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SUMMARY 
A theory, based on higher-order perturbations, is given and  used to express the partial 
derivatives of the seismic waveform with respect t o  perturbations of density, anelasticity 
and anisotropy. Frechet derivatives are expressed with respect to a general aspherical 
model by using modulation functions, which are already used for the computation of 
aspherical seismograms. A direct solution method (DSM) that  optimizes other pre- 
viously proposed DSMs is proposed for the computation of the modulation functions. 

Numerical tests point out significant differences between the general FrCchet deriva- 
tives and those used for more classical approaches (great-circle average or frozen-path 
approximation), a s  well as important focusing/defocusing effects. This theory will 
enable future imaging inversions of the small-scale heterogeneities of the Earth. 

Key words: anelasticity, Frkchet derivatives, mode coupling, normal modes, pertur- 
bation methods, synthetic seismograms. 

1 INTRODUCTION 

The first large-scale inversions of seismic waveforms and the 
generation of 3-D tomographic models began in the 1980s: the 
Frechet derivatives with respect to elastic lateral variations in 
a spherical earth model were derived by Woodhouse & Girnius 
(l982), and many inversions with respect to a spherical earth 
were subsequently performed. Most inversions were performed 
with simplifying assumptions in order to reduce the otherwise 
huge numerical task. 

A first type of approximation is to invert seismic waveforms 
in a spherically symmetric earth model; structure below a 
great-circle path is inverted for each source-station path, in 
order to deduce a posteriori a 3-D model (e.g. Nolet, Van Trier 
& Huisman 1986; Nolet 1993; Stutzmann & Montagner 1993). 
If 3-D structure is taken into account a priori in the modelling, 
some simplifications are none the less necessary: Tanimoto 
(1984) only took into account self-coupling in a non-rotating 
elastic earth, and Woodhouse & Dziewonski (1984) performed 
waveform fitting by perturbing only the phase, in the context 
of an asymptotic theory. A further method investigated was 
the inversion of normal-mode spectra using isolated multiplets 
(Ritzwoller, Masters & Gilbert 1986, 1988; Giardini, Li & 
Woodhouse 1987, 1988). All of these inversions have been 
carried out in the context of a spherically homogeneous earth 
starting model. 

Improvements in seismic data quality, as well as in our 
knowledge of lateral heterogeneity, warrant the use of new 
methods that can model lateral heterogeneities of different 
types: attenuation, anisotropy, and physical dispersion. Some 

improvements in the theory of global waveform modelling and 
inversion are described, in the framework of asymptotic theor- 
ies, by Romanowicz (1987), Park (1987), Tromp & Dalhen 
(l922a, 1992b, 1993), Li & Romanowicz (1995). They allow 
the inversion of stronger smooth lateral variations of the Earth, 
of both elastic and anelastic structure. These methods, however, 
are not able to model the effect on the waveform of small- 
scale heterogeneities, which may be superimposed on the 
smooth structure already obtained by seismic inversions. Such 
small scales may have a significant effect on the amplitudes of 
normal modes (Park 1989; Lognonne & Romanowicz 1990a) 
and will provide new insights into Earth mantle dynamics. 
Fully coupled normal-mode methods are then necessary. For 
variational methods, Hara, Tsuboi & Geller (1991, 1993) and 
Geller & Hara (1993) proposed a direct solution method 
(DSM), where the seismograms and their Frechet derivatives 
are computed directly, without computing the normal modes, 
and where the inversion is done with respect to a laterally 
heterogeneous earth. In order to reduce the computation time, 
however, the inversion is only done for a small number of 
modes around a frequency window centred on the inverted 
mode’s frequency, and coupling between modes is modelled 
only between the modes contained in each of these windows. 
The computation time, together with the data distribution, is 
a main limitation of all waveform inversions, even on 
GigaFlop-class supercomputers. 

To formulate a feasible approach for inversions able to 
retrieve the small-scale structure of the Earth, some important 
points must be appreciated. The first one is related to the fact 
that the Earth has only a small departure from spherical 
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symmetry, but that this departure is too great for linearized 
modelling techniques, such as the Born approximation or first- 
order perturbation theory. In practice, this means that most 
of the time properties of seismograms, such as traveltimes of 
body waves, dispersion curves of surface waves or resonant 
frequencies of normal modes, are dominated by the spherical 
structure. As a consequence, many 3-D waveform techniques 
such as ray tracing, finite differences, frequency-domain modal 
summations, or direct frequency methods such as the one used 
by Geller & Hara (1993), are, with the exception of symmetries, 
more constrained by the well-known spherical structure than 
by the aspherical structure of the Earth. This is not the case 
for methods where the departure of the observed seismic signal 
with respect to that of a spherical earth is modelled directly 
(e.g. differential traveltimes, splitting of normal modes, etc.). A 
good example may be found in the impact of lateral heterogen- 
eities on normal modes, in the time domain rather than in the 
frquency domain. In that domain, the splitting produces a 
slow modulation, which has a characteristic time-scale that is 
typically 10 to 1000 times greater than the period of the mode. 
Direct-time finite-difference modelling of these slow modu- 
lations will thus require 10 to 1000 times smaller time steps 
than those which model the same effect, superimposed on the 
spherical structure. In the same way, a numerical error of the 
order of one per cent on the aspherical amplitude modulation 
is acceptable, when an error of one per cent on the spherical 
part of the signal, that is the fast-oscillating carrier, is not: 
such error has the same order of magnitude as the aspherical 
information. 

A second point is that the number of major computations, 
particularly the computation of the partial derivatives must 
not grow as the product of the number of sources and stations. 
This was noted by Geller & Hara (1993), and for their direct 
frequency method the number of operations grows only as the 
number of earthquakes plus the number of stations; they have 
therefore partially solved the huge task of computing the 
perturbation of the seismograms. 

These two points have also been recently addressed by Li 
& Romanowicz (1995). They separate the average frequency 
shift from higher perturbations, and reduce the number of 
computations by appropriately isolating the source and 
receiver functions. 

The inversion theory we propose in this paper addresses 
these two constrains, and optimizes the inverse problem in the 
same way as the higher-order perturbation theory (Lognonne 
& Romanowicz 1990; LognonnC 1991) may optimize the 
forward variational problem. Moreover, as in LognonnC 
(1991), the formulation is, to third order, exact for lateral 
variations in anelasticity, anisotropy and physical dispersion 
of the Earth. In the first of a series of papers, we focus here 
on the Frechet derivatives, that is the sensitivity of data with 
respect to 3-D lateral variations of elastic and anelastic 
parameters. 

We first recall the solution in the aspherical case. Next we 
show how to compute seismograms with a direct solution 
method, and we express the formulation of the Frkchet deriva- 
tives of these seismograms for a general perturbation in 
elasticity, anelasticity and density. We will illustrate our results 
with some examples, showing the sensitivity of the amplitude 
and phase of the seismograms, as well as the trade-off between 
perturbations of the apparent attenuation of modes and 
focusing/defocusing effects. 

2 
R O T A T I N G  A N E L A S T I C  C A S E  

We first recall the theory of the forward problem, as described 
by Lognonne (1991). For that purpose, we start from the 
equation of motion of a rotating, elastic earth, obtained for 
example by Woodhouse & Dahlen (1978): 

THE S E I S M I C  E Q U A T I O N  I N  T H E  

a:lu(t)> - iBatlu(t)> + Alu(t)) = I f ( t ) > ,  (1) 
where lu(t))  is the displacement field in braket notation, If( t ) )  
is the equivalent body force for seismic sources and excitation 
terms, A is the elasto-dynamic operator and B the Coriolis 
operator, both defined in Woodhouse & Dahlen (1978) and 
Valette (1986). In all relations that follow, as in relation (l) ,  
all brakets and operators will implicitly depend on space. The 
generalization to the anelastic case is shown, for instance, by 
Liu, Anderson & Kanamori (1976), Dahlen (1981) or Tarantola 
(1988) and leads to a substitution of the relationship between 
the stress tensor T~~ and strain E ~ '  by a more general time 
convolution, which, in the case of local anelasticity, can be 
described using a generalized stiffness tensor c i j k l .  Taking the 
Fourier-Laplace transformation in braket notation, as 

where a = w + iu is the complex frequency in the upper part 
of the complex plane, we obtain an expression for the seismic 
equation (1) in the complex frequency domain: 

- ~ ' l u ( ~ ) )  + ~ B l u ( a ) >  + A(a)lu(a)) = If(a)) = ~ ( a ) l u ( ~ ) > ,  

(3) 
where 

&'(a) = -d + aB + A(o) 

is the elasto-dynamic operator in the frequency domain. 
Lognonne (1991) has shown that this equation may be 

solved by using a normal-mode decomposition. However, it is 
not only necessary to use the normal modes of the primal 
equation, or right-normal modes, defined as 

(4) -d /uk )  + akBIUk) + A(ak) /uk )  = O ,  
but also the normal modes of the left-side problem, which, 
because the Corioh and elasto-dynamic operators are anti- 
symmetric and symmetric respectively, are also the normal 
modes of the right-side problem with inverted rotation: 

-atlvk) -0kBIVk) +A(Ok)IVk)=O. (5) 
The subscript k refers to the singlet eigenmode identified by 
the triplet (4 n, m) where l is the angular order of the mode, n 
its harmonic degree, and m its azimuthal order. The associated 
frequency is ak. In the following, K will denote the multiplet 
(4 n) including the 2 l +  1 singlets of same l and n. aK will be 
the frequency of the spherical degenerate normal mode K .  

Following Lognonne (1991), the response to a moment 
tensor source 

If(t)) = -H(t)M.V6(r-rs), (6) 
where rs is the source location and M the moment tensor, is, 
for the displacement, given by 

(7) 
where H (  t )  is the Heaviside distribution. 
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Let us now rewrite the latter expression by separating the 
spherical and aspherical parts of the signal. The modulation 
function of a multiplet K ,  defined as 

IsK(t))  = M:Vvk(rs) exp[i(ak- a K ) t l l u k )  3 (8) 
k t  K 

represents in space and time the acceleration of the ground 
produced by the mode K ,  demodulated from the spherical 
carrier frequency uK,  and excited by the source. From eq. (7), 
it follows that the ground acceleration may be expressed as 

Note that all seismograms excited by the same source can be 
expressed with the field described in relation (8). For example, 
the seismograms observed at a station with a receiver transfer 
function noted symbolically by (RJ will simply be given by 

In the same way, it is possible to express all seismograms 
observed at a station, but produced by different earthquakes, 
with the same field: if we denote the source function by IS), 
relation (8) can be rewritten as 

) = exp[i(ak - BK)tl l'k) (vkls) > ( 1 1 )  
k E K  

where 

IS) = -M.Vb(r - r,) .  

Expression ( 10) then becomes 

where 

(RK(t ) l  = c exp[i(ak - ( R I U k ) ( V k / .  (13) 
k e K  

(RK(t)l is equivalent to the acceleration of the ground pro- 
duced by the mode K excited by a single Dirac force along 
the receiver axis and with a source time function given by the 
impulse response of the receiver instrument. We assume 
implicitly here that (RI has no pole at any eigenfrequency of 
the Earth when it is frequency-dependent, and that the 
operation (R/  acting on the eigenmode luk) is in fact given 
by 

(RIuk) = ( R ( a k ) / U k )  

The computation of N x M seismograms recorded on N 
stations and produced by M sources thus requires only the 
computation of N receiver modulation functions (R,(t)( or 
M source modulation functions IsK(t)). In view, especially, of 
the limited number of stations used in global seismology, and 
their fixed character, this method provides a fast and optimal 
way to compute seismograms. 

3 COMPUTING THE MODULATION 
FIELDS 

The acceleration amplitude modulation field of the normal 
mode K can be computed by using the expression of normal 
modes given by Lognonne ( 1991). This, however, requires the 
computation of all singlets and, when coupling is taken into 
account, becomes a problem that is computationally demanding 

for angular orders higher than 100, especially if lateral vari- 
ations of attenuation are introduced. We thus present here an 
alternative which does not involve the computation of normal 
modes. Let us recall the expression of a normal mode lu,), as 
given by Lognonne (1991), up to the second order of the 
perturbation theory for amplitudes, and third order for frequen- 
cies. Defining KO as the identity operator in the eigenmode 
space, y;( as the subspace mapped by the 2 l +  1 singlet k 
associated with the spherical multiplet K ,  and A as the left 
inverse of the operator [Y - 9 1  [Ao(ao) - a&] [Y - 91, 
where Y is the identity operator in 9, and 9 the projector on 
this subspace, we have 

/uk) = [ 1 + ASH' + ASHAdH'] I U ' , ~ ' )  
+ 6,akA[B' - 200SK' - 2aoKoASH] Iu',''), 

where 

CW 2 [SA(ao) + COB - o ~ S K ] ,  

B' = B + a,,A(r~o) - aoa;A(ao), 

(14) 
1 
2 

K' = KO + SK - - d;A(oo), 

and where lu&')) and 61Gk are solutions of a (26+ 1)- 
dimensional eigenproblem 

6,0kN,lUio') = S1H(u',0'), (15) 

in which No = 2a,K0 - B, and S,H is the first term of the 
power-series expansion of S H  following the perturbation 
theory. 

Let us now consider the field I S K ( t ) ) .  This field can be 
rewritten as 

= gKls$?(t)> > (16) 

where the operator VK is given by 

'is, = I + ASH + ASHA6H 

+ [B'-~o~SK'-~OOKOASH]N,'S~H, 
and where the field (Sf)(t)) is given by 

IsP(t)> = c expCi(ok - ~K)tlb',o))<VklS), (17) 
k t K  

with the initial value 

Is$'(o)> = ( c Iu&o))(vk) I s > .  
k € K  

As the eigenfunctions verify the orthogonality relation 

the initial value is simply 

IS$)(O)) = Ni'IS). 

We now apply the operator No to IS$)( t ) )  and take a time 
derivative, thereby obtaining 

The source modulation field satisfies a differential equation of 
degree 2 l +  1, which depends only on the aspherical structure. 
This equation (or its equivalent for the receiver) can be solved 
either in the time domain or in the frequency domain. Higher- 
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Frdchet derivatives of coupled seismograms 459 

From eqs (23) and (24), we finally obtain 

SC(0) = SC"'(0) + S P ( 0 )  + dP(cT), (29) 

SC(')(O; = -Y - '(0)~ - (~T)GA(~)Y - - (30) 

S E ( ~ ) ( O )  = Y - - (O)SA(O)Y - I(u)A - (a) "(0) - I 1 ?. (32) 

with 

6C'2'(~)  = Y (0)A (0) [ N(o) - I ]SA(o)Y - '(0)A- (a)?, (3 1) 

SC(')(o) represents the main contribution of the Frechet deriva- 
tive, and d~?~)(o) and 6C(3)(0) are significantly smaller: their 
ratio with respect to SC('l(c) is typically given by l/Q, where 
Q is the intrinsic quality factor. Their contribution to the 
overall FrCchet derivative is less than 1 per cent for typical Q 
of 100 or more. 

Let us consider the term dC(')(o) and express it in time. 
Details of this first term are given in Appendix A. The 
contribution to the acceleration field of this term can be 
obtained by summing all singlets k of all multiplets K ,  so that 
we have 

order finite differences can be used in the time domain, or an 
exact numerical method can be used in the frequency domain. 

Eq. (21) can then be expressed with any basis of functions 
of YK, for example the 2&+ 1 spherical singlets. In the same 
way, we can express the evolution of the receiver modulation 
function with the dual differential equation of (21). Note that 
for high values of 8, such as 2&+ 1 is greater than the number 
of receivers used, this method is faster in terms of algorithm 
and operations than the method using the computation of the 
aspherical modes. 

Eq. (21) and its dual equivalent are the basis of a direct 
solution method (DSM) for the modulation function. In con- 
trast to the DSM proposed by Geller & Hara (1993), it is not 
based on the variational method but rather on the higher- 
order perturbation theory in the time domain. Both the size 
of the matrices involved and the number of time steps needed 
are reduced. This method then allows a very fast and yet 
accurate computation of all source and receiver modulation 
fields. 

4 SEISMOGRAM PARTIAL DERIVATIVES 

Let us now formulate the partial derivative of the seismograms 
with respect to a perturbation of the aspherical structure. In 
what follows, we will consider perturbations of the operator 
A(a) only. Indeed, as shown by LognonnC & Romanowicz 
( 1990b), the density perturbations can be renormalized to yield 
a renormalized operator A,(a). Perturbing the density with 
respect to the spherical density model then produces a pertur- 
bation of the operator A,(o) alone. We will also assume that 
the source is not perturbed. Starting from the elastodynamic 
equation ( l ) ,  we easily obtain, after differentiation, 

.@(~)~SU(O)) = -~A(o)~u(o)) .  (22) 

~SU(O)) = -.@-'(o)GA(a)%-'(cr)/f). (23) 

Substituting lu(a)) by its expression, we obtain 

As for the seismograms, we want to express the FrCchet 
derivative wavefield by a superposition of normal modes of 
the current aspherical model. Note that these normal modes 
are not the spherical harmonic SNRAI (Spherical Non- 
Rotating Anelastic Isotropic) modes and will be updated after 
each iteration. 

We then express 16u(a)) as 

Idu(4) = c S C k ( 0 ) l U k ) .  (24) 
k 

Due to the dispersion (that is, the frequency dependence of 
the elasto-dynamic operator), the inverse of %(o) is non- 
trivial. In the FrCchet derivatives we will, then, neglect the 
second-order terms with respect to the dispersion, so that 
Z-'(a) may be approximated by 

%-'(a)= -Y-'(o)A-'(o){I- "(0)-I]}. (25) 
The corresponding matrix elements for N(a) are 

Ida( t ) )  = 1 6C(kl)'acc( t ) lUk) ,  
k 

and the contribution for a single seismogram is simply 

6S( t )  = 1 6CL'"""( t )  (R I Uk) , 
k 

(33) 

(34) 

where (RI is the receiver transfer function. As shown in 
Appendix A, the FrCchet derivative then needs a double 
summation for all singlets k and k ,  the first summation being 
in expression (34), and the second in (A6). We can write this 
derivative formally in a first step as 

(35) 

We consider separately the contribution s ~ , ~  involving the 
singlets k and k' of the same multiplet K (developed in 
Appendix B), and the contribution sK,K' involving the singlets 
k and k of the multiplets K and K' respectively (see 
Appendix C). We can then rewrite the perturbation of the 
seismogram as a summation on perturbed modulation function 
multiplied by the unperturbed spherical frequency carrier, so 
that 6 s ( t )  is given by 

6s( t )  = C 6A,( t )  exp(iaKt), (36) 
K 

where we can write 6 A K ( t )  as the contribution of two terms: 

6AK( t )  = 6AK( t )  + 6Ai(  t )  . (37) 

The first term 6Ak( t )  is the perturbation of the modulation 
function due to self-coupling, and is deduced from relation 
(B4): 
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+ <R,(o)la,sA(a,)IS,(t))l, (38) 

where (RK(t)l  and IS , ( t ) )  are the time derivatives of (RK(t)l 
and ISK( t ) ) ,  respectively. 

The second term is obtained from relation (Cl )  by summing 
all terms where the carrier exp(io,t) appears. We then have 

+ < R K ' ( O )  16A(0K) I s K ( t )  ) 1 
- 2i0, C (RK( t )  PA(0x) ISK,(O) ) 

+ <RK'(o ) l sA(oK) l sK( t )> l  } ' (39) 

We now look at the two terms &(')(a) and ~Sc(~)(a), due to the 
dispersive part. These terms, however, are quite similar to 
those described above, except that instead of 6A(aK) in relations 
(39) and (38), we have to substitute the term 
GA(a,)[N(o) - I] + "(0) - I]6A(aK), which includes the 
dispersive terms. Thus we need to express the space-time 
fields 

< R K ( t ) l  = 1 exp[i(ak -aK)tl(R~uk')<Vk'~N(OK)~Uk)<Vk~ 
k,k' E K 

(40) 

and 

= 1 exp[i(ak-aK)tl luk)(VklN(aK)IUk')<Vk'IS) 
k,k' t K 

(41) 

that appear, along with their corresponding time derivatives, 
in the expressions (38) and (39). 

Relations (38) and (39) generalize the Woodhouse & Girnius 
(1982) formulation when the Frechet derivative is done with 
respect to a 3-D aspherical earth instead of a SNRAI spherical 
earth. Note in particular that all secular terms involve a 
convolution between the receiver and source modulation fields. 
For a Frechet derivative with respect to a spherical model 
(having its eigenfrequency equal to the eigenfrequency used 
for the carrier), these two functions are non time-dependent, 
and all three convolutions in (38) reduce to the single term 

i.e. the short time approximation of Jordan (1978). Note that 
relations (38) and (39) are fully symmetric with respect to the 
receiver and source functions. We note also the relative impor- 
tance of the different terms in eq. (38): the three first lines are 
related to perturbation of the stiffness tensor, the second one 
being of the order of 6o/a while the first one is of order 1. The 
eight last lines are related to a perturbation in the physical 
dispersion of the Earth and involve both secular and non- 
secular terms. The first and second square brackets in the third 
integral represent the major contribution and the ratio between 
these two terms is of the order of 6wt: this implies a predomi- 
nance of the second term at the beginning of the signal, and 
after a time equal to the inverse of the splitting width, a 
predominance of the first, secular, term. 

5 NUMERICAL TESTS 

We present here some examples of modulation fields, on both 
the source and receiver, and express the Frechet derivative of 
the recorded amplitude modulation. These examples are for 
two fundamental modes, oS52 and oS17. We then compute the 
instantaneous perturbation of the local frequency of these 
modes and discuss the trade-off between the perturbation of 
the apparent attenuation and focusing/defocusing effects. The 
numerical tests have been performed using the aspherical 
model M84A (Woodhouse & Dziewonski 1984), superimposed 
on the spherical model PREM (Dziewonski & Anderson 1981). 
The aspherical modes were computed up to third order of 
perturbation theory, taking into account all the coupling effects 
related to this model with lateral variations up to degree 8, 
which means with the 16 nearest multiplets. Only coupling 
along the dispersion branch was considered. 

5.1 Modulation fields 

Figs 1-3 show modulation fields at the receiver and source for 
the multiplet oS,,. These fields are computed by making the 
inverse Legendre transformation of the hybrid modulation 
functions at the source and receiver [see Lognonne & 
Romanowicz (1990) for details on the discrete Legendre trans- 
formations]. These fields correspond to the vertical displace- 
ment at a depth of 500 km. Due to the small coupling and the 
smooth dependence of the spherical eigenfunction on e, changes 
in depth mainly affect the amplitude of the modulation function 
and not it shape. The source is a double couple located at a 
depth of 15 km, along the equator, at 195"E. The mechanism 
of the source is a vertical strike-slip with a 45" strike. Fig. 1 
shows the modulation function of the source at all positions 
on a 500 km deep sphere. Similarly, Fig. 2 shows the modu- 
lation function associated with the receiver. This function 
shows the amplitude recovered along the vertical axis at all 
points of the 500 km deep sphere for an impulsive source. At 
t = 0, these modulation functions only differ slightly from the 
spherical earth amplitude response. Differences arise only from 
coupling effects. When time increases, however, and in contrast 
to the spherical earth case, the modulation function varies, 
mainly due to the self-coupling; these variations are shown in 
Figs 3(a)-(d). Figs 3(a) and (b) show the real and imaginary 
parts of the source modulation field after 6 hr, while Figs 3(c) 
and (d) show these fields after 12 hr. In an aspherical earth, as 
noted by Dahlen & Henson (1985) and Henson & Dalhen 
(1986), the 2&+ 1 eigenmode singlets have a significant ampli- 
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Modulation function (model M84) : UO component-real t=Oh 
multiplet 0,952 - source: double-couple 

Figure 1. Modulation field at the source (double-couple) for the multiplet at time t = 0 hr. The vertical component U ,  is shown at a depth 
of 500 km. The source is a vertical strike slip with the fault plane oriented at 45" to the equator. Peaks are present at both the location of the 
source (0.10"N 195"E, 15 km depth, indicated by a black circle on the background map) and its antipode. At the initial time, the field is purely 
real and is close to the spherical case. This figure could be interpreted as the amplitude of vertical displacement associated with this source for all 
points on a 500 km depth sphere. For all figures the computation is done using the M84A model of Woodhouse & Dziewonski (1984). 

Modulation function (model M84) : UO component-real - t=Oh 
multiplet OS52 - station : vertical component 

Figure 2. Modulation field at the station for the multiplet oS,,, at time t = 0 hr. Depth is fixed at 500 km. As for Fig. 1, the U o  component of the 
field is shown. Peaks are also present at  both the receiver location (0.10"N 75"E, indicated by a black triangle on the background map) and its 
antipode. As in Fig. 1, the field is real and close to the spherical case. This figure gives the displacement recovered at the receiver for a vertical 
impulsive source for all points on a 500 km depth sphere. Note that the two peaks have the same sign, due to the even angular order of the mode 
(this is also true for Fig. 1).  
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462 E. CltvCdt! and P. Lognonnt! 

(4 Perturbation of the modulation function (model M U )  : UO component-real t=6h 
multiplet OS52 - source: double-couple 

(b) Perturbation of the modulation function (model M84) : UO component-imaginary t=6h 
multiplet OS52 - source: double-couple 

Figure 3. Perturbation of the modulation field at the source for the multiplet $,,, at times t = 6 hr and t = 12 hr. (a) ( t  = 6 hr) and (c) ( t  = 12 hr) 
show the real parts; the field of reference is the modulation at the initial instant (Fig. 1). In the spherical case, this difference is zero. (b) and (d) 
show the imaginary part of the modulation fields at times t = 6 hr and t = 12 hr respectively. These fields are equivalent to the absolute ones, since 
the imaginary part of the modulation field at the initial time is null. 
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FrCchet derivatives of coupled seismograms 463 

(c> Perturbation of the modulation function (model M84) : UO component-real t=12h 
multiplet OS52 - source: double-couple 

(4 Perturbation of the modulation function (model M84)  : UO component-imaginary t=12h 
multiplet OS.52 - source: double-couple 

Figure 3. (Continued) 
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tude along l+ 1 great circles. Each great circle, except one, is 
associated with two modes with very close frequencies. Both 
modulation fields at the source and receiver then select the 
singlets that possess an antinode at the source or receiver 
location. As seen in Fig. 4, when the initial amplitudes of the 
singlets are plotted, only a few have a significant amplitude. 
As time increases, the departure from the sphericity of 
the earth induces slow variations of the initial amplitude. 
The perturbations with respect to the initial amplitude are 
concentrated along the singlet great circles with maximum 
amplitudes. 

Note that the perturbation of the modulation function, i.e. 
its departure from a constant function, is quite significant. The 
perturbation represents 50 per cent of the initial value after 
6 hr, and is equal to the initial field after 12 hr. 

We have also computed the modulation field for an isotropic 
source. It looks, of course, like the modulation field at the 
receiver (which is also isotropic) when, as in the numerical 
example shown here, either no lateral variation in attenuation 
or no rotation is assumed, thus implying the same dual and 
primal eigenmodes. 

5.2 Frechet derivative kernel 

The Frkhet derivatives involve modulation functions both at 
the source and receiver. These FrCchet derivative kernels are 
shown in Figs 5-6 for the mode &,. In each of these figures, 
the amplitude at a given point with latitude 0 and longitude 
I$ is the perturbation in the recorded amplitude modulation 
function when a Dirac delta function perturbation is put in 
the model M84A at a depth of 500 km and at location 0, 4. 
Figs 5(a)-(f) and 6(a)-(f) are for perturbations in the shear 
modulus. In Figs 5(a)-(f), we show the Frechet derivative 
obtained only by the self-coupling terms, which are given by 
relation (38). Note, however, that coupling is taken into 
account in the computation of normal modes, and in the 
computation of the modulation fields. At the initial time (Figs 
5a and b), the kernel appears to have a maximum along the 
great circle (in our case the equator) connecting the source 
and the station. The phase plot shows that this 'equatorial 
peak' is a stationary phase point, giving rise to the asymptotic 
approximation of the great-circle path average. Our results 
diverge from the asymptotic approximation, however, by the 

8e- 07 

6e-07 

4e- 07 

2e-07 

0 

-2e-07 

-4e-07 

- 6e- 07 

- 8e- 07 

- le- 06 

-1.2e-06 

Excitation coefficients of the singlets of OS52 for a vertical strike-slip source 

located at 0.10 deg. N, 195 deg. E, 15 kms depth 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 

0 Q O  0 
Q Q  Q 

Q 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105 

Figure 4. Excitation coefficients of the singlets of the multiplet ,J,,. The source is the vertical strike slip used for Figs 1, 2 and 3. The coefficients 
associated with the 26+ 1 singlets (e.g. 105 modes) are plotted in increasing frequency order. Only less than half of the singlets have a significant 
amplitude of excitation. The most excited singlets lead to the general pattern of the modulation field, as the great circles corresponding to these 
singlets are the locations of maximum amplitude. 
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Frtchet derivatives of coupled seismograms 465 

(4 Frechet derivative kernel (model M84) : amplitude - time=Oh 
multiplet OS52 : isolated 
perturbation in p (0.1 %) - double-couple source 1 vertical instrument 

(b) Frechet derivative kernel (model M84)  : phase - time=Oh 
multip et OS52 : isolated 
pertur b ation in p (0.1 %) - double-couple source I vertical instrument 

Figure 5. Isolated multiplet hypothesis: evolution of the Frechet derivatives kernel (double-couple source) for ,S,, for a perturbation in the shear 
modulus at several instants. The map shows, on all latitudes and longitudes, the perturbation of the recorded demodulated amplitude for the 
normal mode ,S5*, when a Dirac perturbation of 0.1 per cent of the spherical PREM value is put at the given latitude and longitude, and at a 
depth of 500 km. The source is the vertical strike slip used for Fig. 1. (a), (c) and (e) show the absolute amplitude of the kernel at times t = 0, 6 and 
12 hr respectively. (b), (d) and ( f )  give the corresponding phase. On both the amplitude and phase representation, the source location (same as 
Fig. I)  is indicated by a circle on the background map, and the receiver location (same as Fig. 2) by a triangle. The phase representation is done 
so that white corresponds to zero, black to 22, and median grey to n. Thus, whiter and darker zones correspond to close phases. Hence, (b) shows 
that, at the initial instant, the phase takes only values n and 0 (or 2n), so that the kernel is purely real. Moreover, we can see that the equatorial 
zone is a stationary phase point, as predicted by asymptotic results. In (d) and ( f )  the pattern changes as the kernels become fully complex. 
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466 E. Clkvkdk and P. Lognonnk 

( c )  Frechet derivative kernel (model M84) : amplitude - time=6h 
multiplet OS.52 : isolated 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

(4 Frechet derivative kernel (model M 8 4 )  : phase - time=6h 
multiplet OS52 : isolated 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

Figure 5.  (Continued) 
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Frichet derivatives of coupled seismograms 467 

(el Frechet derivative kernel (model M84) : amplitude - time=12h 
multiplet OS52 : isolated 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

(f) Frechet derivative kernel (model M84) : phase - time=12h 
multiplet OS52 : isolated 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

Figure 5. (Continued) 

0 1996 RAS, GJI  124, 456-482 

 at IN
IST

-C
N

R
S on O

ctober 28, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


468 E. CEtv6dk and P. Lognonni 

(a) Frechet derivative kernel (model M84) : amplitude - time=Oh 
multiplet OS52 (coupling along the dispersion branch : +-31) 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

(b) Frechet derivative kernel (model M84) : phase - time=Oh 
multiplet OS52 (cou lin along the dispersion branch :. +-3j) 
perturbation in p (81 4 - double-couple source I vertical instrument 

Figure 6. Coupled multiplets hypothesis: evolution of the Frechet derivatives kernel (double-couple source) for oS,, for a perturbation in the shear 
modulus at several instants. The multiplet coupling is done for the six nearest modes around oS5p on the fundamental dispersion branch. 
Conventions are the same as for Fig. 5. The source mechanism is also the same. Coupling effects clearly appear at short times. These effects are 
located near strong velocity gradient zones and affect both phase and amplitude. They decrease with time, as the secular terms corresponding to 
the isolated multiplet contribution increase. (e) ( t  = 12 hr) presents the same pattern as Fig. 5(e), the isolated multiplet case. Only the corresponding 
phase ( f )  still shows differences from the isolated case (Fig. 5f). 
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Fr6chet derivatives of coupled seismograms 469 

(c) Frechet derivative kernel (model M84)  : amplitude - time=6h 
multiplet OS52 (coupling along the dispersion branch : +-31) 
perturbation in p (0. I %) - double-couple source I vertical instrument 

(4 Frechet derivative kernel (model M84) : phase - time=6h 
multiplet (IS52 (cou lin along the disp rsion branch :. +-31) 
perturbation in p (81 %$ - double-coup fe source I vertical instrument 

Figure 6. (Continued) 
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(el Frechet derivative kernel (model M84)  : amplitude - time=12h 
multiplet OS52 (coupling along the dispersion branch : +-31) 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

(0 Frechet derivative kernel (model M 8 4 )  : phase - time=12h 
multiplet OS52 (cou lin along the dispersion branch :. +-3.l) 
perturbation in p (81 4- double-couple source I vertlcal instrument 

Figure 6. (Continued) 
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Frkchet derivatives of coupled seismograms 471 

fact that the equatorial peak is very broad, and the sides lobes 
do not vanish toward the poles. Note that, at t = 0, the kernel 
is a purely real quantity, all modulation fields being purely 
real (there is no aspherical attenuation in our model). As time 
increases, the maximum of energy moves slowly from its initial 
location to reach an orbit corresponding to the most excited 
singlets for the source-receiver couple (Figs 5c and e), while 
the kernel becomes fully complex. The spherical great-circle 
approximation is no longer valid; indeed, our FrCchet derivative 
kernel appears to be essentially sensitive to the structure 
beneath a path which is not exactly the geometrical great 
circle, and which slowly precesses with time. We now look at 
the terms in the Frechet derivative [given by (3911 involving 
coupling along a particular dispersion branch. Figs 6(a)-(f ) 
show the kernels for the same time as in Figs 5(a)-(f). The 
summation in (39) is only done for the six closest modes along 
the dispersion branch. 

If self-coupling gives sensitivity to even degree structure, 
coupling along the branch introduces asymmetries (odd struc- 
ture) between major and minor arcs and allows us to see 
focusing effects (e.g. Romanowicz 1987). Indeed, at t = 0, the 
departure from the spherical case is greater than previously. 
We observe strong focusing effects near strong velocity gradient 
zones, thus showing that the path-average approximation is 
no longer valid. Sensitivity along the R1 path is different from 
the sensitivity along the R, path. However, as the self-coupling 
part is a secular term, with an amplitude that increases fairly 
linearly with time, the relative importance of the coupling 
terms with respect to the self-coupled terms will vary as 

coupled 1 
- N  

isolated - (oK - o,.)t ' 

where t is the time. In our example, at time t = 4 hr, the typical 
contribution of the coupling effect is more than 50 per cent of 
the total amplitude. This contribution is the only one that is 
significantly sensitive to the lateral heterogeneities with odd- 
order symmetry. Indeed, the self-coupling part, due to the 
selection rules, is mostly sensitive to the even part of lateral 
heterogeneities even though, in contrast to the case of the 
FrCchet derivative with respect to a spherical earth, it has 
a small sensitivity to the odd part (Woodhouse 1983; 
Romanowicz 1987; Park 1987). As a consequence, the sensi- 
tivity of the complete FrCchet derivative to lateral variations 
with odd-order symmetry decreases as time increases. This is 
especially true for inversions based on resolved normal modes, 
which need a long time series (Ritzwoller et al. 1986, 1988; 
Giardini et al. 1987, 1988). If we want to use a single reson- 
ant peak, it is necessary to separate modes with frequency 
differences of (oK-mK,),  and the length of the series must 
then be such that 

(0, - O K ' ) t  > 1. 

The Frtchet derivative is then dominated by the self-coupling 
secular term, and therefore mainly sensitive to the even-order 
lateral variations, confirming numerical results shown by Hara 
et al. (1993). 

We have also computed the Frechet derivative kernels for 
the low-angular-order mode oS1,. The computation has been 
performed using the same receiver and double-couple source 
as for &,. Figs 7(a)-(f) shows the Frechet derivative kernel 
for a perturbation of 0.1 per cent in p, at the initial time 
(Figs 7a and b), after 24 hr (Figs 7c and d) and after 48 hr 

(Figs 7e and f). The same features as previously appear, 
but here secondary side lobes around the main path are 
very important, due to the rather low angular order of the 
mode oS17. After 48 hr, the main contribution to the amplitude 
comes from the secular terms corresponding to the self- 
coupling part. 

Considering Frechet derivative kernels computed for an 
isotropic source, the comparison with the results obtained with 
the vertical strike-slip source shows that the amplitude pattern 
appears to be fairly independent of the mechanism of the 
source, except near the source location. The difference is in the 
phase values,.where in our case a quasi-constant IT dephasing 
occurs between the kernels obtained with the two different 
types of mechanism. 

5.3 Local frequency and comparison between 
elastic/anelastic perturbations 

Let us compare our results in the context of local frequency, 
and try to address the problem of attenuation sensitivity to 
effects of focusing/defocusing (Levshin, Ritzwoller & Ratnikova 
1994; Romanowicz 1994). We can define the local frequency 
associated with a modulation function as 

&(t)  = A,(O) exp[it6a(t)], 

so that the perturbation of the local frequency, for short time, 
is given by 

A real perturbation of the local frequency may be, to the first 
order, and without focusing/defocusing corrections, associated 
with a real perturbation of the stiffness tensor, while an 
imaginary perturbation of the local frequency may be associ- 
ated with the imaginary part. The map of the perturbation of 
the local frequency of oS52 is shown in Figs 8(a)-(d). The 
amplitude of the real and imaginary parts along the equatorial 
path is shown in Figs 9(a)-( b) and 10(a)-( b), 2 and 4 hr after 
the earthquake for perturbations in p and Q p ,  respectively. 

Figs 9(a)-( b) show the predominance of a real perturbation 
of the local frequency for a real perturbation of the stiffness 
tensor over most of the R, and R2 paths, except between the 
antipode of the source and the receiver, where focusing is 
strong and where both the real and imaginary parts have 
terms of equal amplitude. 

In contrast, for imaginary perturbations of the stiffness 
tensor (Fig. 10a-b) we end up with a less pronounced signature 
on the local frequency: the real perturbation is at least half of 
the imaginary one, and is even predominant between the 
antipode of the source and the receiver. 

In all cases, we have a strong focusing of the sensitivity near 
the location of the source, receiver, and their antipodes by a 
factor of 3 to 5. Note that the imaginary perturbation of the 
local frequency, which appears for a 1 per cent lateral variation 
in the shear modulus, is roughly equivalent in amplitude to 
the signal associated with a 5 per cent lateral variation in the 
imaginary part of the shear modulus. 

6 SYNTHETIC FOURIER SPECTRUM 

The theoretical results given in Sections 1-4, and illustrated 
in Section 5, enable a theoretical seismogram and its partial 
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412 E .  Clkvkdk and P. Lognonnk 

(a) Frechet derivative kernel (model M84) : amplitude - time=Oh 
multiplet OS17 (coupling along the dispersion branch +-31) 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

(b) Frechet derivative kernel (model M84) : phase - time=Oh 
multiplet OSl7 (cou lin along the disp rsion branch t-31) 
perturbation in p (&14 - double-coup fe source I vertical instrument 

Figure 7. Coupled-multiplet hypothesis: evolution of the Frechet derivatives kernel for 
(0.1 per cent). Conventions are as in Figs 5 and 6. (a) and (b) show, respectively, the amplitude and phase at the initial time. The Frbchet derivative 
kernels in amplitude and phase are given after 24 hr in (c) and (d), and after 48 hr in (e) and (f). 

(double-couple source) for a perturbation in 
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Fr6chet derivatives of coupled seismograms 413 

(c) Frechet derivative kernel (model M84) : amplitude - time=24h 
multiplet OSI 7 (coupling along the dispersion branch +-31) 
perturbation in p (0.1 96) - double-couple source I vertical instrument 

(4 Frechet derivative kernel (model M84)  : phase - time=24h 
rnultiplet OS17 (cou lin along the disp rsion branch +-3 1 
perturbation in p. (81 - double-coup fe source I vertica f instrument 

Figure 7. (Continued) 
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474 E .  ClPvCdP and P. Lognonnd 

( e )  Frechet derivative kernel (model M84) : amplitude - time=48h 
multiplet OS17 (coupling along the dispersion branch +-31) 
perturbation in (0.1 %) - double-couple source I vertical instrument 

( f )  Frechet derivative kernel (model M84) : phase - time=48h 
multiplet QSI 7 (cou lin along the disp rsion branch t -31) 
perturbation in p ($1 %$ - double-coup 1" e source I vertical instrument 

Figure 7. (Continued) 
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Frdchet derivatives of coupled seismograms 415 

(a) Perturbation of the instantaneous frequency (model M84) : real part - time=2h 
multiplet OS52 (coupling along the dispersion branch : +-31) 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

(b) Perturbation of the instantaneous frequency (model M84) : imaginary part - tirne=2h 
multiplet OS52 (coupling along the dispersion branch : +-31) 
perturbation in p (0.1 %) - double-couple source I vertical instrument 

Figure 8. Perturbation of the local eigenfrequency of the multiplet ,$,,. These maps show the perturbation of the local frequency, as defined by 
the relation (42). Conventions are as in Figs 5 to 7. (a) and (b) show the real and imaginary parts of the frequency (depth is 500 km) due to a local 
variation of the shear modulus of 1 per cent at time t = 2 hr, while (c) and (d) give the field induced by a local variation of the attenuation factor 
Q ,  of 10 per cent at  the same time. These two kinds of perturbation yield the same order of magnitude for the perturbation of the complex frequency. 
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416 E.  Clevkde and P. Lognonnt 

( c )  Perturbation of the instantaneous frequency (model M84) : real part - time=2h 
multiplet OS.52 (coupling along the dispersion branch : +-31) 
perturbation in Q, (1 0%) - double-couple source I vertical instrument 

(dl Perturbation of the instantaneous frequency (model M84) : imaginary part - time=2h 
multiplet OS.52 (coupling along the dispersion branch : +-31) 
perturbation in QF (10%) - double-couple source I vertical instrument 

Figure 8. (Continued) 
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(a) Perturbation of the instantaneous complex frequency of the multiplet OS52 along the equator 

perturbation in shear modulus (0.1 %), time=2h, source: double couple, depth=500kms 
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(b) Perturbation of the instantaneous complex frequency of the multiplet OS52 along the equator 

perturbation in shear modulus (0.1 %), time=4h, source: double couple, depth=SOOkms 

4000 

3 5 0 0  

3000 

2500  

2000 

1500  

1000 

500 

0 

-500  

-1000 

-1500 

-2000 

0 30 60 90 120 150  1 8 0  210 240 270 3 0 0  3 3 0  360 

Figure9. Perturbation of the local eigenfrequency of the multiplet oS52 along the equator for a perturbation in p (0.1 per cent). The perturbation 
is taken along the geometrical great circle, for time t = 2 hr in (a) (extracted from Figs 8a and b), and for time t = 4 hr in (b). The continuous 
curves represent the real parts of the perturbations, corresponding to apparent phase perturbations, while the dashed lines are for the imaginary 
parts, producing focusing/defocusing effects or attenuation effects. The real perturbation of the local frequency is predominant for most of the R, 
and R, paths. In contrast, the loci of strong focusing show an equal contribution to the real and imaginary parts of the local frequency perturbation. 
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(a) Perturbation of the instantaneous complex frequency of the multiplet OS52 along the equator 
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(b) Perturbation of the instantaneous complex frequency of the multiplet OS52 along the equator 

perturbation in Q-shear (lo%), time=4h, source: double-couple, depth=SOOkms 
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Figure 10. Perturbation of the local eigenfrequency of the multiplet oS52 along the equator for a perturbation in Q, (10 per cent). Conventions 
are the same as for Fig. 9. (a) is extracted from Figs 8(b) and (c). In this case, the real part of the local frequency perturbation becomes predominant 
along the shortest paths between the source and receiver locations and their antipodes. Note that a 5 per cent lateral variation in the imaginary 
part of the shear modulus gives a roughly equivalent amplitude of the local frequency perturbation to that obtained with a 1 per cent lateral 
variation in the real part of the shear modulus. 

0 1996 RAS, GJI  124, 456-482 

 at IN
IST

-C
N

R
S on O

ctober 28, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Frdchet derivatives of coupled seismograms 479 

derivatives to be calculated. In the same way, we can obtain 
synthetic spectra through the modulation function formalism. 

Nowab & Lognonne (1994) show that for a synthetic 
seismogram expressed as 

(43) 
K 

with, following eqs (10) and (12), 

AK( t )  = <RlSK(t)) = <RK(t)lS) 2 (44) 
the corresponding Fourier spectrum can be obtained 
analytically. 

If s ( t )  is cut into N segments [T,,, T,,,] of length AT, its 
Fourier transform can be written as 

N 

(45) 

with 
f2n 

s;(o) = C AK( t )  exp [i(uK - w)t ]  S t ,  (46) 
l l n  

where 6 t  represents the time spacing between data points in 
the initial time series, and t, ,  and tzn are respectively the times 
for the first and last points in the nth segment. 

As shown by Nawab & Lognonnk (1994), the modulation 
function A K ( t )  can be modelled by a cubic polynomial over 
each nth segment. This leads to the analytical expression for 
the Fourier spectrum: 

N 

44 = 1 1 expCi(0, - W l ” 1  
K n = l  

x c ~ K ( T , ) d ; ( w )  + AK(TI+l)d%4 

+ k,(T,)ATd;(w) + kK(T,+l)ATd:(w)] 6 t ,  (47) 

where k, represents the time derivative of A K ,  and where the 
functions d ; ( o ) ,  d”,(o), d;(o) and d:(o) depend only on the 
spherical frequency of the multiplet and on the number of 
points per sequence. Expressions for these functions are 
detailed in Nawab & Lognonne (1994). In the same way, the 
Frechet derivatives of the spectrum can be calculated using 
expression (47), by replacing the modulation functions by their 
Fr6chet derivatives. 

7 CONCLUSION 

We have formulated expressions for Frechet derivative seismo- 
grams for elastic, anelastic and physical dispersion pertur- 
bations in a laterally heterogeneous earth model. These results 
are based on the concept of modulation fields considered 
independently, either at the sources or at the receivers. These 
fields condense all the effects on seismograms produced by 
lateral variations of the Earth. They are characterized by slow 
modulations in time, involving a characteristic time-scale com- 
parable to the inverse of the frequency splitting width and not 
to the period of the mode. Moreover, the computation of 
N x M seismograms and their related Frechet derivatives only 
requires the computation of M source modulation functions 
and N receiver modulation functions. 

In order to compute the modulation fields rapidly, a ‘direct 
solution’ technique has been proposed which avoids the com- 
putation of the aspherical normal modes. This technique is 

based on perturbation theory, expressed up to the second 
order for amplitudes, and up to the third order for frequencies, 
using the results of LognonnC (1991). Thus the time-varying 
modulation functions use the aspherical normal modes 
implicitly, but need explicitly only the SNRAI spherical har- 
monic normal modes and coupling matrices. Hence, the FrCchet 
derivatives of the seismograms can be rapidly computed for 
every point of an aspherical anelastic 3-D earth. 

The numerical tests performed show some large differences 
from the spherical symmetric case. First, the frozen-path 
approximation is no longer valid since the sensitivity of the 
seismogram shifts with time from the initial great-circle path. 
The path ‘selected’ depends both on the source and receiver 
characteristics, and on the structure. Secondly, focusing effects 
due to the coupling of the closest modes along a single 
dispersion branch invalidate the use of a great-circle path 
average to retrieve the structure. The importance of these 
coupling effects at small times cannot be neglected, and other- 
wise may result in a wrong localization of the lateral 
heterogeneities. 

Direct inversion of the structural information carried by the 
modulation functions is already possible (Nawab 1993), as 
these secondary observables can now be well determined using, 
for example, the normal-mode demodulation technique pro- 
posed by Nawab & Lognonne (1994). The theoretical formu- 
lation given here is a first step to global inversion of seismic 
waveforms. The fast computation of synthetic seismograms 
through the modulation field approach and the Frechet deriva- 
tives of these seismograms with respect to the structural 
parameters, as well as the fact that the algorithm derived from 
this formulation is well adapted to parallel computers, make 
this kind of inversion feasible. 
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APPENDIX A: TIME-DOMAIN 
FORMULATION 

68’)(0-) has one second-order pole [corresponding to the 
diagonal terms of A-l(cr)Y-l(a)] and two first-order poles 
(corresponding to the non-diagonal terms). The time expression 
of this term can be obtained through inverse Fourier-Laplace 
transformation, and the kth element of 6c(’)( t )  gives 

This expression gives the displacement contribution of the 
Frechet derivative for an impulsive source. In what follows, we 
will express the acceleration contribution produced by an 
Heaviside source. We have then to apply two transformations 
to Gc(’)(t): first, a convolution with the Heaviside function 
H (  t ) ,  and then a double differentiation, which leads to the 
expression in acceleration: 

second-order pole: 

convol.H(f) 1 [ ik exp(io, t )  
- t exp(iokt) - - - + it exp(io,t) - ~ 

dk ok 

double deriv. - - i i a k t  exp(iokt), 

first order pole: 

convol.H(t) 1 exp(ia,t) --[exp(io,t) - 11 
l‘k 

double deriv. - ia, exp(io, t)  
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We then obtain the following acceleration perturbation: 

We then use another approximation, by considering the pertur- 
bation SA as a perturbation around the central frequency of 
the multiplet associated with the singlet where the perturbation 
is taken. For a singlet k of the multiplet K, the mean frequency 

is related to mk by ok=uK+60k (idem for k and the 
corresponding multiplet K ) ,  so that we take 

(-44) 

( -45 )  

APPENDIX B: SELF-COUPLING 
CONTRIBUTION 

The contribution of the self-coupling part is given by 

h S K , K ( t )  = 1 (RIuk) 4a, exp(-iokt)(v,ISA(aK)IUk)(Vklf) 
k E K  -it 

[exp(i.,t) - exp(ia,.t)] 
1 1  

+ Z k  2 a;, - 0: 

<vk 16A(aK) luk‘ ) <vk’ If) 
1 1  

{(dk - ok,)Cexp(iakt) + exp(iak,t)] + k;k 4 a:. - 0: 

+ 6ok[exp(iakt) - exp(io,,t)] 

+ 6ok‘[exp(iokt) - exp(iak,t)]} 

(vkduGA(aK)/uk’)<vk’(f) ‘ 1 

Employing the equality 

1 
[exp(iakt) - exp(i0,. t)] 

0:. - a: 

z)] exp(iak,z) d z ,  (B2) 

we can then express the contribution of all the singlets of the 
multiplet by using the expressions (11) and (13). We thus 
obtain 

+ (RK(o)lac6A(a,)lsK(t))l} > (B4) 

where (RK(t)l  and IS , ( t ) )  are the time derivatives of (RK(t)( 
and & ( t ) )  respectively. 

APPENDIX C: COUPLING BETWEEN 
DIFFERENT MULTIPLETS 

If we consider the case of a weak splitting, we can make the 
approximation 

1 1 6 0 k ‘  + 6ak)-’ ( + 

-N- 

f$‘-O: - &-.:(’ + OK’ + dK 

0 1996 RAS, GJI 124,456-482 

 at IN
IST

-C
N

R
S on O

ctober 28, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


482 E .  C h i d e  and P. Lognonne 

Thus, as we have done previously, we obtain an expression of 
the non-dispersive part of the complex signal (in acceleration) 
corresponding to the coupling between multiplets, with the 
weak-splitting approximation: 
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