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Abstract 

Neither core measurements nor well tests provide precise measurement of fluid contents; so, at the moment there is no 

validated saturation measurement in the oil industry. However, resistivity logs contain some valuable information about 

reservoir fluids, and classes of saturation based on the behaviour of resistivity data. In order to extract saturation value, 

clustering algorithms are proposed and tested here. Clustering is an unsupervised categorization method, which relies on 

natural groupings of real data, instead of predefined labels. Distance or dissimilarity plays an important role in the 

formation of clusters in an algorithm. The application of three clustering algorithms on prediction of water saturation is 

discussed here. It is shown that Fuzzy C-Means clustering divides data only according to saturation property; while the 

Gustafson-Kessel algorithm considers not only saturation but also permeability. The reason is that Gustafson-Kessel can 

detect linear patterns. This algorithm is introduced as the most appropriate clustering method for predicting permeability, 

and for understanding the reservoir quality of the formation under examination. Gath-Geva clustering did not provide as 

much information as Gustafson-Kessel. In addition to these three clustering algorithms, two other methods were likewise 

checked, but they did not provide acceptable interpretations, so not reported. Another achievement of this study is the 

introduction of a cluster label instead of a single value which is very unreliable for expressing saturation and permeability 

simultaneously. Predictions of these two petrophysical properties are provided merely by two conventional resistivity well-

logs: deep and shallow. The output of cluster analysis is much closer to well-scale reservoir properties as compared with that 

of core-scale properties, since clustering algorithms are applied to logs that are volumetric recordings. The applicability and 

efficiency of the proposed methods are examined and verified through the use of well-logs of Sarvak Formation in an 

anticlinal oil field in the Abadan Plain, Iran. 

Keywords: water saturation in carbonate reservoirs; clustering permeable zones; clustering saturated zone; application of 

unsupervised learning; Gustafson-Kessel clustering 

 

 

1. INTRODUCTION 

The importance of evaluating water saturation in 
petroleum exploration is taken for granted by petroleum 
geoscientists. The widest usage of water saturation is in net 
pay detection. Petrophysicists apply cut-off values to water 
saturation logs, to distinguish oil-bearing intervals in both 
horizontally [1] and vertically drilled wells [2, 3, 4 and 5]. 
Due to the effect of water saturation on the plasto-elastic 
properties of rocks, accurate determination of this property 
is essential in geomechanics [6]. In addition, Tokhmechi et 
al. (2009) have used water saturation log in the process of 
fracture detection within wells [7]. Production planning is 
another criterion which water saturation is essential for [8]. 

Still, empirical relations for estimating water saturation 
are the most widely used methodologies. Among them, 
Archie relations, developed by early Archie works [9, 10, 
11 and 12] are the best-known. There are so many other 

empirical relations which have also been developed, such 
as Carman [13] and Timur [14]. For the comprehensive 
study of empirical methods in estimating water saturation, 
please refer to [15]. Worthington (2004) offered a wise fit-
for-purpose usage of Archie and non-Archie relations due 
to rock type and our purpose of estimating water saturation 
[16]. 

There are some other methodologies, based on 
supervised methods and trainable machines, which have 
recently been developed. To use these supervised methods, 
a reference criterion is required to train a machine. For 
example, Kadkhodaie-Ilkhchi et al. (2009) proposed a 
Committee Machine with Training Algorithm (CMTA), 
utilizing a combination of Levenberg-Marquardt, Bayesian 
regularization, gradient descent, one step secant and 
resilient back-propagation to train a neural network for 
predicting Normalized Oil Content (NOC) [17].  

The Bayesian classifier can be applied, while using 
Gassmann equation as labels [18]. Also, Radial Basis 
Function Neural Networks [19] and support vector 
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regression machine [20] could be trained according to core 
measurements on saturation as reference criteria. It seems 
that these trainable (supervised) methodologies are more 
reliable as we have evidence for measuring precision of 
output. 

Barros and Andrade (2013) predicted water saturation 
by angular competitive neural network. In this 
methodology there is no training, and the algorithm only 
searches for patterns of cross-plots to predict a saturation 
parameter. This algorithm is really applicable and useful in 
cases in which we lack labelled data as validation [21]. We 
consider the current manuscript as complementary to [21], 
since here, the proposed approach searches for patterns 
without considering labelled data for machine learning. In 
this study, a review is addressed on previous works 
regarding water saturation. Then, some clustering-
methodologies are introduced as possible solutions to the 
problem of saturation prediction. Finally, outputs of 
different cluster analysis methods in studying water 
saturation are discussed. 

As mentioned above, the industrial importance of this 
work is its applicability in cases where there is no evidence 
for validating outputs. Still, there is no reliable continuous 
saturation measurement within drilled wells. It is 
noteworthy that the experience and wisdom of 
petrophysicists is essential for a successful interpretation, 
and cluster-based methodology is only a powerful tool in 
distinguishing similar data due to different criteria of 
similarity. 

2. HYPOTHESES: WHY CLUSTER ANALYSIS 

FOR SATURATION PREDICTION? 

As discussed previously, there are several saturation 
prediction methods. All of them provide an indirect 
procedure for predicting water content in each horizon, 
using well-log data. Nearly all saturation prediction 
methods on well-log data assign a single value (not a range) 
of water content to each horizon through wells. We believe 
that such a fixed saturation value is not a credible way of 
introducing this variable in oil wells due to three issues: 

(i) A fixed and single value is not an appropriate 
representative of the volume of investigation regarding 
recorded measurements within the well. In other words, the 
certainty and accuracy of a single value for expressing 
saturation of a volume is subject to doubt. Experts are keen 
to have a single value as the value of saturation; but, here a 
range of values, instead of a single value for saturation is 
recommended as to render the predictions more reliable. 
When we have vagueness in the parameter under study, we 
have to use a vague language too. In other words, at the 
moment, science and technology do not let us express 
water saturation by a fixed value. It is just an 
approximation without any error measurement!  

(ii) If we can train a machine in a specific environment, 
in this case a well which is drilled in a reservoir, it is more 
accurate to use the trained machine in evaluating water 
saturation instead of empirical universal equations. So, the 
use of empirical relations such as Archie is not 

recommended when we are able to use trainable and locally 
available machines. In addition, empirical relations have 
only been developed in specific environments, 
assumptions and considerations. For example, the Archie 
equation was primarily developed in sandy reservoirs, but 
if it is addressed in shale-contaminated reservoirs, some 
corrections have to be considered. Therefore, the Archie 
relation in carbonate reservoirs is only a rough 
approximation of water saturation. 

(iii) Using supervised methods in saturation prediction 
is not accurate enough at the moment, because we do not 
have any reliable evidence or label for training the 
machine. Evidences for training have to be either core 
measurements or well-tests. Training a machine based on 
the label of water saturation is not an accurate job due to 
the following points:  

(a) Whereas each core plug could be tested several 
times at several intervals (with a vertical resolution of 
about centimeter) for porosity measurements; it could only 
be used once for measuring water saturation. Therefore it 
is impossible through cores to get real, accurate data for 
saturation with high vertical resolution. Also, measuring 
water saturation in laboratory conditions results in different 
outputs, compared to the in-situ situation. Water saturation 
is too dependent on the place of analysis (because of 
environmental causes such as temperature, pressure, etc.); 
i.e. temperature and pressure of reservoir conditions differ 
greatly from laboratory conditions. As we recover the core 
from the reservoir, its pressure would be dropped, and the 
balance between fluid contents would be violated. Even in 
measuring porosity, in-situ and laboratory measurements 
differ somewhat due to stress relief, but this variation 
boosts in measuring saturation property, since dynamic 
processes take part.  

(b) Surprisingly, well-tests cannot provide a practical 
label of saturation. Two issues are under doubt in well-test 
results as labels of supervised classification of water 
saturation: (b1) the very first issue is that wells are tested 
at intervals, not horizons. Therefore, when we do not have 
more than one test in a specific reservoir interval through a 
well, we would not have more than an average value for 
that specific interval, which is not enough for training a 
machine. In order to be able to train a machine in the highly 
heterogeneous conditions of the reservoirs, we require 
much more than 100 observations, while by well testing; 
we always obtain less than 10 observations, i.e. well test 
intervals. (b2) Besides, the nature of well-test results 
differs from the characters of water saturation, i.e. a well-
test result is a combination of water saturation and reservoir 
permeability. The effect of permeability has to be removed 
from the testing results if we want to use the tests as a 
measurement of saturation. This incompatibility between 
well-test output and saturation value is shown in Figure 1. 
As it is obvious, well-test class numbers 2 and 3 (i.e. oil 
production lower and higher than 1500 barrel per day) 
show the reverse order of the expected pattern, compared 
to water saturation value [9]. 

 



 

Figure 1. Comparing well-test results and water saturation (Archie) 
value in five wells of Sarvak Formation. Horizontal axis is a simple 

data numbering, which makes saturation values in ascending order. 

Well-test class value means water production (1), oil production with a 
rate of less than (2) or of higher than (3) 1500 barrel per day. 

Therefore, in predicting water saturation, we face a 
problem: there is not enough credible measurement for 
saturation. To cope with this situation, we believe that the 
assessment has to be done by an unsupervised method able 
to analyze the behavior of datasets according to the target 
(here, saturation). So, cluster analysis methods are 
recommended and investigated here as unsupervised 
clustering methods to evaluate the water saturation of 
reservoir rocks. 

3. DATASETS 

Datasets of this work belong to the Sarvak Formation 
in an anticlinal (north-south trend) oil field in the Abadan 
Plain, Iran. For the sake of confidentiality, the name of the 
field is not disclosed. There are six drilled wells for 
exploratory purposes, and well-log data is available 
through all the wells. But well-test and core data are not 
available at all. The summary of the available information 
is presented in Table 1. 

From the standpoint of sequence stratigraphy, the 
Sarvak Formation is a shallowing upward carbonate 
reservoir, deposited on a shallow Upper Albian to Upper 
Turonian platform. It is conformably laid on the Kazhdumi 
Formation, and the Laffan Formation is overlaid on the 
Sarvak Formation above this sharp erosional unconformity 
[22]. 

4. METHODOLOGY 

A. Archie Equation 

The famous empirical Archie equation was first 
developed in sandy reservoirs; however, it is used in 
carbonate rocks too. Two general forms of this relation are 
[9]: 

The famous empirical Archie equation was first 
developed in sandy reservoirs; however, it is used in 
carbonate rocks too. Two general forms of this relation are 
[9]: 

𝑅𝑡 = 𝑅𝑜 × 𝑆𝑤
−𝑛      (1) 

 𝑆𝑤 = (
𝑅𝑜

𝑅𝑡
)

1

𝑛
      (2) 

where, 𝑅𝑡 is the recorded resistivity of rock, filled with 
fluids at reservoir conditions. 𝑅𝑜 is the resistivity of sand 
when all the pores are filled with brine; 𝑆𝑤  is the water 
saturation, in fraction form; and n is the saturation 
exponent. The saturation exponent for consolidated sands 
and clean unconsolidated sand appears to be close to 2. 
Hence, the equation for clean sand could be simply 
rewritten as: 

𝑆𝑤 = √
𝑅𝑜

𝑅𝑡
      (3)  

𝑅𝑡 is the resistivity measured by the logging instrument 
at each depth. Therefore, by having 𝑅𝑜 , we can easily 
estimate water saturation by relation 3. Here, 𝑅𝑜  is 
considered as the minimum value of 𝑅𝑡 through the well. 
The logic behind choosing the minimum of 𝑅𝑡 as the value 
of 𝑅𝑜 could be stated through two facts: (i) Resistivity logs 
are mostly affected by reservoir fluids; therefore, they are 
measures of reservoir fluids. (ii) The resistivity of water is 
the lowest amongst other reservoir fluids. 

A. Fuzzy Clustering 

 Finding available structures (clusters) within datasets 
is the main goal of clustering algorithms. The problem of 
finding several cluster centers that are appropriately 
representative of relevant classes of X, where X is a finite 
set of data [23]. The word “relevant classes” in the above 
sentence shows the impreciseness in defining clusters. In 
other words, the sentence mentioned is a general definition, 
and should be specified by each clustering algorithm. 
Hartigan and Wong, (1979) have defined k-means 
clustering as: “The aim of the k-means algorithm is to 
divide M points in N dimensions into K clusters so that the 
within-cluster sum of squares is minimized” [24]. 

In this study, three fuzzy clustering algorithms are 
applied to datasets to compare differences between the 
outputs of these algorithms. Also to find the most suitable 
one for the purpose of studying water saturation properties 
among Fuzzy C-Means (FCM), Gustafson-Kessel (GK) 
and Gath-Geva (GG) algorithms. The application of two 
other cluster analysis methods, Affinity Propagation (AP) 
and Spectral clustering, is also checked. The results of 



 

neither of the latter algorithms are included since their 
outputs were not well-interpretable. 

 

TABLE I. DATASET AVAILABLE FROM TWO WELLS OF THE OIL FIELD. 

“NPV” STANDS FOR “NET PAY VALUE”. NPV=1 MEANS THAT THE 

INTERVAL OF TESTING IS NOT OIL PRODUCING, NPV=2 AND 3 MEAN 

THAT THE TESTED INTERVAL PRODUCES OIL LESS AND MORE THAN 

1500 BARREL PER DAY ( IN SI UNITE SYSTEM) RESPECTIVELY. 
AVAILABLE AND UNAVAILABLE INFORMATION ARE SHOWN BY 

SYMBOLS () AND (), RESPECTIVELY. FURTHER INVESTIGATION IS 

LIMITED TO AVAILABLE LOGS ONLY. 
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Fuzzy C-Means (FCM) clustering is an extension of 
hard C-means (or k-means) clustering. The main difference 
between FCM and hard C-means is in a fuzzy weight, 
powered by a weighting exponent, which is multiplied by 
Euclidian distance values in cost function. FCM is not an 
optimum clustering algorithm for oriented or multi-size 
clusters. The FCM algorithm is introduced in four main 
steps in the literature [23, 25]: 

(1) Define fixed number of clusters, C, fuzziness, m, 
and norm type (i.e. distance or similarity function). Also 
randomly create similarity matrix, U, for all cluster centers. 

(2) Compute the average value of similarities of all C 
clusters using the following equation: 

𝑑(𝑥𝑖 , 𝑤𝑗) =
∑ 𝑢𝑘𝑗

𝑚 ‖𝑥𝑖,𝑤𝑗‖
2𝑛

𝑘=1

∑ 𝑢𝑘𝑗
𝑚𝑛

𝑘=1
;  𝑗 ∈ [1, 𝑐]; 𝑖 ∈ [1, 𝑛] (4) 

(3) Compute an updated membership matrix by:  

𝑢𝑘𝑗 =
1

∑ [
𝑑(𝑥𝑖,𝑤𝑙)

𝑑(𝑥𝑖,𝑤𝑗)
]

1
𝑚−1

𝑐
𝑗=1

;  𝑙 ∈ [1, 𝑐]; 𝑖 ∈ [1, 𝑛]  (5) 

(4) Comparing Uk with Uk+1. If ‖𝑈𝑘 , 𝑈𝑘+1‖ ≤ 𝜀  , 

stop; otherwise set 𝑈𝑘 = 𝑈𝑘+1, and go back to stage (2). 

The core difference between GK and FCM is in the use 
of the Mahalanobis distance, instead of the Euclidian one 
in cost function (norm in relation 4), which results in the 
recognition of oriented clusters [26, 27]. Therefore, GK 
tends to recognize oriented (linear at extreme mode) 
clusters. As in FCM, the identified clusters of GK are of 
the same size in terms of number of data, i.e. the number 
of data in each cluster is about the same. 

The limitation of multi-size clusters is solved in the GG 
algorithm. The definition of cluster means and covariance 
matrix are derived from FCM and GK algorithms, 
respectively [28, 29]. The novelty of GG that results in 
solving the limitation of multi-size clusters is in defining 
distance based on decision surface. For example, a small 
blue cluster, a medium-sized green cluster and a large black 
cluster are detected by the GG algorithm in a single run 
(Figure 5c,d). The algorithm is much the same as FCM; 
and for detailed study, please refer to [29]. 

5. INPUT SELECTION FOR CLUSTERING 

 Clustering algorithms do not consider any class label 
for data and only search the optimum clusters within input 
datasets. Therefore, selected features/datasets are very 
important in a clustering project. A logical interrelation 
between petrophysical parameters, inspired from [11] is 
depicted in Figure 2. 

Five features are related directly to saturation property: 
capillary pressure, permeability, fluid relief, fluid-solid 
interaction and electrical response. Four of the features are 
mostly categorized as dynamic properties, and usually we 
do not have any accurate estimation of these parameters, 
especially in exploratory stages. Only resistivity has a 
reliable and continuous recording throughout the reservoir. 
In the datasets of the current work, we have three resistivity 
log recordings: Deep Laterolog Resistivity (LLD), Shallow 
Laterolog Resistivity (LLS) and Microspherically Focused 
Log (MSFL). By trial and error, we found that removing 
MSFL provides better clustering results; therefore, two 
resistivity logs (LLS and LLD) are selected as input 
features of clustering algorithms. Cross plots of LLD to 
LLS show upper and lower bounds of data (Figure 3a), and 
the area of concentrated data (Figure 3b). 

 



 

 

Figure 2. Interrelations between petrophysical features. Water 

saturation and directly related features are highlighted by color and bold 

fonts (modified after [11]). 

6. LLD TO LLS, A MEASURE OF 

PERMEABILITY 

In Figure 3b, we have interpreted two arrows: (i) the 
direction of increasing water saturation, which is 
downward, and is taken for granted by researchers; (ii) the 
direction of increasing permeability, which is the main 
questionable issue of this figure. The interpretation (ii) is 
inspired from a previous publication, for which the ratio of 
LLD to LLS is used to relate invasion to permeability [30]. 

It is not far from our intuition of the reservoir 
conditions that the more permeability around the well, the 
more uniform the fluid distribution outward from the well-
axis. Here, LLS is representative of near-well conditions 
(including infiltration), compared to LLD which represents 
rather a larger zone around the wellbore. Therefore, in an 
extreme situation that recorded value of LLD is equal to 
LLS (i.e. ratio of LLD to LLS is one), the high permeability 
of the reservoir resulted in a mixture of reservoir fluids and 
drilling mud effectively around the well. In the other 
extreme case (i.e. LLD>>LLS), the mud cake and 
infiltration zone will be easily constructed due to the 
insufficiency of mixing drilling mud particles with 
reservoir fluids.  

Besides all analytical descriptions, we have checked 
the correctness of this hypothesis (i.e. correlation between 
permeability and the ratio of LLD to LLS) in wells number 
one to five. This is fundamental to find the applicability of 
our analytics in real conditions and datasets. So, we plotted 
a logarithmic scale of permeability vs. the ratio of LLD to 
LLS in the five above-mentioned wells to investigate 
correlations (Figure 4). It is noteworthy that permeability 
is a lognormal property in most reservoir conditions. 

In the visual assessment of Figure 4, the correlation 
between permeability and LLD:LLS, on a logarithmic 
scale could be easily found in wells two, three and five. 
There is no correlation in wells number one and four; 
however it does not mean that LLD:LLS is not a good 
measure of permeability in these two wells. This is because 
core permeability only shows permeability of intact rock 
on a small scale, without considering fractures and joints, 
whereas well-logs are volumetric responses and could be 
better representatives of real heterogeneous reservoir 
conditions. 

 

(a) 

 

(b) 

Figure 3. Cross plots of input features. Trends show interpretation of 

petrophysical interrelations. (a) Whole the data, and (b) focused on 

dense area. Arrows show interpretation of permeability, pore throat 

size and saturation on cross plot. 

It is worth mentioning that from a structural viewpoint, 
well number four is drilled on a deviation of the axis of the 
anticline from its normal trend, i.e. the trend of the anticline 
changes from normal, which is NS, to another trend, which 
is NW-SE, at the emplacement of well number four. 
Therefore, lots of fractures and joint sets are probably to be 
found within well number four, thus increasing the 
permeability of the reservoir, while the permeability of the 
intact rock (cores) is unchanged. Intact rock properties are 
not controlled by structural geology. These properties are 
controlled by sedimentary processes and lithological 
properties. All in all, there is a correlation, however not that 
strong between LLD:LLS and permeability on the 
reservoir scale. 



 

 

Figure 4. Checking correlation of permeability (mD) and LLD (Ω.m) to 

LLS (Ω.m) in five wells, logarithmic scale. 

7. RESULTS: OUTPUT OF CLUSTERING 

METHODS 

Clustering algorithms, FCM, GK and GG were run on 
the datasets (Figure 3). The number of clusters is set to be 
3, 5, 10 and 20 to find the optimum number of clusters. The 
optimum number of clusters is found to be 5 for all 
mentioned algorithms. The outputs of all the fuzzy 
clustering methods are given in Figure 5.  

Clusters of FCM are relatively of the same size, with 
no elongation. Clustering is done along the direction of 
“higher water saturation” (Figure 3b). Therefore, the blue 
cluster represents the lowest water saturation, (Figure 5a) 
while the red cluster shows the highest water content data. 
But as this algorithm is not able to detect lineation, it is 
unable to differentiate along the arrow of “Higher Perm 
and Larger Pore Throats” on Figure 3b. The green cluster 
shows two different trends: One trend belongs to high 
permeability values, the other represents the less permeable 
or shale contaminated part. 

This phenomenon is detected by GK clustering as this 
algorithm is able to distinguish elongated clusters. The blue 
cluster represents low water saturation and high 
permeability (Figure 5b), which is ideal to be known as net 
pay zone, i.e. a hydrocarbon production zone. The red data 
shows below oil water contact but still permeable, i.e. a 
water-producing zone. The area of green data is the least 
permeable part of the Sarvak Formation, either oil-bearing 
or water-bearing. The black and magenta parts have less 
permeability than red and blue clusters; and magenta 
contains less water, compared to black data. GK provided 
the best clustering due to petrophysical interpretations. 

While GK clusters are relatively similar in size (number 
of data in each cluster), the GG clusters differ considerably 
in size (Figure 5c,d) with a net pay zone represented by the 
magenta colour (Figure 5c). Red, black, green and blue 
clusters have lower reservoir quality, respectively. 
Contrary to FCM and GK, clusters of GG do not show a 
specific pattern; therefore they cannot be as easily 
interpreted as FCM and GK clusters. 

8. DISCUSSION 

In the previous section, the outputs of three clustering 
methods on a two-dimensional dataset were tested. FCM 
was the most compatible tool for saturation prediction, 
while GK is the best for permeability study and GG could 
be used as a rough measure of productivity. The reason 
why the functionality of these clustering methods differ 
from each other could be seen at the bottom of Table 2. 

FCM provides simple clusters of the same size, while 
GG provides elongated unequal clusters, which is difficult 
to interpret due to the complexity of the structure of 
clusters. On the other hand, GK provides elongated clusters 
(same size), but the structure of the clusters is not complex 
for interpretation. It is not difficult to imagine that when we 
have a change in the specifications of clusters, their 
physical meaning (characterization target) would be 
changed too. So, three issues have to be kept in mind for 
successful clustering: (i) our goal of study or 
characterization target; (ii) the relation or correlation of 
input dataset with target, which was discussed above; and 
(iii) the specifications of produced clusters. 

 



 

 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

Figure 5. Outputs of fuzzy clustering algorithms. (a) Fuzzy C-Means 
clustering with 5 clusters. (b) Gustafson-Kessel with 5 clusters. (c) 

Gath-Geva with 5 clusters. (d) Gath-Geva with 5 clusters. Focused 

to show blue cluster. 

Among the three issues mentioned, first we define the 
purpose of our study; i.e. “What is to be measured or 
predicted?” According to this goal, the dataset is chosen; 
e.g. here we used resistivity logs for the sake of their 
correlation with saturation and reservoir fluids. It is 
noteworthy that sometimes the dataset is not optional, and 
we have to use some fixed parameters. But we are always 
able to choose among various clustering algorithms. To 
choose the most appropriate one, we can either go in deep 
through the mathematical basis of the algorithm, 
analytically; or we can simply check the specifications of 
their clusters as is provided in Table 2.  

9. CONCLUSIONS 

This paper shows the strength of clustering algorithms 
in interpreting resistivity well-logs to extract various 
inferences regarding water saturation, and other reservoir 
parameters just by means of two well-known resistivity 
well-logs. The number of publications on saturation 
prediction is much less than other petrophysical properties 
such as porosity and permeability, mostly due to a lack of 
real saturation data for the validation procedure. However, 
its importance is not less than other reservoir properties. 
Furthermore, we proposed clustering algorithms for water 
saturation prediction, because clustering methods are 
unsupervised methods that do not require real labeled data 
for training the machine. 

Due to petrophysical interpretations, the FCM method 
provided separation of the space only by considering 
saturation property. However, GK clustering divided the 
datasets according to two properties: saturation and 
permeability (or pore throat size). GG could divide the 
space according to overall reservoir quality. The output of 
the Spectral algorithm was much the same as GG but more 
noise-contaminated. The affinity propagation clustering 
method did not provide well-interpretable outputs though 



 

we are not disappointed with this algorithm, and believe 
that further investigations have to be carried out on the 
application of clustering algorithms, on petrophysical 
datasets. 

It is noteworthy that by means of unsupervised 
methods, we do not train the machine, considering cores, 
i.e. the minute scale. Therefore, the results would be free 
from the falsification resulting from the use of idealistic 
small scale measurements of cores, when interpreting 
highly heterogeneous reservoir conditions based on core 
analysis. The validation procedure is done qualitatively by 
checking the behaviour of clusters against the behaviour of 
core permeability. The ratio of LLD:LLS has established a 
link between the reservoir permeability and core 
permeability. Quantitative comparison is not carried out 
here because: (i) there are two different languages in 
expressing permeability values: core permeability, in 
milliDarcy, is a continuous value, while inferred well-log 
permeability is in discrete labels (i.e. clusters); (ii) There is 
no guarantee for compatibility of core-scale permeability 
with reservoir-scale permeability, inferred from well-logs. 
Hence, we lack a reliable base point for quantitative 
evaluation of water saturation and permeability in 
reservoir-scales; however, qualitative reasoning is possible 
and necessary as is done here. 

TABLE II. SUMMARY OF APPLICATION OF CLUSTERING METHODS IN 

RESERVOIR CHARACTERIZATION. SYMBOLS () AND () MEAN 

COMPATIBILITY AND INCOMPATIBILITY, RESPECTIVELY; E.G. FCM IS 

COMPATIBLE FOR PREDICTING WATER SATURATION BUT IT IS NOT 

COMPATIBLE FOR PERMEABILITY INFERENCE. "SIMPLICITY OF 

CLUSTERS" SHOWS WHETHER THE CLUSTERING ALGORITHM COULD BE 

INTERPRETED EASILY OR NOT; E.G. GG COULD NOT BE INTERPRETED 

SIMPLY; WHILE GK IS EASILY INTERPRETABLE. THE DOUBLE SYMBOL 

() MEANS MORE COMPATIBILITY, COMPARED TO THE SINGLE 

SYMBOL (). 

  
Fuzzy C-

Means 

Gustafson- 

Kessel 

Gath-

Geva 

ch
ar

ac
te

ri
za

ti
o

n
 t

ar
g

et
 water saturation    

permeability    

productivity    

p
ro

p
er

ti
es

 o
f 

cl
u

st
er

s 

equity of cluster 
size 

   

elongation    

interpretability    

 

ACKNOWLEDGMENT 

This work has been supported by the Center for 
International Scientific Studies & Collaboration (CISSC) 
and French Embassy in Iran through PHC Gundishapur 
Program. It is our pleasure to acknowledge the Exploration 
Directorate of National Iranian Oil Company (NIOC) for 
providing data, and permitting the publication of scientific 
achievements. 

REFERENCES 

[1] Mostafazadeh, M.; Mousavi, S. A.; Ghadami, N.; Aghdasinia, H.; 
2010; “The Productivity Estimation of Designed Horizontal Oil 
and Gas Wells Before a Drilling Operation, Using Seismic and 

Petrophysical Parameters and Modeling”, Petroleum Science and 
Technology, 28, 1863-1877. 

[2] Worthington, P.F.; Cosentino, L.; 2005; “The Role of Cut-offs in 
Integrated Reservoir Studies”, SPE Reservoir Evaluation & 
Engineering, 8, 276-290. 

[3] Jensen, J.L.; Menke, J.Y.; 2006; “Some Statistical Issues in 
Selecting Porosity Cutoffs for Estimating Net Pay”, PetroPhysics, 
47, 315–320. 

[4] Worthington, P.F.; 2010; “Net Pay-What Is It? What Does It Do? 
How Do We Quantify It? How Do We Use It?”, SPE Reservoir 
Evaluation & Engineering, 13, 812-822. 

[5] Mahbaz, S.; Sardar, H.; Namjouyan, M.; Mirzaahmadian, Y.; 2011; 
“Optimization of reservoir cut-off parameters: a case study in SW 
Iran”, Petroleum Geoscience, 17, 355-363. 

[6] Amalokwu, K.; Best, A.I.; Sothcott, J.; Chapman, M.; Minshull, T.; 
Li, X.Y.; 2014; “Water saturation effects on elastic wave 
attenuation in porous rocks with aligned fractures”, Geophysical 
Journal International, 197, 943-947. 

[7] Tokhmechi, B.; Memarian, H.; Rasouli, V.; Noubari, H. A.; 
Moshiri, B.; 2009 ; “Fracture detection from water saturation log 
data using a Fourier–wavelet approach”, Journal of Petroleum 
Science and Engineering, 69, 129-138. 

[8] Lopes, S.; Lebedev, M.; Müller, T.M.; Clennell, M.B.; Gurevich, 
B.; 2014; “Forced imbibition into a limestone: measuring P-wave 
velocity and water saturation dependence on injection rate”, 
Geophysical Prospecting, 62(5), 1126-1142. 

[9] Archie, G.E; 1942; “The electrical resistivity log as an aid in 
determining some reservoir characteristics”, Petroleum 
Transactions of AIME, 146, 54-62. 

[10] Archie, G.E.; 1947; “Electrical resistivity an aid in core-analysis 
interpretation”, AAPG Bulletin, 31, 350-366. 

[11] Archie, G.E.; 1950; “Introduction to petrophysics of reservoir 
rocks”, AAPG Bulletin, 34, 943-961. 

[12] Archie, G.E.; 1952; “Classification of Carbonate Reservoir Rocks 
and Petrophysical Considerations”, AAPG Bulletin, 36, 278-298. 

[13] Carman, P.; 1937; “Fluid flow through granular beds”, Chemical 
Engineering Research and Design, 75, 32-48. 

[14] Timur, A.; 1968; “An Investigation Of Permeability, Porosity, and 
Residual Water Saturation Relationships For Sandstone 
Reservoirs”, The Log Analyst, IX. 

[15] Tiab, D.; Donaldson, E.C.; 2004; “Petrophysics: theory and 
practice of measuring reservoir rock and fluid transport 
properties”, Gulf Professional Publishing. 

[16] Worthington, P.F.; 2004; “Improved Quantification of Fit-for-
Purpose Saturation Exponents”, SPE Reservoir Evaluation & 
Engineering, 7. 

[17] Kadkhodaie-Ilkhchi, A.; Rezaee, M. R.; Rahimpour-Bonab, H.; 
2009; “A committee neural network for prediction of normalized 
oil content from well log data: An example from South Pars Gas 
Field, Persian Gulf”, Journal of Petroleum Science and 
Engineering, 65, 23-32. 

[18] Mollajan, A.; Mehrgini, B.; Memarian, H.; 2013; “Zonal 
classification by pattern recognition methods: An example from 
Asmari Formation (Mansuri oil field, south of Iran)”, Energy, 
Exploration & Exploitation, 31, 367-380. 

[19] Mollajan, A.; Memarian, H.; 2013; “Estimation of water saturation 
from petrophysical logs using radial basis function neural 
network”, Journal of Tethys, 1, 156-163. 

[20] Mollajan, A.; Memarian, H.; Jalali, M.; 2013; “Prediction of 
Reservoir Water Saturation Using Support Vector Regression in an 
Iranian Carbonate Reservoir”, 47th US Rock Mechanics/ 
Geomechanics Symposium, American Rock Mechanics 
Association, 137-138. 

[21] Barros, C.; Andrade, A.; 2013; “Determination of water saturation 
by angular competitive neural network”, Journal of Petroleum 
Science and Engineering, 102, 47-56. 

[22] Ghabeishavi, A.; Vaziri-Moghaddam, H.; Taheri, A.; Taati, F.; 
2010; “Microfacies and depositional environment of the 



 

Cenomanian of the Bangestan anticline, SW Iran”, Journal of Asian 
Earth Sciences, 37, 275-285. 

[23] Klir, G.J.; Yuan, B.; 1995; “Fuzzy Sets and Fuzzy Logic, Theory 
and Applications”, Prentice Hall New Jersey. 

[24] Hartigan, J.A.; Wong, M.A.; 1979; “Algorithm AS 136: A k-means 
clustering algorithm”, Applied statistics, 100-108. 

[25] Bezdek, J.C.; Ehrlich, R.; Full, W.; 1984; “FCM: The fuzzy c-
means clustering algorithm”, Computers & Geosciences, 10, 191-
203. 

[26] Babuka, R.; Van Der Veen, P.; Kaymak, U.; 2002; “Improved 
covariance estimation for Gustafson-Kessel clustering”, Fuzzy 
Systems 2002: FUZZ-IEEE'02. Proceedings of the 2002 IEEE 
International Conference, 1081-1085. 

[27] Gustafson, D.E.; Kessel, W.C.; 1978; “Fuzzy clustering with a 
fuzzy covariance matrix”, Decision and Control including the 17th 
Symposium on Adaptive Processes, 1978 IEEE Conference, 761-
766. 

[28] Gath, I.; Geva, A.B.; 1989; “Unsupervised optimal fuzzy 
clustering”, Pattern Analysis and Machine Intelligence, IEEE 
Transactions on, 11, 773-780. 

[29] Abonyi, J.; Babuska, R.; Szeifert, F.; 2002; “Modified Gath-Geva 
fuzzy clustering for identification of Takagi-Sugeno fuzzy models”, 
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE 
Transactions on, 32, 612-621. 

[30] Ibrahim Sami, N.; Adel, M.; 2010; “Permeability Prediction from 
Wireline Well Logs Using Fuzzy Logic and Discriminant Analysis”, 
SPE Asia Pacific Oil and Gas Conference and Exhibition. Brisbane, 
Queensland, Australia: Society of Petroleum Engineers. 

 


