption. As noted by Fujita

et al. (2015), this volcanic synchronization does not resolve

the difference of ice isotopic composition over the glacial in-

ception at these two sites. Potential causes for this large age

difference between the DFO-2006 and AICC2012 chronolo-

gies are the following: an overestimation of the surface mass

balance in the glaciological approach and/or an error in one

of Dome F δO2/N2 age constraint by 3 ka. Moreover, the

shaded areas on Fig. B1 highlight the different occurrence

of the δO2/N2 minima relative to the ice isotopic composi-

tion records. For EDC data, the δO2/N2 minimum is happen-

ing during the second half of the glacial inception, while at

Dome F the δO2/N2 minimum is observed at the end of the

glacial inception in the ice isotopic composition record.

Figure B1. EDC and Dome F synchronization using the volcanic

matching of Fujita et al. (2015). (a): transfer of Dome F records

on AICC2012, (b): transfer of EDC records on DFO-2006 us-

ing the volcanic tie points of Fujita et al. (2015). The coloured

curves represent EDC and Dome F records tuned together on either

chronologies. The grey curves correspond to the data on their origi-

nal chronology, before tuning. Top: δD record of EDC and δ18Oice

record of Dome F. Middle: δO2/N2 records and local summer sol-

stice insolation. Bottom: δ18Oatm records and precession parame-

ter shifted by 5 ka. The yellow and blue shaded area highlight the

relative position of δO2/N2 minima (uncertainty range) within the

water isotopic composition records. The volcanic tie points are in-

dicated by the red markers on top of the figures.
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Appendix C: Estimation of the uncertainty

associated with orbital tuning

Table C1. Mean age and uncertainty calculated for minima, mid-slopes and maxima in the δO2/N2 records of EDC, Vostok and Dome F

over MIS 5.

max 1 mid min 1 mid max 2 mid min 2 mid max 3

EDC
mean (ka) 104.7 107.7 114.0 119.0 123.8 131.8 136.0 141.3 148.3

error (ka) 3.0 3.0 3.0 2.9 3.0 3.2 3.4 3.7 4.1

Vostok
mean (ka) 104.8 110.8 115.0 119.0 126.3 133.3 137.0 144.5 152.5

error (ka) 2.7 2.5 2.7 2.7 2.8 2.8 3.2 3.4 3.6

Dome F (DFO-2006)
mean (ka) 106.5 112.0 115.8 120.3 126.5 132.0 138.0 144.5 151.0

error (ka) 2.8 2.7 2.7 2.7 3.0 2.9 2.9 4.4 4.4

Dome F (tuned AICC2012)
mean (ka) 103.3 108.1 111.5 117.0 124.0 129.4 136.3 145.5 152.8

error (ka) 2.4 2.5 2.5 2.5 2.4 2.6 3.0 3.3 3.7

In this paper we propose an uncertainty estimation for the

δO2/N2 orbital tuning method based on the comparison of

δO2/N2 records of EDC, Vostok and Dome F (both on DFO-

2006 and tuned on AICC2012) over MIS 5. In order to es-

timate the uncertainty in the identification of minima, max-

ima or mid-slopes in the δO2/N2 records we have treated the

three δO2/N2 records as follow:

1. the raw data,

2. a 3-point running average of the δO2/N2,

3. reinterpolation of the data with a time step correspond-

ing to the mean resolution of each δO2/N2 record

(2.37 ka for EDC, 1.87 ka for Vostok and 1.69 ka for

Dome F),

4. filtering of the reinterpolated data (piecewise linear

shape with a slope bandwidth of 10−9 a−1 and a band-

pass filter with 15–100 ka period pass band using Anal-

yseries, Paillard et al., 1996).

We have identified the minima, mid-slopes and maxima

for the 4 δO2/N2 treated records of the different sites. We

were then able to calculate the mean age and standard devia-

tion for each of these identifications (Table C1). The final un-

certainty associated with the identification of the extrema and

mid-slopes of the δO2/N2 records has been obtained after

considering also the resolution of the records and the uncer-

tainty of their respective chronologies (Table C1). The results

are illustrated on Fig. C1 where the pink lines and shaded

zones correspond to the mean age and uncertainty of minima

and maxima of δO2/N2 for EDC (a), Vostok (b) and Dome F

on DFO-2006 (c) and Dome F on AICC2012 (d). The grey

bars indicate the position of minima and maxima as identi-

fied in the local summer solstice insolation for comparison.
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Figure C1. Determination of the uncertainty associated with δO2/N2 orbital tuning using different treatment of data for EDC (a), Vostok

(b) Dome F on DFO-2006 (c) and Dome F tuned on AICC2012 (d) over MIS 5. The raw δO2/N2 records are presented in purple, the

smoothed ones (3-points running average) are in orange, the reinterpolated curves are presented in red and the filtered records are in black.

The local summer solstice insolation are represented in grey for each site. The pink vertical bars represent the mean age of minima and

maxima identified, with their calculated uncertainty illustrated by the pink shaded zones. The identification of extrema indicated on top of

the figure corresponds to the same ID as in Table C1. The grey vertical bars show the timing of minima and maxima in the insolation curves.
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