A Mid-Latitude Geomorphologic Map of Titan
Abstract
We investigated the geologic history of Titan through mapping and analyzing the distribution of observed geomorphic features using a combination of Cassini data collected by RADAR, VIMS, and ISS. Determining the spatial and superposition relationships between geomorphologic units on Titan leads to an understanding of the likely time evolution of the landscape and gives insight into the process interactions that drive its evolution. We have used all available datasets to extend the mapping initially done by Lopes et al. [1]. We now have the mid-latitudes (60N to 60S) of Titan mapped at 1:800,000 scale in all areas covered by Synthetic Aperture Radar (SAR). A map of the polar regions has been done by Birch et al. [2]. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. [3], largely based on prior mapping [1]. These broad classes are: craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest units on the surface and appear radiometrically cold, indicating icy materials [5]. Dunes are the youngest units and appear radiometrically warm, indicating organic sediments. VIMS analysis shows that compositional variations can also exist within the same class of unit [6, 7]. Future work aims to combine the polar maps of Birch et al. [2] with the mid-latitude maps presented here and harmonize the units at the 60 degrees boundaries. We also plan to extend the map in regions not covered by SAR to produce a 1:1,500,000 scale map compatible with USGS standards.References: [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Birch et al., submitted to Icarus. [3] Malaska, M., et al.: Icarus, 270, 130-161, 2016; [4] Barnes, J., et al.: Pl. Scie., 2:1, 2013; [5] Janssen et al., 2016 Icarus 270, 443-459, 2016. [6] Solomonidou, A., et al. : DPS abstract, 2016. [7] Lopes, R.M.C., et al, Icarus, 270, 162-182, 2016.