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Abstract According to different types of observations, the nature of lithosphere-asthenosphere
boundary (LAB) is controversial. Using a massive data set of surface wave dispersions in a broad period
range (15–300 s), we have developed a three-dimensional upper mantle tomographic model (first-order
perturbation theory) at the global scale. This is used to derive maps of the LAB from the resolved elastic
parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process.
We investigate LAB distribution primarily below the oceans, according to different kinds of proxies that
correspond to the base of the lithosphere from the shear velocity variation at depth, the amplitude
radial anisotropy, and the changes in azimuthal anisotropy G orientation. The estimations of the LAB depth
based on the shear velocity increase from a thin lithosphere (∼20 km) in the ridges, to a thick old-ocean
lithosphere (∼120–130 km). The radial anisotropy proxy shows a very fast increase in the LAB depth from
the ridges, from ∼50 km to the older ocean where it reaches a remarkable monotonic subhorizontal profile
(∼70–80 km). The LAB depths inferred from the azimuthal anisotropy proxy show deeper values for the
increasing oceanic lithosphere (∼130–135 km). The difference between the evolution of the LAB depth with
the age of the oceanic lithosphere computed from the shear velocity and azimuthal anisotropy proxies and
from the radial anisotropy proxy raises questions about the nature of the LAB in the oceanic regions and of
the formation of the oceanic plates.

1. Introduction

The concept of the lithosphere and asthenosphere, and therefore of the lithosphere-asthenosphere bound-
ary (hereafter referred to as the LAB), was first evoked by Barrell [1914] and then extended by Daly [1940].
However, it remains very elusive, as different geophysical fields have proposed different definitions. In seis-
mology, according to the type of data (e.g., surface waves, receiver functions) or the parameterization (e.g.,
isotropic, anisotropic medium), contradictory results can be obtained. The LAB is considered to be a key
control point in the various geophysical systems.

The LAB can be defined as the depth change of different parameters [e.g., Eaton et al., 2009]. It is associated
with a change in rheology, which is underlined by the strain rate change as a function of the depth above a
maximum in the asthenosphere, while the elastic lithosphere jointly moves with the plate. As a part of the
adiabatic convecting mantle, the LAB within the upper thermal boundary layer can be considered as the
limit between a conductive lithosphere and a convective asthenosphere. The LAB is classically associated
with the depth of the 1300◦C isotherm [Artemieva, 2006]. A chemical composition change has also been
proposed to produce the LAB, through the water content, which produces a limit between the hydrated or
dehydrated mantle and presence of fractional melt [Karato, 2012]. Also, the LAB can be defined from electro-
magnetic data, as associated with a decrease in electrical resistivity from the high values in the lithosphere
to the low values in the asthenosphere, [see Jones et al., 2001; Moorkamp et al., 2010].

The LAB inferred from seismological data is commonly defined as the boundary between the high-velocity
lid corresponding to the lithosphere and the low-velocity zone corresponding to the asthenosphere. The
meaning of the lid and the low-velocity zone have evolved in the past from partial melting processes
[Gutenberg, 1959; Kawakatsu et al., 2009] to mineral physics considerations [Anderson and Sammis, 1969],
chemistry changes [Regan and Anderson, 1984], and the presence of hydrated phases [Karato, 2012].
Recently, some receiver function studies of both Sp and Ps converted phase data showed coherent negative
velocity drops beneath eastern Australia [Ford et al., 2010] and eastern North America [Rychert et al., 2007]
associated with the LAB and a midlithosphere boundary. In northern Tibet [Kumar et al., 2006], only found a
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Table 1. Properties of the Different Data Sets From Each Group Including the
Type of Data a

Rayleigh Waves Love Waves

Data Set ΔT (s) NP ΔT (s) NP

IPGP(CR) 44 – 315 9292 b - -

Harvard(CR , CL) 35–150 37738 35–150 23227

Utrecht(CR , CL) 35–175 63628 35–174 45179

Boulder(UR , UL) 16–200 76580 16–150 47021

aThe ΔT as the period range and NP as the number of paths.
bThe data set results from a clustering of at least five paths.

negative velocity drop for the LAB. These studies have mainly reported LAB depths for continents that are in
the range of the estimates from surface wave dispersion curves [Fishwick, 2010; Pasyanos, 2010].

Considering the shear velocity parameter, the LAB depth can be defined by the transition from a
high-velocity lid to a low-velocity zone, based on a basic shear velocity structure. The LAB can also be related
to a change in anisotropy, as the process of lattice-preferred orientation of anisotropic crystals indicates
the recording of the previous or current mantle flow. Thus, the inversion of only surface wave dispersion
[Plomerova et al., 2002] or joint surface waves and SKS splitting measurements [Yuan et al., 2011] give access
to depth variations of radial anisotropy, amplitude, and orientation of azimuthal anisotropy, where the
SKS splitting data are used to complete the information from the surface wave dispersion on azimuthal
anisotropy at depth.

Therefore, there is still controversy relating to the concept of the LAB below continental roots and oceanic
regions. We first focus our search for the LAB on the oceanic part of our global three-dimensional anisotropic
model which has a more simple structure. The 3-D model includes the vertically polarized shear velocity, the
radial anisotropy, and the azimuthal anisotropy. These parameters produce different estimates of the LAB
and geodynamic interpretation at a global scale can be carried out.

2. Data Set

The data set is composed of compiled Rayleigh and Love wave group and phase velocities. A very large
amount of these data was collected from different groups. These include phase velocity dispersion data
of the fundamental mode of the Love and Rayleigh waves from Harvard [Ekström et al., 1997] using a
phase-matched filtering method, from IPGP [Beucler et al., 2003; Beucler and Montagner, 2006] using the
roller coaster algorithm, and from Utrecht [Visser et al., 2008] using the model space approach. These also
include group velocity dispersion data of the fundamental mode of the Love and Rayleigh waves from the
University of Colorado [Ritzwoller and Levshin, 1998], using a frequency-time analysis. The complete data set
initially contained more than 300, 000 independent surface wave dispersion measurements (Table 1) pro-
vided by stations of permanent and temporary networks. These are based on data processing of the global
scale distribution of seismic events over the past 20 years. Given that Rayleigh waves are mainly sensitive
to the SV wave velocity, while Love waves are mainly sensitive to the SH wave velocity, we can invert for a
radial anisotropic structure. Group velocity measurements extend to shorter periods than phase velocity
measurements (down to periods of 16 s) and provide additional information on shallow layer effects and the
crust-mantle structure.

One primary difficulty in this compilation comes from the heterogeneity of the sources and the processing
techniques for phase velocity dispersion data. The different data sets include measured phase velocities and
error bars that can be incompatible for the same paths, due to different data processing and measurement
techniques. In a first step, the common paths between the different data sets (i.e., same event, same station)
were compared. This comparison of these common paths shows important variations between the data sets.
For common paths, the errors in the Harvard data set are almost systematically smaller than the errors in the
Utrecht data set. In a second step, the merging of the data sets was performed by applying a global weight-
ing coefficient on the data errors for each separate data set. The weighting coefficients were determined to
minimize the a posteriori errors on the regionalization of the merged data sets. We used a systematic search
of the different combinations and found the best weighting coefficients: ∼ 1.1 for the IPGP data set, ∼ 1.6
for the Utrecht data set, and ∼ 2.1 for the Harvard data set.
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Figure 1. Path density coverage. Color scale indicates number of paths per unit area (2◦ × 2◦ cell at the equator), cells are saturated at
250 paths. Maps for Rayleigh wave phase velocity (CR), Love wave phase velocity (CL), Rayleigh wave group velocity (UR), and Love wave
group velocity (UL). All maps are at a period of 100 s.

The data coverage obtained shows strong heterogeneities, according to the global distribution of stations
and sources (Figure 1). The Southern Hemisphere has a lack of path density in comparison with the Northern
Hemisphere, and especially in Antarctica (∼20 paths per 2◦ × 2◦ cell for the Love phase velocity at 100 s), and
the south of the Atlantic and Indian Oceans (∼40 paths per cell for Love group velocity at 100 s). Instead,
the North American continent and Eurasia show very dense path coverage (more than 1000 paths for the
Rayleigh phase velocity). The global azimuthal coverage is satisfying at the global scale (Figure 2). However,
we note some weakness in the almost North-South direction in the south of the Atlantic Ocean for the Love
phase velocity.

3. Phase Velocity and Group Velocity Maps

The relationship between the seismic parameters describing the Earth’s structure and the surface wave dis-
persion is nonlinear. There are many different methods to invert for a 3-D model, and we focused on only
two techniques. The first, one-step, technique consists of direct waveform fitting, where the path asso-
ciated kernels are calculated and relate the surface wave phase velocity data to the seismic parameters
[Woodhouse and Dziewonski, 1984]. The second, two-step, technique [Nataf et al., 1986] consists of the
estimation of 2-D dispersion maps for each period (which is a nearly linear problem) and thus the non-
linear inversion at depth of each local period dispersion curve with respect to a local 1-D model of
seismic parameters.

> 200 paths

Figure 2. Path azimuthal coverage for Love wave phase velocity at a period of 100 s. Length of slices indicates the number of paths per
azimuth range (30◦) per unit area (10◦ × 10◦ cell at the equator), and the vectors are saturated at 200 paths.

BURGOS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1081

http://dx.doi.org/10.1002/2013JB010528


Journal of Geophysical Research: Solid Earth 10.1002/2013JB010528

The prediction of maps of surface wave velocities for each wave type (phase velocity for Rayleigh and Love
waves, and group velocity for Rayleigh and Love waves) and each period is performed by using the con-
tinuous regionalization algorithm. This technique solves the least square inverse problem based on the
formalism of Tarantola and Valette [1982]. This was applied to surface waves by Montagner [1986] and was
optimized especially for large amounts of data by Debayle and Sambridge [2004].

Following the geometrical ray approximation, the slowness along the great circle path can be expressed as

1
vi(T)

= 1
Δ ∫i

1
v(𝜃, 𝜙, T)

ds, (1)

where vi is the velocity measurement (either phase velocity or group velocity of Rayleigh or Love waves)
for the ith path at period T , Δ is the epicentral distance between the earthquake and the receiver, v is the
local velocity at the geographic point of colatitude and longitude (𝜃, 𝜙). To complete the formulation of the
forward problem, the first order dependence of the local surface wave velocity v on the anisotropy can be
expressed as a Fourier series expansion of azimuth 𝜓 up to degree 4 [Smith and Dahlen, 1973, 1975],

v(𝜓, T) = v0(T)
[
1 + 𝛼1(T) cos 2𝜓 + 𝛼2(T) sin 2𝜓

𝛼3(T) cos 4𝜓 + 𝛼4(T) sin 4𝜓
]
,

(2)

where 𝜓 is the azimuth, v0 is the isotropic term, and 𝛼1, 𝛼2, 𝛼3, and 𝛼4 are the anisotropic coefficients of the
azimuthal terms.

This least squares inversion formalism involves a Gaussian a priori covariance matrix that is based on a corre-
lation length that controls the lateral resolution of the 2-D inverted map. The inversion scheme formulation
of Debayle and Sambridge [2004] allows the use of massive data sets but does not allow the calculation of
the a posteriori covariance matrix, which is computationally too expensive.

In this study, we use cluster analysis to match the upper limit of the path number that can be computed by
the algorithm. The paths that have quasi similar source and receiver coordinates are gathered to produce a
single path with an average value and an error defined by the standard deviation. In practice, we use cluster-
ing in 1◦ × 1◦ cells for at least 20 similar paths. Additionally, for a cell including n paths, the error is replaced
by the RMS of the n velocities. For each velocity map, two inversions are processed: The first is based on
the starting velocity that is inferred from the preliminary reference Earth model (PREM) [Dziewonski and
Anderson, 1981], the second is based on the global average of the first map, in order to reduce the depen-
dence on the starting model. To estimate the correlation length, we find that in the data set an isotropic part
correlation length Li = 400 km and an anisotropic part correlation length La = 800 km provide an accu-
rate compromise between improved resolution and a posteriori uncertainties. These values of correlation
length are also necessary to be in the framework of the geometric optics and thus to avoid strong diffrac-
tion effects. A statistical error is estimated by inverting 10 random samplings of 80% of the data set, and the
errors are thus obtained by the calculation of the standard deviation of the stacked samples of the complete
catalog. The compatibility of the merged phase velocity data set is assessed by comparison with individual
data sets and it reflects the weighting of the data set relative errors.

As an example of dispersion maps, we can see the major regional tectonic structures on the 100s phase
velocity map (with a maximum sensitivity at ∼ 130 km for the Rayleigh waves, and just beneath the crust for
the Love waves), as mainly high-velocity cratons and low-velocity ocean ridges (Figure 3). In Figure 4, we can
also see the strong sensitivity to the crust of the group velocity at short periods, where the ocean-continent
distribution is predominant. The smooth anisotropic direction signal can be interpreted as a record of
the flow direction beneath the oceans. These very general features are similar and coherent with other
previous studies of dispersion maps [see Trampert and Woodhouse, 2003; Beucler and Montagner, 2006;
Ekström, 2011].

4. Crustal Model

Surface waves are strongly sensitive to shallow layers [see Montagner and Tanimoto, 1991; Marone and
Romanowicz, 2007]. To avoid the mantle structure being biased by the crust, it is necessary to carefully take
account of the strong lateral variations of the crustal structure. As Love waves have a shallower sensitivity
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Figure 3. Two-dimensional regionalization. Color scale indicates the perturbation of isotropic velocity with respect to the PREM (the
maximum range of the scales are indicated beneath each subtitle). The amplitude and orientation of vectors indicate the fast axis of
2𝜓 azimuthal anisotropy. Maps for Rayleigh wave phase velocity (CR) at periods of 50 s and 125 s, and Love wave phase velocity (CL) at
periods of 50 s and 125 s.

than Rayleigh waves at a given period, a wrong crustal correction can lead to nonphysical radial anisotropy
at depth [Ferreira et al., 2010].

In the present study, we jointly invert the phase and group velocity data for Rayleigh and Love waves in
selected short period bands for a crustal model. The different sensitivities of the different types of data
provide better constraints on the crustal structure and reduce the mapping of mantle heterogeneities in
the crust.

0

UR 35s UR 100s

UL 35s UL 100s

20% 7%

20% 5%

Figure 4. Two-dimensional regionalization. Color scale indicates the perturbation of isotropic velocity with respect to the PREM (the
maximum range of the scales are indicated beneath each subtitle). Maps for Rayleigh wave group velocity (UR) at periods of 35 s and
100 s, and Love wave group velocity (UL) at periods of 35 s and 100 s.
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There are several approaches to correct for the effects of the crust on dispersion velocities. The first consists
of selecting one of the available a priori crustal models and to compute corrections applied to data or to
define this model as a fixed part for the inversion. The second approach consists of a joint inversion of crust
and mantle structures. In this study, we choose a hybrid method: we perform a Monte Carlo inversion only
for the crustal structure based on an a priori model, and we try to fit the shorter period range of data sensi-
tive to the crust. This technique provides a more accurate crustal model that is compatible with the data and
avoids mantle contamination by the crustal heterogeneities better than the direct inversion.

The initial crustal model contains the P wave velocity, S wave velocity, density, and shear quality factor. It is
based on the crustal model CRUST 2.0 [Bassin et al., 2000] (with the crustal quality factor of the PREM model
crust), which includes topography, water bathymetry, sedimentary layers, and three crustal layers. We use
the isotropic PREM model below the 220 km discontinuity. Between the Moho and the 220 km discontinuity,
we perform a linear average to relate the CRUST 2.0 uppermost mantle values and the PREM values at the
220 km discontinuity.

Due to their respective sensitivity, we use Rayleigh wave phase velocity CR in the period range of 35 s to 40 s,
Love wave phase velocity CL in the period range 35 s to 50 s, Rayleigh wave group velocity UR in the period
range 20 s to 40 s, and Love wave group velocity UL in the period range 20 s to 50 s.

Model space sampling methods, such as for Monte Carlo, Metropolis, or simulated annealing need a small
number of parameters and a fast routine to solve the forward problem, to explore the model space ade-
quately. A simulated annealing inversion is applied, which uses random sampling of the model space (in
an analogy with the annealing of solids) [Kirkpatrick et al., 1983]. Each model generation is constructed as
a random perturbation of a previous model. The probability of the generated model to be accepted slowly
reduces as the number of iterations increases. This makes possible a more global walk before converging
onto a local solution that is adapted to the crust and to the multiple trade-offs between the depths and
velocities in each layer. The cost function sk at each iteration k is computed as

sk =
∑

i

(vk
i
− vi)2

𝜎2
i

, v = [CR CL UR UL]T , (3)

where vi is the velocity of rank i in the data vector (either Rayleigh or Love wave, either phase or group veloc-
ity, and for a given period), 𝜎i is the associated uncertainty, vk

i
is the corresponding velocity computed for

the kth generated model. The probability of the kth model to be accepted is{
Tk = a(1 − k

n
)

Pk = exp
(

−Δsk

Tk

)
, (4)

where Tk is the annealing temperature, which decreases as the number of iterations increases (n is the max-
imum number of iterations), and a is a parameter that scales the amplitude of the random walk. Pk is the
probability for the model k to be accepted, and Δsk is the variation of fit between the previously accepted
model and the k model.

The fast routine that is necessary to realize the high number of iterations of the SA scheme is a plane wave
computation of surface wave dispersion in a semiinfinite half-space [Herrmann, 1987]. This technique is
compatible with the normal mode computation [Woodhouse, 1998] for this depth and period range. The
parameterization of the inversion is chosen so as to get the smallest possible number of parameters. The
water layer and the sedimentary layers are fixed in the inversion scheme which perturbs only the three
crustal layers. As the surface waves are mainly sensitive to the S wave velocity, we invert only for this param-
eter by defining perturbations of the P wave velocity and density as logarithmic relation to the S wave
perturbation d ln Vp∕d ln Vs = 0.5 and d ln 𝜌∕d ln Vs = 0.33. No radial anisotropy is introduced in the crust.

The inversion is performed at each geographic point of the 10,468 points of the global grid that describes
the regionalized maps. In Figure 5 the best fit Moho depth distribution is shown. The inverted model usu-
ally displays deeper Moho depths than the CRUST 2.0 model, and the variation in the oceanic regions is
very small due to the accurate starting model and smaller parameter space. However, cratonic parts, such as
Western Australia, northern America, western and southern Africa have a shallower Moho than CRUST 2.0.
Our results are consistent over the large scale with other global studies based on surface wave data [Meier
and Curtis, 2007] or other European studies [Tesauro et al., 2008].
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Figure 5. Best solution for the Moho depth for the crustal Monte Carlo inversion. Maps for the absolute depth of the best fit Moho and
for the difference (km) between the best fit Moho and the CRUST 2.0 Moho from the starting model.

5. Depth Inversion by First-Order Perturbation Theory

To obtain a 3-D model of the upper mantle, we perform an inversion at depth of the dispersion velocities for
a complete anisotropic structure.

From a general point of view, surface waves are sensitive to 13 parameters among 21 of the elastic tensor,
which corresponds to a monoclinic lattice system (one plane of symmetry). This geometry makes it possi-
ble to take azimuthal anisotropy into account. The first five parameters are A,C, F, L, and N, and these can be
associated with the PH wave and PV wave velocities, the 𝜂 anisotropy, and the SV wave and SH wave veloc-
ities, respectively. The other eight parameters represent the azimuthal variations of the five parameters,
except C: The 2𝜓 variations for A by Bc and Bs, for L by Gc and Gs, for F by Hc and Hs, and the 4𝜓 variations for
N by Ec and Es.

The starting model contains A, C, F, L,N, Q
𝜅

and Q
𝜇
. It is based on the inverted crustal model (for each point

of the 2-D grid) fitting of the short period range of the data set, with A = C, L = N, and based on the PREM
model F, Q

𝜅
and Q

𝜇
. The upper mantle structure (down to 410 km) is a modified anisotropic PREM model

where the radial anisotropy (𝜉−1) is reduced from the original 10% to 4%, and the 220 km discontinuity is
smoothed by using a 40 km Gaussian filter.

Therefore, in the period range 35 s to 300 s, we use isotropic and anisotropic coefficients (2𝜓 and 4𝜓 ) of the
phase velocity for the Rayleigh waves, and in the period range 35 s to 175 s, we use isotropic and anisotropic
coefficients (2𝜓 and 4𝜓 ) of the phase velocity for the Love waves.

Assuming weak anisotropy and small heterogeneities, we can express the forward problem following the
first order perturbation formalism for Rayleigh phase velocity perturbation at a period T as

𝛿cR(T) = ∫
a

0

[
𝜕cR

𝜕A
(T)(𝛿A + Bc cos 2𝜓 + Bs sin 2𝜓 + Ec cos 4𝜓 + Es sin 4𝜓)

+ 𝜕cR
𝜕C
(T)𝛿C + 𝜕cR

𝜕F
(T)(𝛿F + Hc cos 2𝜓 + Hs sin 2𝜓)

+ 𝜕cR
𝜕L
(T)(𝛿L + Gc cos 2𝜓 + Gs sin 2𝜓)

]
dz

Δh
,

(5)

where a is the Earth radius and Δh is the normalizing thickness for the kernels.

For the Love phase velocity perturbation

𝛿cL(T) = ∫ a

0

[
𝜕cL
𝜕L
(T)(𝛿L + Gc cos 2𝜓 + Gs sin 2𝜓)

𝜕cL
𝜕N
(T)(𝛿N + Ec cos 4𝜓 + Es sin 4𝜓)

]
dz

Δh
.

(6)

The kernel formulation is based on Takeuchi and Saito [1972] for the transverse isotropic medium with
vertical symmetry axis, and it allows the derivation of the anisotropic ones [Montagner and Nataf, 1986].

The inversion algorithm [Tarantola and Valette, 1982] makes the control of the vertical resolution possible by
using a Gaussian a posteriori covariance matrix for the parameter space that is characterized by an a priori
error on the parameter and a correlation length. This correlation length increases with depth from 20 km to
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Figure 6. Synthetic test of the resolutions: example of an oceanic model. (left) Profiles of the VSV, 𝜉, and strength G parameters, and
orientation of the fast axis 𝜓G of the azimuthal anisotropy, with the starting model (blue), the perturbed model (green), and the inverted
model (red) with uncertainties (gray). The dispersion curves associated with the different models are presented, with the (top right)
Rayleigh wave and Love wave phase velocities and the (bottom right) 2𝜓 azimuthal coefficients of the Rayleigh wave phase velocity.
The orientation of the azimuthal anisotropy 𝜓G is not shown for weak values of anisotropy strength G.

a maximum of 50 km at the bottom of the upper mantle, which corresponds to the distribution of the inde-
pendent quantity of the surface wave information. The computational cost is dominated by the calculation
of the kernels at each point of the grid, which is performed through the modal solution with a modified ver-
sion (Capdeville, personal communication, 2014) of modular in-core nonlinear optimization system (MINOS)
code [Woodhouse, 1998]. In addition to the correlation length and a priori errors, the a posteriori covariance
matrix for the parameter space is also used to impose a priori correlations between the whole set of param-
eters. These correlations are inferred from petrological constraints to reduce the number of independent
model parameters [see Montagner and Anderson, 1989].

The inversion is performed individually for each geographic point of the global grid. The sensitivity kernels
of the Rayleigh waves and the respective Love waves show that parameters L, Gc, and Gs, and ,respectively, N,
Ec, and Es, are predominant over the others. The resolution of these parameters is estimated through a set of
synthetic tests with various amplitudes of perturbation at different depths, which demonstrates that L, N, Gc,
and Gs are resolved (see Figure 6). These parameters will be described as the SV wave velocity VSV =

√
L∕𝜌,

the radial anisotropy 𝜉 = N∕L, the strength of the VS azimuthal anisotropy G =
√

G2
c
+ G2

s
and the fast axis

orientation 𝜓G = 1∕2 arctan(Gc,Gs).

Classical regional scale tectonic features, such as the cratonic regions associated with high-velocity or
oceanic regions, and ridges associated with low velocities at 125 km depth, are retrieved in VSV depth maps
(Figure 7). The borders of the subduction zone are well defined for Cascadia, Japan; e.g., on 75 km and
125 km maps. The fast axis direction of azimuthal anisotropy remains mainly coherent with the global plate
motion for oceanic regions and has a more complicated pattern beneath the continental regions. The radial
anisotropy maps (Figure 8) show strong anisotropy zones 𝜉 > 1 for oceanic regions, especially for the
Pacific Ocean region, as reported in Montagner and Tanimoto [1991] and Ekström and Dziewonski [1998],
and a more complicated geometry for continental regions. In this study, we present only the results for the
oceanic lithosphere, whereby the results for the continents will be discussed in a future study. For all of the
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Figure 7. Depth maps of the VSV parameter and 𝜓G from the inversion at depth. Color scale indicates the perturbation of VSV with
respect to the pseudo-PREM reference. The amplitude and orientation of the vectors indicate the fast axis of G azimuthal anisotropy.

parameters, the 3-D inversion at depth mainly reproduces the minimum lateral wavelength imposed in the
2-D regionalization step.

6. LAB Proxies

The seismic LAB depth can be inferred from the inverted parameters of the 3-D model by defining prox-
ies (Figure 9) [see Van der Lee, 2002; Plomerova et al., 2002; Yuan et al., 2011]. The LAB can be related to the
VSV parameter as the top of the low-velocity zone. For our inverted 3-D model, the maximum of the nega-
tive gradient of the SV wave velocity is computed and considered as the LAB. This represents the transition
between the high-velocity lithosphere and the low-velocity asthenosphere. Beneath oceanic regions, the
profile of radial anisotropy shows a low 𝜉 for shallow depths and then a high 𝜉, before converging toward
∼ 1. The maximum of the radial anisotropy 𝜉 can be interpreted as the maximum deformation, and the LAB
can be located at the maximum or just above the maximum, depending on the mechanical response of the
asthenosphere. As we focus on the oceanic regions, we choose to pick the LAB above the maximum of 𝜉; i.e.,
at the maximum of the positive gradient 𝜕𝜉

𝜕z
.

As in the case for the radial anisotropy, the strength of the azimuthal anisotropy G can be used to define
the LAB depth, although the depth distribution obtained is scattered and does not provide a coherent
pattern. Thus, we use the orientation of the fast axis of azimuthal anisotropy 𝜓G. The change in the corre-
lation between 𝜓G and the direction of the plate motion (no-net-rotation NUVEL-1 model) at depth can
indicate a change in the rheology. It is assumed that 𝜓G reflects the orientation of the present-day mantle
flow beneath the lithosphere, which is similar to the plate motion direction. When 𝜓G is not correlated with
plate motion, it reflects the frozen-in anisotropy in the lithosphere. Thus, the top of the correlated orienta-
tion layer might define the LAB. In some cases the mantle flow did not change from the formation of the
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Figure 8. Depth maps of the 𝜉 parameter from the inversion at depth. Color scale indicates the perturbation of 𝜉 − 𝜉R , with respect to
the average reference 𝜉R .
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Figure 9. LAB proxies for an oceanic point (𝜆 = 35◦N, 𝜙 = 35.03◦W). The profiles are shown for the shear velocity (VSV), the shear
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Figure 10. LAB depth from the shear velocity (VSV) proxy (maximum of the negative gradient). Color scale indicates the LAB depth (km) for the oceanic regions: Pacific (PCF), Atlantic
(ATL), and Indian (IND) Oceans.

lithosphere up to now, and so 𝜓G cannot provide a coherent determination of the LAB depth. We consider
the orientation of the azimuthal anisotropy proxy when the anisotropy strength is greater than 0.5%.

For oceanic regions, the LAB derived from the vertically polarized shear velocity proxy (Figure 10) has shal-
low depth values beneath the ridges (∼30 km), and it increases as the age of the lithosphere increases. In
old oceanic regions, the LAB depth is up to ∼120–130 km. The LAB depth derived from the radial anisotropy
𝜉 (Figure 11) shows a faster increase with the age than the VSV proxy, before reaching a shallow subhorizon-
tal pattern (∼70–80 km). The azimuthal anisotropy proxy for the LAB is computed only for the Pacific region
(Figure 12), as a coherent pattern in the Atlantic and Indian regions was not found. The LAB depth inferred
from the correlation of the orientation of azimuthal anisotropy and the direction of the plate motion is
∼50 km around the ridge, and increases down to ∼125 km in depth for old oceanic regions. However, the 𝜓G

proxy just below the ridges is not well defined.

7. Age Versus Depth Correlations

Plotting the oceanic LAB depth with the age of the ocean floor allows the comparison of our results with the
thermal cooling models of the oceanic lithosphere. These models are based on bathymetric and geodetic
measurements, and they predict the evolution of the topography, heat flux, and plate thickness as functions
of the age. The lithosphere is defined as the upper conductive thermal boundary layer of the mantle that is
cooling from the top. There are two main types of thermal models: the infinite half space models [Parker and
Oldenburg, 1973] and the plate models [Parsons and Sclater, 1977; Stein and Stein, 1992; Doin and Fleitout,
1996; McKenzie et al., 2005], where the lithosphere thickness can be determined for a given isotherm.

For each oceanic region, the sea floor age is derived from Müller et al. [1997]. We plot the age/depth vari-
ations for the different elastic parameter proxies and we compare these with the half space cooling (HSC)
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Figure 11. LAB depth from the radial anisotropy (𝜉) proxy (maximum of the positive gradient). Color scale indicates the LAB depth (km) for the oceanic regions: Pacific (PCF), Atlantic
(ATL), and Indian (IND) Oceans.
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Figure 12. (left and middle) Depth maps of the difference between the orientation of the azimuthal anisotropy (𝜓G) and the direction of the plate motion from the NNR-NUVEL-1
model for the Pacific Ocean at 50 km and 125 km. Color scale indicates the angular difference (◦). (right) LAB depth for the orientation of the azimuthal anisotropy proxy (𝜓G) in the
Pacific Ocean. Color scale indicates the LAB depth (km). The incoherent points are rejected.

model and a more recent plate model, the McKenzie (MCK) model [McKenzie et al., 2005]. For all of the geo-
graphic points of each ocean grid, all of the LAB depths of the different proxies are associated with the
corresponding age of the Pacific Ocean (Figure 13), the Atlantic Ocean (Figure 14), and the Indian Ocean
(Figure 15). The age variation for the orientation of the azimuthal anisotropy 𝜓G proxy is only shown for the
Pacific region, with a rejection of the incoherent points. This proxy shows the difference between the fossil
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Figure 13. LAB depth age variations for the Pacific Ocean floor. The diagrams represent the shear velocity (VSV) LAB depth, the radial
anisotropy (𝜉) LAB depth, and the azimuthal anisotropy (𝜓G) LAB depth. The isotherms 600◦C, 800◦C, 1000◦C, 1100◦C, 1200◦C, and
1300◦C (dashed gray) associated with the half space cooling model (HSC) and the McKenzie plate model (MCK) are also shown. The
error bars are the standard deviations over the set of the age/depth points with a 5 Myr age range.
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Figure 14. Same as Figure 13 but for the Atlantic Ocean.

anisotropy in the lithosphere and the present-day mantle flow, and in the Atlantic and the Indian Oceans,
the number of selected points does not enable us to provide a coherent determination of the LAB depth.

For all of the oceanic regions, the shear wave velocity proxy patterns are compatible with the 1300◦C
isotherm of the MCK model. The Pacific Ocean pattern can also be compatible with the 1100◦C isotherm
of the HSC model for the deeper old lithosphere (in the range of its error bars). The Atlantic and Indian
Ocean profiles indicate a flattening of the thickening of the oceanic lithosphere from ∼75–80 Myr, reaching
∼110–120 km, which shows that neither is also compatible with the HSC model. The Pacific profile inferred
from the azimuthal anisotropy proxy has an age-dependent shape with deeper and more dispersive values
than the shear velocity proxy (up to ∼130–135 km deep), although the variance of this proxy is very large.
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Figure 15. Same as Figure 13 but for the Indian Ocean.
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The influence of partial melting in the asthenosphere [Kawakatsu et al., 2009] might be invoked to explain
the amplitude of the VSV drop. Also, the deep LAB inferred from the 𝜓G proxy is consistent with the stronger
amplitude of the azimuthal anisotropy in the asthenosphere than in the lithosphere, as reported by Debayle
et al. [2005] for oceanic regions.

The most interesting result is the LAB age profile derived from 𝜉. The diagrams associated with the radial
anisotropy proxies 𝜉 show a dramatically low age-dependence with a subhorizontal pattern. The Atlantic
and Indian Ocean profiles do not show any shallow depths near the ridges, and they are almost horizon-
tal between 70 km and 80 km, while the Pacific Ocean pattern shows a slight thickening, from 50 km near
the ridges to 80 km for the old oceanic parts. This can be relatively compatible with the ∼1100–1200◦C
isotherms of the MCK model. To first order, the 𝜉 proxy reveals a plate model with an almost constant thick-
ness, which might be related to the rigid plate where the deformation is very small. According to some
subsolidus models with grain boundary sliding that is enhanced by water content [Karato, 2012], the LAB
in the young ocean will be age-dependent, while it is shallower than 70 km because the partial melting
temperature occurs at depths less than 70 km, where the material is water poor. However, in the old ocean,
a shallow LAB (60–80 km) with a low temperature can occur due to a higher water content. This model
predicts a subhorizontal pattern for the LAB.

8. Conclusions

Three proxies for the oceanic LAB are defined from our 3-D model: the top of the low vertically polarized
shear velocity zone; the top of the radial anisotropy 𝜉 positive anomaly; and the change in the orientation
of the fast axis of the azimuthal anisotropy 𝜓G (only for the Pacific Ocean). The LAB depth distributions from
the VSV proxy are basically consistent for the different oceanic regions. As with the LAB depth distributions
from the 𝜉 proxy, there is also good consistency between the different oceans.

These results emphasize the two types of patterns of oceanic lithosphere evolution:

1. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in global agreement
with the thermal plate model from McKenzie et al. [2005] (isotherm 1300◦C). The velocity drop in the
asthenosphere might be explained by partial melting [Kawakatsu et al., 2009].

2. The LAB based on radial anisotropy 𝜉 is characterized by a shallower depth, which defines a subhorizon-
tal interface with very low age dependence. This requires further explanation through other physical
mechanisms, such as the water content [Karato, 2012]. This needs to be investigated in more detail to
understand how it was formed in less than 30 Myr, and why its thickness is almost independent of age.
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