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Abstract. In polar regions, sastrugi are a direct manifestation

of drifting snow and form the main surface roughness ele-

ments. In turn, sastrugi alter the generation of atmospheric

turbulence and thus modify the wind field and the aeolian

snow mass fluxes. Little attention has been paid to these

feedback processes, mainly because of experimental difficul-

ties. As a result, most polar atmospheric models currently

ignore sastrugi over snow-covered regions. This paper aims

at quantifying the potential influence of sastrugi on the lo-

cal wind field and on snow erosion over a sastrugi-covered

snowfield in coastal Adélie Land, East Antarctica. We fo-

cus on two erosion events during which sastrugi responses to

shifts in wind direction have been interpreted from temporal

variations in drag and aeolian snow mass flux measurements

during austral winter 2013. Using this data set, it is shown

that (i) neutral stability, 10 m drag coefficient (CDN10) val-

ues are in the range of 1.3–1.5×10−3 when the wind is well

aligned with the sastrugi, (ii) as the wind shifts by only 20–

30◦ away from the streamlined direction, CDN10 increases

(by 30–120 %) and the aeolian snow mass flux decreases (by

30–80 %), thereby reflecting the growing contribution of the

sastrugi form drag to the total surface drag and its inhibiting

effect on snow erosion, (iii) the timescale of sastrugi aerody-

namic adjustment can be as short as 3 h for friction velocities

greater than 1 m s−1 and during strong drifting snow condi-

tions and (iv) knowing CDN10 is not sufficient to estimate the

snow erosion flux that results from drag partitioning at the

surface because CDN10 includes the contribution of the sas-

trugi form drag.

1 Introduction

In polar regions, sastrugi are a direct manifestation of drift-

ing snow. They are generally regarded as elongated ridges

of wind-packed snow 1 to 2 m in length, with a longitudinal

axis parallel to the prevailing wind at the time of their for-

mation. These erosional surface roughness features are very

widespread over the Antarctic ice sheet (Kotlyakov, 1961),

where they can be major determinants of surface roughness

(Jackson and Carroll, 1978; Inoue, 1989; Andreas and Claf-

fey, 1995). Sastrugi orientations have been recognized as use-

ful indicators of the Antarctic near-surface wind direction

(Mather, 1962, 1969; Mather and Miller, 1966; Long and

Drinkwater, 2000) in agreement with continent-scale mod-

elling studies (Parish and Bromwich, 1987, 2007).

The development of sastrugi depends on the ability of

snow to be eroded and thus on the threshold velocity needed

to lift snow particles from the surface. In the literature, aeo-

lian erosion thresholds have been reported to vary depending

on temperature and diverse properties of surface snow. From

observations in Antarctica, Mellor (1965) reported that 10 m

wind speeds of 3 to 8 m s−1 are strong enough to cause aero-

dynamic entrainment of loose, unbounded snow, whereas

winds exceeding 30 m s−1 are needed to erode snow consol-

idated by the freeze–thaw process. Budd et al. (1966) sug-

gested a high threshold wind speed (14 m s−1) was needed

to trigger snow transport in the cold environment of Byrd

station. Schmidt (1980) reported that the cohesion of the

snow surface determines the threshold speed required for

snow erosion to occur. Schmidt (1980) also showed that the

threshold wind speed increases with time since snow depo-
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sition and that this increase slows with time and is slower at

lower temperatures. Pomeroy et al. (1993) identified signif-

icantly lower thresholds for fresh, loose, dry snow than for

older, wind hardened, dense or wet snow. Ôura et al. (1967)

and, later on, Li and Pomeroy (1997) discussed the major

role of temperature in surface erodibility (i.e. the potential

of a surface to be eroded; Shao, 2008) through metamor-

phism of snow (i.e. changes in snow structure over time),

and showed an empirical but generally positive correlation

between threshold wind speed and air temperature. All stud-

ies suggest that the physical properties of the snow play a

major role in the formation of sastrugi.

Sastrugi contribute to the drag exerted on the atmosphere

over the snow surface and enhance interactions at the air-

snow interface compared to a smooth snow surface. Rougher

snow surfaces favour the generation of turbulence in the near-

surface air stream that is likely to further increase the aeolian

snow mass flux (Das et al., 2013). On the other hand, sastrugi

are responsible for a loss of wind momentum through pres-

sure fluctuation gradients in their immediate vicinity (sas-

trugi form drag) that directly reduces the energy budget avail-

able for erosion of snow. Little attention has been paid to

these feedback processes, mainly because of experimental

difficulties. As a result, most polar atmospheric models ig-

nore sastrugi over snow-covered regions. The attenuating ef-

fect on snow erosion is taken into account in the coupled

atmosphere/snowpack/aeolian snow transport model MAR

(Gallée et al., 2013) and is currently parameterized as in

Marticorena and Bergametti (1995) for non-erodible rough-

ness elements. By comparing observed and simulated aeo-

lian snow mass fluxes over Adélie Land using MAR, Amory

et al. (2015) showed that in the model, erosion efficiency is

highly sensitive to the parameterization of surface roughness,

and underlined the need for observational characterization of

interactions between wind-induced roughness features and

aeolian transport of snow.

Some authors have shown that the sastrugi form drag actu-

ally depends on how the wind is oriented with respect to the

main sastrugi axis. Based on measurements of wind speed

and temperature profile in the atmospheric surface layer at

the South Pole, Jackson and Carroll (1978) reported that sas-

trugi form drag was essentially absent when the wind was

perfectly aligned with the sastrugi up to a height of 50 cm. As

the wind rotated, sastrugi form drag increased to reach maxi-

mum when the wind direction was perpendicular to the prior

sastrugi pattern. These authors developed an idealized single

sastruga model from Lettau’s (1969) findings to reproduce

their observations. Using another analytical sastruga model

adapted from Raupach (1992), Andreas (1995) also found a

minimum and a maximum drag for wind directions respec-

tively parallel and perpendicular to the sastruga longitudi-

nal axis. However, these modelling efforts were undertaken

without accounting for the erodible character of sastrugi or

for their possible reorganization when realigning with persis-

tent (erosive) winds blowing transversally to their elongated

sidewalls. If the crosswise flow continues from a relatively

constant direction while allowing sufficient shear stress to

dislodge snow surface particles, sastrugi can adjust aerody-

namically; transversal sastrugi are eroded and new stream-

lined sastrugi form parallel to the mean wind (Andreas and

Claffey, 1995). This results in a gradual decrease in the con-

tribution of the sastrugi to the total surface drag and hence in

an increase in erosion efficiency. Andreas and Claffey (1995)

reported that the timescale for this streamlining process on

Weddell Sea ice in winter was about half a day with 6–

8 m s−1 winds, but might be shorter if the winds are stronger.

To date, no observational study has provided quantitative in-

sight into the potential effect of erodible roughness elements

of the snow surface on snow erosion.

Quantifying the variable influence of sastrugi on the lo-

cal wind field and associated surface drag could improve pa-

rameterization of surface roughness and erosion in polar at-

mospheric models that currently ignore sastrugi. The present

paper focuses on two erosion events during which sastrugi

responses to shifts in wind direction have been interpreted

from temporal variations in drag and aeolian snow mass flux

measurements in coastal Adélie Land during austral winter

2013.

2 Data and method

2.1 Field area

Site D17 (66.7◦ S, 139.9◦ E; ∼ 450 m a.s.l.) is located about

10 km inland in a coastal accumulation zone of Adélie Land

(Agosta et al., 2012), roughly 15 km south-west of the per-

manent French station Dumont d’Urville (Fig. 1). An an-

nual temperature of −10.8 ◦C and a mean wind of around

10 m s−1 have been reported at Dumont d’Urville station

(König-Langlo et al., 1998). The measurement area consists

of a gently sloping snowfield with a long unobstructed up-

stream fetch extending over several hundreds of kilometres

inland over a uniform snow surface. Local topographic chan-

nelling acts together with the Coriolis force to produce south-

easterly flows all year round that result either from pure kata-

batic or combined katabatic–synoptic forcings (Parish et al.,

1993).

Site D17 is visited only during summer (December to

February), when the presence of sastrugi is often reported.

Frequent strong winds combined with the permanent snow

surface lead to frequent aeolian snow transport events (Trou-

villiez et al., 2014), thereby favouring aerodynamic adjust-

ment of the snow surface. This results in a net south-south-

east orientation of the sastrugi (Fig. 2).

2.2 Instrumentation

The measurement structure deployed at site D17 is a 7 m

high meteorological mast. Wind speed, relative humidity

and air temperature are recorded along the mast at six log-
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Figure 1. Map of Adélie Land showing the location of Dumont

d’Urville station and measurement site D17. Contour lines are in

meters.

Figure 2. Photograph of the snow surface at D17 in January 2014.

The arrow indicates the mean direction of the wind episode that led

to the formation of the sastrugi.

arithmically spaced intervals between 0.8 and 7 m above

the snow surface using Vector A100LK cup anemome-

ters and HMP45A thermo-hygrometers installed in natu-

rally ventilated MET21 radiation shields. The anemometers

are mounted on roughly 1 m long booms pointing south-

eastward. Wind direction is only sampled at the upper level

by a Vector W200P wind vane. Surface level variations

are measured by a Campbell SR50A acoustic depth gauge.

Information on drifting snow is obtained from a second-

generation acoustic FlowCapt™ device that was set up ver-

tically close to the ground to allow detection of the begin-

ning of aeolian snow transport events. The sensor is a 1 m

long tube that converts the acoustic pressure caused by snow

particles impacting the tube into an aeolian snow mass flux

integrated over the length of the tube. The second-generation

FlowCapt™ was evaluated in the French Alps by Trouvil-

liez et al. (2015). They reported that the instrument underes-

timates the aeolian snow mass flux compared to a reference

optical sensor (snow particle counter S7; Sato et al., 1993),

especially during snowfalls. Nevertheless, the equivocal be-

haviour of the second-generation FlowCapt™ does not affect

its ability to accurately detect the occurrence of aeolian snow

transport. Data were sampled at 15 s intervals, averaged to

half-hourly means and stored in a Campbell CR3000 data-

logger.

2.3 The 10 m drag coefficient in near-neutral

conditions

Computing the drag coefficient (CD) is a convenient way to

estimate the local drag exerted by the surface on the over-

lying air. CD can be computed by measuring the vertical

wind speed gradient (profile method) under near-neutral con-

ditions following the Monin–Obukhov similarity theory. As-

suming stationarity and horizontal homogeneity when the at-

mospheric surface layer is statically neutral, the wind speed

profile is logarithmic:

U (z)=
u∗

κ
ln

(
z

z0

)
, (1)

where U(z) is the average wind speed as a function of height

z, κ is the von Kármán constant (taken as 0.4), z0 is the aero-

dynamic roughness length and u∗ the friction velocity de-

scribing the wind shear at the surface, related to the vertical

momentum flux at the surface (τ ; also known as Reynolds

shear stress):

τ = ρu2
∗ =−ρ ¯uw = ρCDNzU

2
z , (2)

where ρ is the air density, u and w are fluctuations in the

longitudinal and vertical turbulent velocity, and CDNz and Uz
are the neutral-stability drag coefficient and the average wind

speed at height z. The overbar stands for a time average. CDN

is usually discussed at a standard reference height of 10 m

(CDN10). From Eqs. (2) and (3), we deduce the following:

CDN10 =

[
κ / ln

(
10

z0

)]2

, (3)

with z0 expressed in metres. Here CDN10 and z0 are two

equivalent quantities for evaluating the momentum exchange

at the air–snow interface that results from the integrated (in

space and time) turbulent drag caused by the roughness ele-

ments.

The wind profiles used to compute CDN10 were selected

following a strict procedure. After discarding icing or mal-

functioning cases and half-hourly runs for which a rare

(north-westerly) flow was likely to be disturbed by the mea-

surement structure, stationary conditions were selected by

requiring that temperature changes between two consecu-

tive half-hourly runs should not exceed 0.3 K, following Jof-

fre (1982)’s recommendations. Near-neutral conditions were
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Figure 3. Two erosion events showing sastrugi responses to shifts in wind direction. Note the different vertical scales between right and left

panels concerning measured 2 m wind speed, profile-derived CDN10 and u∗values. In both cases, the event is split into three parts: before the

wind shift (Ai), during (Bi) and after (Ci).

then selected requiring U>5 m s−1 and an absolute value of

the bulk Richardson number below 10−2. The last selection

criterion was applied according to a suggestion by Andreas

and Claffey (1995):

6∑
i=1

[
U(zi)− (u∗κ) ln(zi/z0)

]2
u2
∗

≤ ε, (4)

where ε is an empirical constant determined from visual in-

spection of the observed wind speed profiles. Here it was

set to 0.15. Wind profiles that survived this filtering process

were fitted (Eq. 1) using a log-linear least-squares regression

technique, and u∗ and z0 deduced from the regression co-

efficients. All of them yielded a correlation coefficient (r2)

larger than 0.99. The 80 % confidence limits of each calcu-

lated CDN10 value were determined following the statistical

method proposed by Wilkinson (1984). The highest uncer-

tainty bounds deduced from these confidence limits reached

±14 %.

3 Results

The two erosion events depicted in Fig. 3 occurred in March

(left panels) and October (right panels) 2013, during particu-

larly constant wind direction conditions, which persisted af-

ter a wind shift of a few tens of degrees. Such constancy in

wind direction, necessary for the following demonstration,

is very rare. Combined with the strict selection procedure,

only two cases were exploitable in this context. The 2 m wind

speed, wind direction, profiled-derived CDN10 values and ae-

olian snow mass flux recovered by the second-generation

FlowCapt™ sensor are shown in Fig. 3. As the friction veloc-

ity is the actual dynamic quantity involved in aerodynamic

entrainment of surface snow particles, it is also plotted on

the graph. The two events are split into three parts, before the

shift in wind direction (Ai), during (Bi) and after (Ci). The

occurrence of precipitation may affect the detection of ero-

sion events because the FlowCapt™ sensor does not distin-

guish between eroded (saltating particles and/or suspended

particles of snow) and precipitating snow particles. No vi-

The Cryosphere, 10, 743–750, 2016 www.the-cryosphere.net/10/743/2016/
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sual observations of precipitation from the nearby Dumont

d’Urville station were available for the period concerned.

Moreover, as Adélie Land is very prone to aeolian trans-

port of snow, these observations, if performed, are limited by

the inability to discriminate between actual precipitation and

pure drifting snow. Here we used the operational analyses of

the European Center for Medium-Range Weather Forecasts

(horizontal resolution of∼ 16 km) to evaluate the occurrence

of precipitation at our measurement site. We assumed that

both events were pure erosion events after finding negligible

precipitation rates for the fully continental grid point includ-

ing D17.

At the beginning of Julian day (JD) 87 (part A1), the wind

direction was around 140◦, the friction velocity was above

the erosion threshold with a related aeolian snow mass flux

of 100 g m−2 s−1, and CDN10 was near 1.5× 10−3. At the

end of JD 87 (part B1), the wind rotated towards 160◦ while

CDN10 increased to nearly 3.3× 10−3, i.e. by 120 %, in re-

sponse to a wind shift of only 20◦. As assumed in Jackson

and Carroll (1978), and Andreas and Claffey (1995), it is

likely that as the wind turned, it was deflected from the mean

sastrugi axis, thereby encountering a rougher surface. As a

result, CDN10 soared, reflecting the growing contribution of

the sastrugi form drag to the vertical momentum flux at the

surface and hence to the total surface drag. Within the same

time frame, the measured aeolian snow mass flux fell by

∼ 30 % from 365 to 260 g m−2 s−1, despite increasing fric-

tion velocity (wind speed) from 0.7 to 1.6 (18 to 24) m s−1.

Then, until the end of the event (part C1), the wind direc-

tion remained centred about 160 ◦. From 03:30 to 06:30 UT

on JD 88, CDN10 fell back to 1.5× 10−3 as high winds pre-

sumably streamlined the surface. In other words, CDN10 was

reduced by ∼ 50 % in only 3 h. As CDN10 decreased, the ae-

olian snow mass flux again rose above 400 g m−2 s−1. The

erosion event lasted through JD 90 when u∗ (wind speed)

dropped to 0.7 (15) m s−1, causing a significant decrease in

the aeolian snow mass flux. After nearly 48 h of persistent

erosive winds, CDN10 was as low as 1.3× 10−3.

During the two days that preceded the second erosion

event (part A2), the wind direction was within±10◦ of 150◦,

the friction velocity was generally not strong enough to erode

the snow surface and CDN10 was between 1.3–1.6× 10−3.

CDN10 and wind direction were strongly correlated during

this period, with the lowest drag coefficients occurring for

a wind direction of around 140◦, suggesting that this was

the sastrugi alignment before erosion started and the wind

changed direction. Then, the same situation depicted in the

left panels of Fig. 3 occurred again. At mid-JD 286 (part

B2), u∗ increased beyond the erosion threshold as the wind

rotated from 150 to 180◦. Consequently, CDN10 increased to

1.9× 10−3. The aeolian snow mass flux dropped simultane-

ously from 320 to 55 g m−2 s−1 under increasing friction ve-

locity. That is, for a ∼ 30 % increase in CDN10 as the result

of a wind deflection of 30◦, the aeolian snow mass flux de-

creased by ∼ 80 %. Together with the first case of erosion,

this illustrates how the form drag exerted by sastrugi can sig-

nificantly affect snow erosion when the wind and sastrugi

are not aligned (this effect is discussed later in the paper; see

Sect. 4). Then (part C2), the wind direction remained roughly

unchanged until erosion ceased. Again, the rise in aeolian

snow mass flux coincided with a decrease in CDN10. Af-

ter nearly 3 h of winds above 20 m s−1(u∗>0.9 m s−1) from

180◦,CDN10 fell from 1.9×10−3 to 1.4×10−3, i.e. decreased

by ∼ 30 %.

In summary, for friction velocities (wind speeds) around 1

(20) m s−1 and above, the sastrugi streamlining timescale can

be as fast as 3 h. For a wind flow initially aligned with the sas-

trugi, a deviation of 20–30◦ from the streamlining direction

has the potential to both increase CDN10 by 30–120 % and to

significantly reduce (up to 80 %) the aeolian snow mass flux,

even under increasing friction velocity.

4 Discussion

At Ice Station Weddell, Andreas and Claffey (1995) mea-

sured a decrease in CDN10 of 20–30 % in 12 h with con-

siderably weaker winds (< 12 m s−1) than those reported

here. The observations reported in this paper show that this

timescale can be 4 times faster for winds exceeding 20 m s−1

(u∗>1 m s−1) and the associated decrease inCDN10 can reach

50 %. Andreas and Claffey (1995) also proposed generic

CDN10 values in the range 1.5–1.7× 10−3 when the wind is

well aligned with the sastrugi, and around 2.5× 10−3 when

the wind is at an angle of 20◦ to the dominant orientation of

the sastrugi. The present results differ slightly from these val-

ues:CDN10 was more in the range 1.3–1.5×10−3 for sastrugi-

parallel winds and could increase to nearly 3.3× 10−3 with

a wind shift of similar amplitude. For a given erosion thresh-

old, the quantity of windborne snow increases with friction

velocity according to a power law (Mann et al., 2000). As

sastrugi mainly form through snow erosion/deposition pro-

cesses (Filhol and Sturm, 2015), it is likely that under the

strong wind (shear) conditions in Adélie Land, rougher snow

surfaces develop, which have a greater aerodynamic adjust-

ment ability than at the less windy Ice Station Weddell.

During both erosion events, significant aeolian snow mass

fluxes were measured for 2 m wind speeds (u∗) of 10

(0.6) m s−1 or above. As the wind (friction) velocity is likely

to frequently exceed this threshold on the coastal slopes of

Adélie Land, the sastrugi alignment process might be also

frequently active, depending on the persistence of the wind.

As suggested in Sect. 1, this mechanism is probably also

strongly controlled by the properties of the snow surface that

determine the threshold shear stress required for erosion to

begin, rather than only the characteristics of the wind. Since

the erosion flux is the integrated result of both the capac-

ity of the wind to erode and carry snow and snow surface

erodibility, the sastrugi streamlining timescale presumably

mostly depends on this specific quantity. The implication is

www.the-cryosphere.net/10/743/2016/ The Cryosphere, 10, 743–750, 2016
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that the drag coefficient must be strongly related to other fac-

tors including the current wind orientation and the history of

the wind’s interactions with the snow surface as well as past

timescales and past temperatures of the snowpack.

On the other hand, the sastrugi streamlining timescale

also appears to control snow erosion in the form of feed-

back by fixing the time during which the sastrugi form drag

mainly contributes to total surface drag. With friction veloci-

ties above the snow erosion threshold, increasing u∗ could be

expected to result in an increase in erosion efficiency. How-

ever, in both cases the observations showed a significant de-

crease in the aeolian snow mass flux in phase with an increase

in the drag coefficient (Fig. 3, parts B). By analogy with mea-

surements made in a water flume (Wiberg and Nelson, 1992;

Le Bouteiller and Venditti, 2015), it can be considered that

the flow and turbulence in the sastrugi region are the result

of interaction between flow separation and wake formation,

which can lead to a local Reynolds shear stress peak corre-

sponding to flow separation. Above the region of influence

of the wake, named outer region, the flow has adjusted to

increased roughness and exhibited a logarithmic profile, as

shown by the relative continuous time series of CDN10 and

u∗ (Fig. 3), despite the strict selection procedure. Even if the

shear stress of the outer flow (τ) is relatively easy to mea-

sure, it cannot be extrapolated to the snow bed. The averaged

snow bed shear stress (also referred to as skin friction in the

literature), which is the ultimate parameter for aeolian ero-

sion (Li and Shao, 2003), varies depending on its position

along the sastrugi field. In absence of direct measurements,

it is necessary to link outer shear stress, sastrugi geometry

and skin friction to be able to estimate aeolian snow mass

fluxes. This is quite important since the reduction of shear

stress near the surface is crucial for limiting the growth of

the mass flux (Groot Zwaaftink et al., 2014). For erodible

forms in riverbeds such as ripples, Smith and McLean (1977)

and later Wiberg and Nelson (1992) developed a method for

partitioning the outer shear stress. These authors considered

that the averaged bed shear stress is equal to the difference

between the outer shear stress and the drag-related stress pro-

duced as the flow is forced around the bedform – i.e. in the

present case, the form drag induced by the sastrugi. As men-

tioned above, an increasing form drag can be expected and

hence a decrease in skin friction and in aeolian snow mass

flux, when the wind direction gradually shifts away from the

longitudinal axis of the sastrugi. Because CDN10 reflects the

contribution of the sastrugi form drag, knowing the drag co-

efficient is not sufficient to estimate skin friction. A better

knowledge of skin friction over a sastrugi field is also needed

to improve aeolian snow mass flux parameterizations in aeo-

lian erosion models. The measurements made in the present

study showed that a considerable decrease (even 80 %) of

the aeolian snow mass flux can occur during the transitional

regime during which the wind and sastrugi are not aligned

(Fig. 3, parts B). But it should be also noted that, assuming a

relative constancy in wind direction, the rapid aerodynamic

adjustment of sastrugi (here 3 h) will limit errors if the ero-

sion event considered is strong and sufficiently long.

5 Conclusions

An experimental meteorological data set collected in coastal

Adélie Land during austral winter 2013 was exploited to doc-

ument surface turbulent fluxes of momentum and snow over

an Antarctic sastrugi field. The main results of the analysis

of two erosion events can be summarized as follows:

– CDN10 values are in the range of 1.3–1.5× 10−3 when

the wind is well aligned with the sastrugi.

– As the wind shifts by only 20–30◦ away from the

streamlined direction, CDN10 increases (by 30–120 %)

and the aeolian snow mass flux decreases (by 30–80 %),

thereby reflecting the growing contribution of the sas-

trugi form drag to the total surface drag and its inhibit-

ing effect on snow erosion.

– The timescale for the aerodynamic adjustment of sas-

trugi can be as low as three hours for friction veloci-

ties greater than 1 m s−1 and during strong drifting snow

conditions.

– Because CDN10 includes the contribution of the sastrugi

form drag, knowing CDN10 is not sufficient to estimate

the erosion flux that results from drag partitioning at the

surface.

These results support the existence of feedback mecha-

nisms linking aeolian erosion and surface drag properties

over (Antarctic) snow surfaces, as already demonstrated for

erodible desert-like surfaces (Marticorena and Bergametti,

1995). In contrast with non-erodible roughness elements

such as rocks or vegetation, these mechanisms involve the

time needed for sastrugi to adjust to the main wind (3 h in

both erosion events), during which both the drag coefficient

and the aeolian snow mass flux can be greatly modified. In

comparison, Andreas and Claffey (1995) reported a longer

timescale (12 h) for the sastrugi to realign with weaker winds.

Because lighter winds are supposed to be associated with

lower erosion fluxes, it is suggested that the sastrugi stream-

lining timescale most likely depends on the snow erosion

flux.

Real-time observations of the distribution (size, abun-

dance, orientation) of the sastrugi would further advance un-

derstanding of the physical processes involved in the devel-

opment of sastrugi and enable better characterization of sas-

trugi aerodynamic adjustment timescales. In addition, having

a more accurate representation of the distribution of sastrugi

would make small-scale modelling in a wind tunnel possible,

in which case it would be possible to realistically estimate

shear stress partitioning. One possible way to monitor sas-

trugi would be to set up an automatic mini laser-scan. Such a

The Cryosphere, 10, 743–750, 2016 www.the-cryosphere.net/10/743/2016/



C. Amory et al.: Two well-marked cases of aerodynamic adjustment of sastrugi 749

device was developed in the framework of the MONISNOW

(MONItoring SNOW in a changing climate) research project

(Picard and Arnaud, LGGE, personal communication, 2016)

and has been operating daily at Dome C in Antarctica since

the beginning of 2015. These complementary approaches

are vital to improve parameterization schemes for aeolian

snow transport models and general drag parameterizations

for weather, climate and earth system models.
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