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S U M M A R Y
In many cases, in the seismic wave propagation modelling context, scales much smaller than the
minimum wavelength are present in the earth model in which we wish to compute seismograms.
For many numerical methods these small scales are a challenge leading to high numerical cost.
The purpose of this paper is to understand and to build the effective medium and equations
allowing to average the small scales of the original medium without losing the accuracy of
the wavefield computation. In this paper, only the simple layered medium case is studied,
leaving the general 3-D medium case for future work. To obtain such an effective medium
and equations, we use high order two scale homogenization applied to the wave equation for
layered media with rapid variation of elastic properties and density compared to the smallest
wavelength of the wavefield. We show that the order 0 homogenization gives the result that
was obtained by Backus in 1962. Order 0 homogenized models are transversely isotropic even
though the original model is isotropic. It appears that order 0 is not enough to obtain surface
waves with correct group and phase velocities and higher order homogenization terms up to
two are often required. In many cases, the order one and two simply require to correct the
boundary conditions of the wave equation to obtain an accurate solution, even for surface
waves. We show how to extend the theory from the periodic case to the non-periodic case.
Examples in periodic and non-periodic media are shown. The accuracy of the results obtained
by homogenization is checked against the normal mode solution computed in the original
medium and shows good agreement.

Key words: homogenization, global seismology, normal modes, numerical modeling, surface
waves.

1 I N T RO D U C T I O N A N D M O T I VAT I O N S

One important problem in seismology is to compute the response of
the Earth recorded anywhere on the Earth for a given earth model and
some earthquake parameters. This is the forward problem. Another
important problem is, knowing the forward problem, being able to
find models that explain the data. This is the inverse problem. For
both problems, being able to model the wavefield is required. The
numerical cost of most modelling techniques is directly related to
the maximum frequency of the wavefield and to the smallest details
of the elastic model. Therefore, the modelling is possible because
it is assumed that very small scales have no effect, or a minor one,
on long periods of seismograms. For example, if a millimetre scale
heterogeneity had a dramatic influence on a 100 s period and longer
seismogram, there would be no hope for seismology because the
computational cost would be out of reach. In other words, one of
the basic assumptions in seismology is that scales can be separated.
Nevertheless, even if this assumption of scale separation is widely
used, the upscaling rules allowing us to go from small scales to
effective large scales have been little studied for the wave equations

in the seismological community. Effects of randomly distributed
scatterers have been widely studied (e.g. Aki & Richards 1980), but
does not provide upscaling rules or effective media and equations
in the case of deterministic rapidly varying structure with elastic
property contrasts of arbitrary amplitude.

Before going further, let us give two typical examples for which
upscaling rules are implicitly used. In the tomography seismic imag-
ing field, different research groups obtain different seismic velocity
models of the same region (e.g. the Earth) at different resolution
lengths. In order to compare these different models, only the com-
mon longest scales of different models are used. To remove the
smaller scales of some of the models, an averaging with the ap-
propriate spacial filter is performed. In this case, the upscaling rule
used to find the effective model is just the average of velocities. An
other example for which the scale separation is implicitly used can
be found in the forward modelling numerical simulations. Thanks
to the recent advance in this domain with numerical methods like
the Spectral Element Method (SEM; see e.g. Komatitsch & Vilotte
1998, for one of the first applications of the SEM to seismology),
it is now possible to accurately model waveforms in complex 3-D
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media. The numerical cost of such method is controlled by the size
of the mesh and the time step of time marching scheme. For the usual
explicit time marching scheme, the time step is also controlled by
the mesh (the time step is proportional to the smallest element size).
In homogeneous media, the element size is controlled by the small-
est wavelength of the wavefield, and finally the total numerical cost
scales as the corner frequency of the source to the power four. If one
is only interested in the long- period signal, it is therefore possible to
perform relatively inexpensive numerical simulations. If the elastic
model is heterogeneous, the minimum wavelength is not the only
parameter which controls the element size. Indeed, in order to be ac-
curate, all physical discontinuities of the model have to be matched
by mesh element boundaries. Such a mesh can be very difficult to
design and the numerical cost can be considerably higher than in the
homogeneous case due to the very small elements resulting form the
meshing of the interfaces. When the distance between interfaces or
any heterogeneities is much smaller that the smallest wavelength,
leading to unacceptable numerical cost, classical solutions are either
to ignore the interfaces or to average the elastic properties across
the interfaces. For the first solution, the upscaling rules is unknown
and for the second, the upscaling rules is an average of the elastic
properties. Following these examples, a natural question is, what are
the upscaling rules or effective media and equations consistent with
the wave equation?

An early work on effective media, or upscaling rules, for the
wave equation has shown that, in the layered model case, averaging
velocities is not consistent with the wave equation and that averag-
ing must be done on non-linear functions of the elastic parameters
(Backus 1962). This study shows that the upscaling rules are not
trivial. Backus (1962)’s results are nevertheless not sufficient to ob-
tain effective media which provides accurate results, especially for
surface waves. While this multiscale problem has not been exten-
sively studied in seismology, it has been widely studied in material
mechanics for the static case. Bounds of effective elastic properties
for composite elastic materials were derived in the 1960s (Hashin &
Shtrikman 1963; Hill 1965). But it is in the periodic case that a large
number of results were obtained with the homogenization theory:
from the pioneering work of Auriault & Sanchez-Palencia (1977), a
large number of studies have been devoted either to the mathemat-
ical foundations of the homogenization theory in the static context
(e.g. Bensoussan et al. 1978; Murat & Tartar 1985; Allaire 1992), or
to applications of the effective static behaviour of composite materi-
als (see e.g. Dumontet (1986); Francfort & Murat 1986; Abdelmoula
& Marigo 2000; Haboussi, Dumontet & Billoët 2001a,b). In con-
trast, only a few studies have been devoted to the theory and its
applications in the general dynamical context or to the non-periodic
cases. However, one can refer to Sanchez-Palencia (1980), Auriault
& Bonnet (1985), Moskow & Vogelius (1997) or Allaire & Conca
(1998) for the dynamical context or to Briane (1994) for the non-
periodic case. Here, we apply these homogenization techniques to
extend Backus’s (1962) results.

For wave propagation problems, high-order homogenization has
been used with success for small-scale period media (e.g. Fish &
Chen 2004). It has been shown that effects like dispersion and ap-
parent attenuation effects due to small-scale heterogeneities can be
recovered by high-order homogenization. Nevertheless, these stud-
ies do not consider on non-periodic media and on surface waves for
which the boundary conditions must be studied with care.

The purpose of this paper is to study the upscaling problem in
details for the layered medium in a first step, leaving the general
3-D case for future work. Because our main domain of application
is the global earth, we work with spherically symmetric models.

Nevertheless, all the results presented here can be applied with no
modification to the axisymmetric or Cartesian cases. For spheri-
cally symmetric models, the normal mode methods classically used
in seismology are very efficient and can handle with no difficulty
rapidly varying media. Therefore, this work will not be directly of in-
terest to improve such methods. Such a context nevertheless allows
to test the accuracy of the effective media and effective equations
obtained here by comparing the results obtained by homogenization
with results obtained with the normal modes in the original model.
The results obtained here will be interesting, however, for inverse
problems and for forward modelling problems in model which are
varying rapidly in only one direction (such as actual global scale
crustal models) and for numerical methods like SEM.

We will first develop the theory assuming a periodic layered
medium, which is the classical domain of validity of ‘two-scale
homogenization’ asymptotic theory. To solve our two-scale prob-
lem in a 1-D medium we rewrite the wave equations as a first-order
system of equations similarly to the classical approach used for
normal mode methods in such media. Doing so, on one hand, con-
siderably simplifies the two-scale homogenization calculation but,
on the other hand, makes the results more difficult to interpret for
readers not familiar with normal mode techniques. Moreover, re-
sults are obtained here in the spectral domain and, in order to be
applied to other numerical techniques, such as SEM, they need to
be converted first to the physical domain which is not straightfor-
ward. This will be the purpose of future works. The accuracy of
the results is tested against the normal mode solution in the original
model as the reference solution. The results obtained in the periodic
case are then extended to the non-periodic case and again tested
against the normal mode solution in the original model.

2 P R E L I M I N A RY: S O LV I N G T H E WAV E
E Q UAT I O N I N 1 - D M E D I A

We consider a finite domain Ω of boundary ∂Ω. When gravity and
anelasticity are not taken into account, the wave equation can be
written

ρü − ∇ ·σ = f (1)

σ = c : ε(u), (2)

where ρ is the density, u the displacement field, ü the acceleration
field, σ the stress tensor, f the source force, c the fourth order elastic
tensor, : the double indices contraction and ε(u) = 1

2 (∇u + T ∇u)
the strain tensor with T the transpose operator. We impose a free
surface boundary condition on ∂Ω, σ · n = 0, where n is the normal
vector to ∂Ω. We assume that f both depends upon time and space,
but we assume that the density and elastic properties are not time
dependent.

In this paper, we limit our work to layered media, in other words
to 1-D media. All the examples and validation tests presented in this
paper are performed in spherically symmetric global earth models
of radius r Ω. We therefore use a spherical coordinates system r = (r ,
θ , φ) where r is the radius, θ the co-latitude and φ the longitude. This
is absolutely not a limitation and all results presented here can be
applied without modification to Cartesian or cylindrical coordinate
systems for other types of layered models. For spherically symmetric
layered media, we have c(r) = c(r ) and ρ(r) = ρ(r ).

For such 1-D models, the normal mode method is a classical and
efficient way to solve the wave equations. It is performed in two
steps: first, a basis of eigenfrequencies ωk and eigenfunctions uk of

C© 2007 The Authors, GJI, 170, 823–838

Journal compilation C© 2007 RAS

 at IN
IST

-C
N

R
S on N

ovem
ber 2, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Homogenization of the wave equation for non-periodic layered media 825

the solution space is found by solving the wave eqs. (1) and (2) in
the frequency domain with f = 0:

∇ ·σk = −ω2
kρuk (3)

σk = c : ε(uk). (4)

Second, once the eigenfunctions {uk, k ∈ N} basis is found, the solu-
tion for a given source f can easily be computed using an expansion
on this basis.

Assuming a 1-D model with a vertical symmetry axis, the solution
to (3) and (4) with free surface conditions is often sought in the
spectral domain for the horizontal directions. (e.g. Takeuchi & Saito
1972). For spherically symmetric models, we use

u(r, ω) = [
U m

l (r, ω)er + V m
l (r, ω)∇1

− W m
l (r, ω)(er × ∇1)

]
Y m

l (θ, φ), (5)

where (er , eθ , eφ) is the spherical coordinate unit vector set, ∇1 is
the gradient operator on the unit sphere, Y m

l the spherical harmonic
of angular order l and azimuthal order m (e.g. Dahlen & Tromp

1998).
√

l(l+1)

r can be seen as the horizontal wave number. The radial
traction T =σ . er can also be written under the form

T(r, ω) = [
T m

Ul
(r, ω)er + T m

Vl
(r, ω)∇1

− T m
Wl

(r, ω)(er × ∇1)
]
Y m

l (θ, φ). (6)

Using (5) and (6) into (3) and (4), we obtain for each l, two inde-
pendent systems of equations, one for (Ul , TUl , Vl , TVl ) (spheroidal
case) and one for (Wl , TWl ) (toroidal case), independent of m, that
can be rewritten as a first-order system of equations:

∂qY l

∂r
(r, ω) = q Al (r, ω) qY l (r, ω), (7)

where q can take two values, s for the spheroidal problem, t for the
toroidal problem,

sY l = T (rUl , rTUl , rγl Vl , rγl TVl ), (8)

for the spheroidal case and

tY l = T (r Wl , rTWl ), (9)

for the toroidal case, with γl = √
l(l + 1). Expressions for q Al

matrices can be found in Takeuchi & Saito (1972), Aki & Richards
(1980) or in Appendix A. Solutions must be regular at r = 0 and
the free surface boundary conditions impose that radial traction
components of sY l and tY l must vanish for r = rΩ:

[sY l (rΩ, ω)]2 = [sY l (rΩ, ω)]4 = [tY l (rΩ, ω)]2 = 0, (10)

where [.]i is the i th component of a vector. In the following, we forget
indices t and s if expressions are the same for spheroidal and toroidal
problems. The l index is also omitted in most of the expressions.
Before applying boundary conditions, (7) has four independent so-
lutions for the spheroidal case and two for the toroidal case. Only
two solutions are regular at the centre of the Earth for the spheroidal
case and one for the toroidal case. The free surface boundary con-
dition can only be met for a discrete set of eigenfrequencies. For
the toroidal case, an eigenfrequency is found when the traction at
the surface vanishes and, for the spheroidal case, when the determi-
nant of the traction component of the two remaining solutions at the
surface,

m5 = r 2γl

(
T (1)

U T (2)
V − T (1)

V T (2)
U

)
, (11)

vanishes. A classical procedure to solve (7) with the boundary con-
ditions (10) is, for a fixed frequency and a given l, to start from an

analytical solution close to the Earth’s centre, then to integrate (7)
with a Runge–Kutta scheme up to the surface. The next step is to find
eigenfrequencies for which the traction vanishes at the free surface
with a shooting method. For the spheroidal case, the procedure can
be complicated by numerical instabilities. A solution to this prob-
lem is to solve equations for the minors of the two solutions regular
at r = 0 (see Woodhouse 1988) instead of the original system. In
that case, the equations can still be written under the form (7), but
the system is stable. One especially important minor is (11) because
it vanishes for r = r Ω when an eigenfrequency is found. For each
problem q and each angular degree l and in a finite frequency band,
a finite number of eigenfrequencies are found noted by an index n.
The index k of the eigenfrequency ωk represents (q, n, l). Once an
ωk is found, the corresponding eigenfunction uk can be computed.
Actually, for each eigenfrequency there are 2l + 1 eigenfunctions
because they also depend on the azimuthal order m. In the following,
we forget this complication and note ωk and uk with the same index.

Once the eigenfunction basis is known, expanding the solution
for a given source and computing it back in the time domain is
straightforward. For example, if f (r, t) can be written as f (r )H (t),
where H is the Heaviside function, we have

u(r, t) =
∑

k

uk

(∫
Ω

u

k .f dΩ

)
1 − cos(ωk t)

ω2
k

H (t), (12)

where
 is the complex conjugate. Moreover, if f is a double couple
point source located in rs ,∫
Ω

u

k .f dΩ = ε


k(rs) : M, (13)

where M is the earthquake moment tensor, εk = ε(uk).
This normal mode approach of the wave equations is widely used

in the seismological community, thanks to its efficiency and accu-
racy. Because of this efficiency, normal mode methods can handle
models with very fast radial variations of the elastic properties com-
pared to the wavelength. Therefore, for layered media, even with fast
variations, homogenization is not required to solve the wave equa-
tion. Nevertheless, homogenization will be very important for other
methods like SEM and for inverse problems. Working with the nor-
mal mode technique allows us to perform quickly some experiments
to test the validity of homogenization.

3 T W O - S C A L E H O M O G E N I Z AT I O N I N
L AY E R E D P E R I O D I C M E D I A

3.1 Theoretical development

We assume in this section that the variation of the elastic and den-
sity properties along the r axis are λm-periodic, that is c(r + λm) =
c(r ) and ρ(r + λm) = ρ(r ) for all r. We also assume that there exists
a smallest wavelength λc for the wavefield u. This is a reasonable as-
sumption away from the near field and for a typical source term f(r,
ω) with a limited frequency band with a corner frequency ωc. We
finally assume that the periodicity of the oscillations of the model
is much smaller than the wavelength of the wavefield: ε = λm

λc
� 1.

With this last assumption, the wavefield is sensitive to the fast oscil-
lations of the model only in an effective way. The aim of this paper is
to define the effective medium and equations and to explore its po-
tential accuracy, with a special focus on surface waves. The operator
A depends on ε since it depends on λm . We note this dependence
with an upper script: Aε as well as Yε solution of:

∂Yε

∂r
(r, ω) = Aε(r, ω)Yε(r, ω). (14)
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−λ c
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0
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λ m

Figure 1. Sketch showing on the left the rapid periodic variation with depth
of an elastic parameter or the density of the model and on the right, a zoom
on one periodic cell.

In what follows, we postpone the discussion on the frequency and the
eigenfrequencies search to the end of this section. Assuming a fixed
frequency, the dependence of operators and vectors on ω is omitted.
To avoid difficulties with the free surface boundary condition which
may be not compatible with this fixed frequency, we leave open the
centre of the Earth boundary condition (regularity) until the end of
the section. Doing so, all frequencies are solutions.

In the classical two-scale homogenization (e.g. Bensoussan et al.
1978; Allaire 1992), two space variables are used:

(i) the macroscopic variable which is the original space variable
and here is r;

(ii) the microscopic variable, y = r−r

ε
(see Fig. 1. Because ε �

1, y is a kind of zoom to the fine scales. The goal of the −r Ω in the
y definition is to have y = 0 on the Earth free surface.

We define:

S

(
r,

r − rΩ
ε

)
= S(r, y) = Aε(r ). (15)

In spherical coordinates, Aε is not exactly λm-periodic because
of coefficients of the form r−n (see Appendix A). Nevertheless,
when ε is small and we are far away enough from the Earth’s centre,
Aε(r ) is quasi periodic. In the following, the r dependency in S is
omitted.

We assume that Yε for a given value of ε and a given ω depends
on both the macroscopic scale and microscopic scale and that it can
be expanded in the form:

Yε(r ) =
+∞∑

i=−1

εiY i

(
r,

r − rΩ
ε

)
. (16)

(We shall see later why the sum starts at i = −1). In the limit ε ⇀ 0,
one can think about r as a constant parameter with respect to y: in
that limit, we assume the scales can be separated and we now treat
r and y as independent variables. With this assumption, derivatives
with respect to r become:

∂

∂r
→ ∂

∂r
+ 1

ε

∂

∂y
. (17)

Because there is a radial derivative in the relation between stress and
displacement, if the power expansion in ε of the displacement starts
at 0, it makes sense to start the power expansion for the stress at
−1. Because the vector Y contains both displacement and traction
components, its power expansion (16) starts at −1. If we explicit
this expansion in the toroidal case, we have

tYε = r

(
W ε

T ε
W

)
= r

ε

(
0

T −1
W

)
+ r

(
W 0

T 0
W

)
+ εr

(
W 1

T 1
W

)
+ . . .

(18)

with similar expressions in the spheroidal case.
Introducing (17) and (16) in (14) and identifying each coefficient

of the power expansion in ε to zero, we obtain the following sequence
of equations:

∂Y
∂r

i

+ ∂Y
∂y

i+1

= SY i , (19)

with the boundary conditions[
sY i (rΩ, 0)

]
2

= [
sY i (rΩ, 0)

]
4

= [
tY i (rΩ, 0)

]
2

= 0. (20)

We now need to solve this sequence of equations starting at i =
−2. For that purpose, we first introduce the cell average 〈g〉 for any
function g(r , y):

〈g〉(r ) = 1

λc

∫ λc

0
g(r, y) dy, (21)

with λc = λm
ε

. We define the variation ḡ of any function g with
respect to its average, ḡ(r, y) = g(r, y) − 〈g〉(r ). In the rest of the
paper, we name ḡ the correction to the average 〈g〉 of the function
g. We will need the two following properties for any function g(r ,
y), λc-periodic in y:〈
∂g

∂y

〉
= 0, and (22)

∂g

∂y
= 0 ⇔ g(r, y) = g(r ) = 〈g〉. (23)

The first one can easily be demonstrated using the Green formula
and the periodicity over y and the second is straightforward.

3.1.1 Order ε−2

For i = −2, (19) gives ∂Y−1/∂y = 0. Using (23), we therefore have
Y−1 = 〈Y−1〉.

3.1.2 Order ε−1

For i = −1(19), gives:

∂Y
∂r

−1

+ ∂Y
∂y

0

= SY−1. (24)

Taking the cell average of the last equation, using Y−1 = 〈Y−1〉
and (22), we have

∂Y
∂r

−1

= 〈S〉Y−1. (25)

Knowing the particular form of Y−1(displacement components are
0), using the S expressions and the boundary conditions, one can
check that the only solution to (25) is Y−1 = 0. Therefore, (24) also
gives

∂Y
∂y

0

= 0, (26)
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which, using (23) gives Y0 = 〈Y0〉. This an important result: in the
layered case, the displacement and the radial traction at order 0 do
not depend on the microscopic variable y.

3.1.3 Order ε0

For i = 0(19), gives

∂Y
∂r

0

+ ∂Y
∂y

1

= SY0. (27)

Taking the cell average of the last equation, using Y0 = 〈Y0〉 and
(22), we obtain the order 0 homogenized equation:

∂Y
∂r

0

= 〈S〉Y0, (28)

with the boundary conditions [sY0(rΩ)]2 = [sY0(rΩ)]4 =
[tY0(rΩ)]2 = 0. The order 0 homogenized eq. (28) has the same
form as the original eq. (14) but for different elastic coefficients.
As shown in appendix A, 〈S〉reproduces the result obtained by
Backus (1962). An interesting and well-known result is that the
order 0 homogenized model is transversely isotropic (with a ver-
tical symmetry axis) even though the original model is isotropic.
From (27) and (28), we also obtain the following equation:

∂Y
∂y

1

= (S − 〈S〉)Y0. (29)

At this stage, we can introduce the first-order periodic corrector
matrix X1(y), solution of

∂X

∂y

1

(y) = S(y) − 〈S〉. (30)

X1 is periodic by construction and, to obtain a unique solution, we
impose 〈X1〉 = 0. The dependecy of X over l and ω is the same as S
(see Appendix A). Thanks to this corrector, once the order 0 solution
is found, we can compute the first-order periodic corrections with

Ȳ1
(r, y) = X1(y)Y0(r ). (31)

To obtain the solution at the order 1, 〈Y1〉remains to be found.

3.1.4 Order ε

Taking the cell average (19) for i = 1gives

∂〈Y1〉
∂r

= 〈SY1〉, (32)

which, using Y1 = Ȳ1 + 〈Y1〉 and (31), can be rewritten:

∂〈Y1〉
∂r

= 〈S〉〈Y1〉 + 〈SX1〉Y0. (33)

This is the first-order homogenized equation. It has the same form
as the order 0 (28) with an extra body force term 〈SX1〉Y0that can

be determined with the solution at the order 0. Because Ȳ1
can be

different from 0 at the surface, in order to satisfy the correct bound-

ary conditions for Y1 = 〈Y1〉 + Ȳ1
, eq. (33) for 〈Y1〉must satisfy

the following boundary conditions:[〈
sY1

〉
(rΩ)

]
2

= −[
sX1(0)sY0(rΩ)

]
2
, (34)

[〈
sY1

〉
(rΩ)

]
4

= −[
sX1(0)sY0(rΩ)

]
4
, (35)

[〈
tY1

〉
(rΩ)

]
2

= −[
t X

1(0)tY0(rΩ)
]

2
. (36)

After some manipulations, we also get

∂Y
∂y

2

= ∂X

∂y

1

〈Y1〉 + ∂X

∂y

2

Y0 (37)

where X2 is the second-order periodic corrector matrix, solutions of

∂X

∂y

2

(y) = SX1 − X1S − 〈SX1〉. (38)

X2 is periodic by construction and is uniquely defined by setting
〈X2〉 = 0. Knowing Y0 and 〈Y1〉, we can compute the second-order
periodic correction:

Ȳ2 = X1〈Y1〉 + X2Y0. (39)

3.1.5 Order ε2

(19) for i = 2, taking the average gives and after some manipulations
gives

∂〈Y2〉
∂r

= 〈S〉〈Y2〉 + 〈SX1〉〈Y1〉 + 〈SX2〉〈Y0〉, (40)

with boundary conditions similar to (34–36). We could continue up
to any arbitrary large i, but we stop at i = 2.

It can be shown that, if Yε is solution of (14) and Y0 is solution
of (28), then we have Yε ⇀ Y0 as ε ⇀ 0 in the weak sense and in
the appropriate space (e.g. Murat & Tartar 1985; Allaire 1992). The
proof of the convergence of the higher order terms is much more
difficult (see however Dumontet (1986) where a convergence result
is obtained for the expansion including the boundary layer term).

3.1.6 Combining all orders

We need to solve (28), (33) and (40) with their boundary condi-
tions successively. Because we have an eigenvalue problem when
the Earth centre boundary condition (regularity) is taken into ac-
count with the free surface boundary condition, the fixed frequency
ω assumed at the beginning of this section cannot hold. A solution
to solve the problem is to introduce a power expansion in ε of the
eigenfrequencies: ωε

k = ∑i=+∞
i=0 εiωi

k . Introducing this expansion in
the equations (28), (33) and (40) leads to a set of problems allowing
to find successively (ω0

k , Y0
k), then (ω1

k , Y1
k), etc. This approach has

been used, for example, in optics (Golowich & Weinstein 2003).
Because the next stage of this work is to apply the homogeniza-
tion technique to classical time space numerical methods, we do not

follow this solution here and instead we choose to solve for 〈Ŷ2〉,
solution of

∂〈Ŷ2〉
∂r

= (〈S〉 + ε〈SX1〉 + ε2〈SX2〉) 〈Ŷ2〉, (41)

with the following boundary conditions
[〈

sŶ
2〉

(rΩ)
]

2
= −[

sX̂2(0)
〈
sŶ

2〉
(rΩ)

]
2
, (42)

[〈
sŶ

2〉
(rΩ)

]
4

= −[
sX̂2(0)

〈
sŶ

2〉
(rΩ)

]
4
, (43)

[〈
t Ŷ

2〉
(rΩ)

]
2

= −[
t X̂

2(0)
〈
t Ŷ

2〉
(rΩ)

]
2
, (44)

where X̂2 = εX1 + ε2X2. One can check summing (28), (33) and
(40) and their corresponding boundary conditions that, up to the
second order in ε,

〈Ŷ2〉 = Y0 + ε〈Y1〉 + ε2〈Y2〉 + O(ε3). (45)
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Figure 2. Original onion 1 model. On the left is shown the density, P- and S-waves velocities as a function of the radius and for the last 1371 km only. The
values are constant in each layer and the periodicity is of 50 km. On the right is shown the corresponding order 0 homogenized model.
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0
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order 0
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0
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order 0
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-0.4

0

0.4 ref-order 0
order 1 corr

Figure 3. Minor m5 (see eq. 11) of the two traction solutions in the spheroidal case computed for l = 20 (left column graphs) and l = 60 (right column graphs)
in the original onion 1 model (see Fig. 2) (top graph, bold line, the ‘reference’ solution) and in the homogenized model (order 0, top graph thin line, the ‘order
0’ solution). On the bottom graphs is shown the order 1 periodic correction (dotted line) to be compared with the difference between the reference solution and
the order zero solution (solid line).

In the following, we refer to (41) as the homogenized wave equa-

tion up to a given order (here 2). Furthermore, if we name Ŷ2
(r ) =

(I + X̂2( r
ε
))〈Ŷ2〉(r ), where I is the identity matrix, one can check

that Yε = Ŷ2 + O(ε3).
Please note that S and therefore Ŷ and Xi depend on the fre-

quency ω (and on l). Solving (41) with (42–44) boundary con-
ditions is done here by adapting the classical normal mode algo-
rithm briefly described in Section 2. We solve (41) for different
frequencies until (42–44) are satisfied with a shooting method. This
adaptation should require a serious study of the operator 〈S〉 +
ε〈SX1〉 + ε2〈SX2〉 and of the effect of the dynamic boundary con-
ditions (42–44) on the eigenfrequency search scheme. This work
will not be done here, and we just hope that the modifications do not
perturb too much the classical eigenfrequency search algorithm. One
can probably find models for which this option will fail. Neverthe-
less, the higher homogenization terms amplitude decay with ε com-

pared to the leading term and therefore it is reasonable to assume that
they do not perturb too much the original equations. As we will see,
this quick and dirty solution is good enough to show that the homog-
enization provides accurate upscaling rules. In practice, computing a
normal mode catalogue requires to solve (41) for many l and many
frequencies. Because S depends on both l and ω, computing 〈S〉,
X1, 〈SX1〉, etc, for each l and ω of each step of the shooting method
used for each eigenfrequency is computationally intensive. To avoid
this problem, we write these operators as power expansions in l and
ω for which each coefficient can be computed once for all. For
example,

X1
l (r, ω) = 0X1(r ) + 1X1(r )γl + 2X1(r )γ 2

l + ρX1(r )ω2, (46)

with γl = √
l(l + 1) and where the matrix coefficients 0X1, 1X1,

2X1 and ρX1 can be computed analytically once for all l and ω. Of
course, the expression of different terms of higher and higher order
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Homogenization of the wave equation for non-periodic layered media 829

homogenization need more and more higher terms in l and ω and
are more and more difficult to compute analytically.

To summarize, to obtain the homogenized solution up to an order
i, one first needs to solve the homogenized wave eq. (41) with the
boundary conditions (42–44) up to the order i to obtain the average

homogenized solution 〈Ŷ i 〉at the order i. Then the homogenized

solution is obtained by applying the periodic corrector to 〈Ŷ i 〉:

Ŷ i
(r ) =

(
I + X̂i

( r

ε

))
〈Ŷ i 〉(r ) (47)

In that case, we have Yε = Ŷ i + O(εi ).
In the following examples as well as in the examples that will

be done in the non-periodic case, we compare results obtained with
the homogenized equation (41) with boundary conditions (42–44)
at the same order (up to 2) with a reference solution. Because its
expression similar to (46) is difficult to analytically compute and
with minor effects in practice, the order 2 term 〈SX2〉 of the homog-
enized wave eq. (41) is neglected in the following. Therefore, when
the order 2 is used, it only affects the boundary conditions through
(42–44). Furthermore, because the first-order term of the homoge-
nized equation 〈SX1〉 is zero for most of the regular earth models,
using higher-order homogenization often consists in using the order
0 homogenized equation with higher order boundary conditions.

3.2 Examples

To illustrate this theoretical development, we give here two exam-
ples in ‘earth’ models with periodic variation of elastic properties
as a function of r. To compute the reference solution, a classical
normal mode algorithm is used to solve (7) in the original model.
Knowing the accuracy of the normal mode solution, the reference
solution is assumed to be ‘exact’. We then solve (41) with (42–44)
boundary conditions by adapting the same algorithm to this slightly
different equation and different boundary conditions as mentioned
in the previous section.

In this section, we first show a first example in a periodic
model in which the first-order term of the homogenized wave equa-
tion 〈SX1〉is zero and a second (unusual) with 〈SX1〉 �= 0.

The first model used to test this homogenization, shown in Fig. 2,
is made of homogeneous isotropic layers with λm = 50 km. The
order 0 homogenized model is also shown in Fig. 2 (right plot).
It is homogeneous but anisotropic, even if the original model is
isotropic. It appears that for this model, we have 〈SX1〉 = 0. Because
it controls the eigenfrequency search, we first look at the m5 minor
(see Section 2, eq. 11) as a function of the radius in Fig. 3. The m5

minor may not be easy to interpret physically, but similar figures
would be obtained using one component of the traction (e.g. T U

of eq. 6). In the toroidal case, the m5 minor is indeed the radial
traction. Fig. 3 is constructed the following way: we first find the first
eigenfrequency 0ωl (fundamental mode) in the original model for a
given l (here 20 and 60). We then compute m5 and its correction for
the homogenized equation and model up to the wanted order (here
1) for the fixed frequency 0 ωl . Note that, fixing the eigenfrequency
to the value computed in the original model is just done here for the
purpose of the Figs 3, 4 and 8 only and is not used for other tests. The
two top graphs show the reference m5 computed with the original
eq. (7) and the homogenized m5 for the order 0. The order 0 is clearly
an average of the reference solution. One can see that order 0 solution
does not vanish at the free surface as it is the case for reference
solution (this is more obvious for l = 60). This clearly indicates
that this frequency is an eigenfrequency of the original problem,

5000 5500 6000 6371
0

1

reference
order 0
<order 1>

6000 6250 6371
-0.25

0

0.25

order 1 corr
order 0-ref
<order 1>-ref

6315 6350 6371
radius (km)

0

0.25

order 1 corr
order 2 corr
<order 1>-ref

Figure 4. Minor m5 (defined eq. 11) for l = 20 for a modified version of the
onion 1 model (Fig. 2) for which 〈SX1〉 �= 0 (see text). On the top graph is
shown the reference solution (thin line), the order 0 homogenized solution
(bold line) and the order 1 average solution (broken line). In the middle graph
is shown order 0 residual with respect to the reference solution (thin line),
the order 1 residual (broken line) and the first-order periodic correction (bold
line). On the bottom graph is shown a zoom of the middle graph where the
order 2 periodic correction has been added (bold dotted line).

but not of the order 0 homogenized problem. As a consequence,
searching eigenfrequencies for the order 0 homogenized problem
gives a different set of eigenfrequencies compared to the original
problem and does not allow to preserve important properties like the
group velocity. The lower plots of Fig. 3 show a comparison between
the residual of the reference solution and the order 0 solution and the
first-order correction. It can be seen that the two curves match well
for l = 20. The match is not as good for l = 60, but this is expected
as ε increases with l (the wavelength is directly linked to l). Please
note that here (the frequency is fixed) the order 0 average solution is
the same as the order 1 because 〈SX1〉 = 0. This is why the residual
of the reference solution with the order 0 solution matches with the

C© 2007 The Authors, GJI, 170, 823–838

Journal compilation C© 2007 RAS

 at IN
IST

-C
N

R
S on N

ovem
ber 2, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


830 Y. Capdeville and J.-J. Marigo

3000 4000 5000
-1

0

1

no
rm

el
iz

ed
 a

m
pl

it
ud

e reference
order 0
order 1

3000 4000 5000
-0.3

0

0.3

order 0 -ref
order 1 -ref

3000 4000 5000
-1

0

1

no
rm

el
iz

ed
 a

m
pl

it
ud

e

3000 4000 5000
-1.1

0

1.1

Figure 5. Vertical component synthetic seismograms computed in the onion 1 model (see Fig. 2). The source is a vertical force with a frequency cut-off at
1/200 Hz for the two top graphs and 1/100 Hz for the two bottom graphs. The epicentral distance is of 132◦ and the graphs are centred on the R1 Rayleigh wave
time window. On the two left graphs are shown the reference solution, the order 0 homogenized solution and the order 1 average solution. On the two right
graphs are shown the residual between the order 0 homogenized and the reference solutions and between the order 1 and the reference solution. The two lower
plots have the same legend as the two upper ones.
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Figure 6. Isotropic Preliminary Earth Model (PREM) model and its homogenized version the order 0 (h0) build with the ‘symmetric’ extension. . Vph and
Vpv (upper left plot), Vsh and Vsv (upper right plot), density (lower left plot) and η (lower right plot) for both models are represented as a function of the radius.
The lower pass filter w(r) chosen here has a flat wave number spectrum between 0 and 1/120 km−1 and cosine taper between 1/120 km−1 and 1/100 km−1 and
zero after 1/100 km−1.

first-order periodic correction. In the case of 〈SX1〉 �= 0, only the
residual of the reference solution with the order 1 solution could
match with the first-order periodic correction. For this example, the
first-order correction accurately improve the order 0 solution and

therefore the boundary condition at the order 1 allows to find an
eigenfrequency with a better accuracy than using the order 0 only.

The second test is performed in a model for which 〈SX1〉is not
0. To do so, we use a similar model as shown Fig. 2, but this time,
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Figure 7. Vphvelocities for PREM, for h0 (the order 0 homogenized PREM
build with the ‘symmetric’ extension) and for h0l (the order 0 homogenized
PREM build with the ‘last value’ extension) The other quantities of the
model (Vpv, Vsh. . .) show similar patterns.

Vph and Vpv as well as Vsh and Vsv are still periodic and of the
same shape as shown Fig. 2 but not in phase by 12.5 km. This gives
an unusual isotropic model as the Vxh (where x stands for p or s)
discontinuities do not match the Vxv discontinuities. This is the only
type of model we have tried for which 〈SX1〉 �= 0. In Fig. 4 is show
again m5 minor for l = 20, but in the modified model. It can be
seen that the order 1 periodic correction (middle graph) only fit the

residual of the order 1 average solution (〈Ŷ1〉) with respect to the
reference solution. This is not the case when the residual is computed
with respect to the order 0 solution. This makes clear that taking into
account 〈SX1〉 when different from zero in (41) is required to obtain

a correct result. Finally, on the bottom graph is shown a zoom of the
middle graph where the order 2 periodic correction has been added.
It can be seen that order 2 perfectly matches the residual between the
order 1 average solution and the reference solution (which indicates
that the order 2 term of the homogenized wave equation 〈SX2〉 has a
negligible effect on the average solution for this model and for this
eigenfrequency).

Now that we are able to compute minors solution for the homog-
enized equation and we have checked that the periodic correction
provides the correct boundary conditions, we are able to compute
an homogenized normal mode basis. With this homogenized basis,
we can compute synthetic seismograms according to (12). Doing
so, we obtain a set of eigenfrequencies at the order i and the average
of the eigenfunction 〈Ŷ〉 also at the order i. To be fully consistent,
we should correct the normal mode solution with the periodic cor-
rections according to (47) at the source and receiver location. We
neglect this correction here. This is an order 0 approximation (we

indeed have Yε = 〈Ŷ0〉 = Ŷ0
at the order 0). We shall see later

that this approximation doesn’t hold any longer for double couple
sources, but performs well for force sources. In Fig. 5 are shown
vertical component traces obtained at an epicentral distance of 132◦

from a vertical source force for two different frequency cut-offs:
f c1 = 1/200 Hz (two top graphs) and f c2 = 1/100 Hz (two bottom
graphs). In the volume, we have roughly ε � 1/14 in the first case
and ε � 1/7 in the second case. The estimation of ε is probably too
optimistic as the variation with depth of surface waves is sharper
than the minimum wavelength. We expect a better result for f c1

than for f c2. This is indeed the case in Fig. 5. We see that using
order 0 only leads to an incorrect Rayleigh wave phase speed. The
wave speed is corrected by using the order 1, which is here, be-
cause 〈SX1〉 = 0, only a boundary condition correction. To obtain a
more precise result or to go to higher frequency, one should consider
homogenization to order higher than one.
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Figure 8. Minor m5 (see eq. 11) of the two traction solutions computed in the h0 (left column plots) and in the h0l (right column plots) homogenized PREM
for the first eigenfrequency of l = 20. On the two top plots is shown the solution computed in PREM (‘ref’) and the homogenized solution at the order 0. On
the two lower plot is shown the residual between the reference and the order 0 solutions and compared with the order 1 and 2 periodic corrections. In that case,
the periodic correctors are not periodic in r anymore.
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Figure 9. Vertical component of the displacement due to a vertical force at 221 km depth recorded at an epicentral distance of 132◦. The ‘reference’ solution
is computed in the PREM model and homogenized solutions at the order 0, 1 and 2 computed with last value extension are shown. A zoom of the R1 train of
the same solutions is show Fig. 10.

4 A P P L I C AT I O N T O T H E
N O N - P E R I O D I C C A S E

4.1 Theoretical development

We now relax theλm-periodicity condition on the elastic coefficients.
Nevertheless, we keep the idea of separating microscopic scales
from macroscopic scales by introducing a small parameter ε = l0

λc
,

where l0 is a length, that remains to be chosen, smaller than λc and
a fast variable y = r−rΩ

ε
. In the periodic case, the natural choice

is l 0 = λm , but this option is not available here and an arbitrary
choice has to be made. Any l0 can be valid as long as ε is small
compared to 1, knowing that this choice will affect the accuracy of
the result. To be able to use the same set of equations as developed
in the periodic case, we need to build an operator S(r , y) periodic
in y. There is an infinite number of possibilities to build S(r , y) as
an extension of Aε such that S(r, r−rΩ

ε
) = Aε(r ) and periodic in y.

We experiment with only one possibility in this paper that we refer
to as the ‘continuous’ periodic extension (Laptev 2005). We show

this choice gives accurate results, but this is not the only option and
other choices may give different and interesting results.

To build this continuous extension, we need first Aεto be extended
for r > r Ω. Once again many choices are possible for this extension.
We experiment with two options here:

(i) the symmetric extension: Aε(r ) = Aε(2r Ω − r ) for r > r Ω;
(ii) the ‘last value’ extension: Aε(r ) = Aε(r Ω) for r > r Ω.

We introduce a ‘smooth’ version of Aε(r ), As(r ), which will be
defined later, and a ‘fast’ version, A f (r ) =Aε(r ) −As(r ). Let L(r)
be a segment of length l0 around r: L(r ) = [r − l0

2 , r + l0
2 ].

(i) First, we define an auxiliary function S̃(r, .) for r ′ ∈ L(r ):
S̃(r, r ′) = A f (r ′).

(ii) Second, we extend S̃(r, .)to the whole real axis by periodicity.
S̃(r, r ′) is now l0-periodic for r ′.

(iii) Finally, we define

S(r, y) = As(r ) + S̃

(
r,

r − rΩ

ε

)
. (48)
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Figure 10. Same as Fig. 9 but zoomed on the R1 phase.

In other words, S (r , y)is built from the original operator by, for each
r, taking a window of length l0 around r and extending it by peri-
odicity. With such a definition, we indeed have S(r, r−rΩ

ε
) = Aε(r ),

with S(r , y) λc-periodic in y with λc = l0
ε

.
Now that S (r , y)is defined, we can derive the same two-scale

formalism as for the periodic case and obtain the same system of
equations (41). The difference is that the correctors Xi which depend
only on y in the periodic case now depend on both r and y. The
boundary conditions for (41) are therefore slightly different than for
the periodic case:

[〈
sŶ

i 〉
(rΩ)

]
2

= −[
sX̂i (rΩ, 0)

〈
sŶ

i 〉
(rΩ)

]
2
, (49)

[〈
sŶ

i 〉
(rΩ)

]
4

= −[
sX̂i (rΩ, 0)

〈
sŶ

i 〉
(rΩ)

]
4
, (50)

[〈
t Ŷ

i 〉
(rΩ)

]
2

= −[
t X̂

i (rΩ, 0)
〈
t Ŷ

i 〉
(rΩ)

]
2
. (51)

The choice of the ‘smooth’ operator Asnow needs to discussed.
One obvious choice is As = 0. In that case, the homogenization
would give an as accurate result as any other choice, but the order
0 homogenized model defined by 〈S〉 may not be adapted for many
numerical methods. Indeed, one of the advantages of the homoge-
nization is to remove discontinuities so that they do not need to be

meshed anymore. If the original elastic model has one zero-order
discontinuity (a step), then the homogenized model would have two
first-order discontinuities (discontinuities in the first derivatives: a
slope). From the meshing point of view, the homogenized model is
not easier to mesh than the original one. A solution to this prob-
lem would be to reiterate the homogenization (to homogenize the
homogenized model). We will not explore this solution here. In-
stead, we choose a smooth Assuch that 〈S̃(r, εy)〉 is small and can
be neglected and therefore 〈S〉 �As . If As does not contain any dis-
continuity, the meshing problems are cleared. Such an As can be
built as As =Aε ∗ w where ∗ is the space convolution and w(r) a
low-pass filter wavelet with a corner wave-number sufficiently larger
than 1

l0
. In that case, we indeed have 〈Aε − As〉 � 0.

4.2 Examples

In order to test this homogenization in the non-periodic case, we
use the popular Preliminary Earth Model (PREM) (Dziewonski &
Anderson 1981) model in its isotropic version and without ocean.
This choice is arbitrary and any other non-periodic model with thin
layer compared to the wavelength close to the surface would have
been convenient for these tests. We build the smooth model us-
ing a low-pass filter w with a unit flat wave-number spectrum be-
tween 0 and 1/120 km−1 and cosine taper between 1/120 km−1 and
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Figure 11. Same as Fig. 9 but this time, the homogenization has been performed with the symmetric extension. In that case, the order 0 is also the order 1 which
explain why no ‘order 1’ solution is plotted. The time-shift, for the first Rayleigh phase, between the the order 0 homogenization and the reference solution (top
plot) is about 13 s.

1/100 km−1 and zero after 1/100 km−1. Such a homogenization re-
moves all scales smaller than 100 km from the model. We name
the resulting order 0 homogenized model built with the symmetric
extension ‘h0’ and ‘h0l ’ the one obtained with the last value exten-
sion. The h0 model is shown in Fig. 6. A comparison between h0 and
h0l is shown in Fig. 7 for Vph. Once again the homogenized model
is anisotropic even though the original model is isotropic. The ho-
mogenized model is oscillatory, which was not the case of PREM,
but, as expected, is smooth. The models obtained from different ex-
tensions above the Earth surface are different which shows that the
homogenized model is not unique and depends upon choices made
for the homogenization. Here again, it appears that the first- order
term of the homogenized wave equation 〈SX1〉 is zero.

In Fig. 8 is shown one example of m5 minor computed in
PREM and in the h0 homogenized model (right plots), in the
h0lhomogenized model (left plots) for l = 20. In that case, the
‘periodic’ correctors are not periodic anymore. For the symmetric
extension, the order 2 boundary correction gives a good correction
of the order 0 homogenized equation. This means that the order
2 term of the homogenized equation has a weak effect and that 〈Ŷ2〉
is negligible. For the last value extension (right plots) things are
different, as the order 2 correction has a closer shape to the order 0
correction than the order 1 correction,but with a smooth offset. This
is a clear indication that the order 2 term (〈SX2〉) of the homogenized

equation (41) is not negligible and that it should be used here. It can
be seen that the order 1 periodic correction falls to 0 at the free sur-
face for the symmetric extension case. It appears to be general, when
the symmetric extension is used, the periodic correctors are zero at
the surface. No modification of the boundary condition is required
at the order 1 in that case. As in most of the cases, the first-order
homogenized equation term (〈SX1〉) is zero and, if the symmetric
extension is used, the order 0 solution is therefore already at the
order 1.

Thanks to these correctors, we are now able to build a normal
mode basis for the homogenized model and equations. Figs 9 and 10
show the vertical component waveforms in the last value extension
case. The source is a vertical force at 221 km depth at an epicentral
distance of 132◦. The corner frequency of the source is 1/100 Hz.
It appears that even if the order 1 provides a better result than the
order 0, the order 2 is required to obtain a correct phase velocity of
the surface waves. Fig. 11 shows the same numerical experiment in
the case of the symmetric extension. The order 1 solution has not
been represented, since it is the same as the order 0. Once again, the
order 2 provides an accurate result.

So far, we have only used a vertical force source. Earthquake
sources are better represented by double couple sources. As shown
by eq. (13), such a source requires to compute the strain tensor ε
and therefore the first derivative with respect to r of the solutions.
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Figure 12. Fundamental mode solution U , V and W components and their derivative with respect to r for l = 50 computed in PREM and in h0 homogenized
model computed with the symmetric extension (Fig. 6). The ‘ref’ legend stands for the reference solution computed in the original model. The ‘resi*10’ stands
for the residual between the homogenized solution at a given order times 10. The first line of plots shows the three components of the average homogenized
displacement computed at the order 2. The three following lines of plots show the displacement first-order derivative with respect to r of the reference solution
and of the average homogenized solution at the order 2, and then when applying the order 0 and to the order 1 order periodic correction.

Even at the order 0 for which the solution does not depend on y, its
derivative with respect to r depends on y:

∂Yε

∂r
= ∂Y0

∂r
+ ∂Y1

∂y
+ O(ε), (52)

= 〈S〉Y0 + ∂X 1

∂y
Y0 + O(ε), (53)

= SY0 + O(ε). (54)

where S is taken in (r, r
ε
). At the order 0, we have Y0 = 〈Y〉 and

therefore

∂Yε

∂r
= S〈Y〉 + O(ε). (55)

Because S depends on y, ∂Y ε

∂r also depends on y at the order 0 and
therefore varies rapidly. At the order one, we find

∂Yε

∂r
= S(I + εX1)〈Y〉 + O(ε2). (56)

To illustrate this point, Fig. 12 shows solutions U , V and W as de-
fined by (5) and their derivatives with respect to r computed in PREM
and in the homogenized PREM with the symmetric extension. For

the homogenized solution, the eigenfrequency is computed up to the
order 2. On the top plots is shown the displacement without apply-
ing any periodic correction. The residual times 10 shows that the
homogenized solution is accurate, even without the periodic correc-
tion. This explains why, once the normal mode basis is computed
at the order 2, we can forget the corrections at the receiver and the
source location in the case of a force source. In the case of a double
couple, things are different. Indeed, as already mentioned, the mo-
ment tensor interacts with the strain and not the displacement. In
that case, derivatives with respect to the radius of the solutions are
required and it can be seen that, if no correction is applied to the
homogenized solution, the solutions are not accurate for the deriva-
tives (Fig. 12, second line of plots). It also appears that for sources
close to the surface, the order 0 correction might not be enough
(Fig. 12, third line of plots). Finally, the order 1 gives an accurate
result (Fig. 12, last line of plots).

Figs 13 and 14 shows the vertical and transverse components
of the displacement due to a double couple point source at 11 km
depth recorded at an epicentral distance of 132◦. Here, the eigen-
function set is found by using the order 2 homogenization for the
boundary conditions. With this basis, the source term is used without
correction (top plots), with the order 0 correction (middle plots) and
the order 1 (bottom plots). For this shallow source and this moment
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Figure 13. Vertical component of the displacement due to a double couple point source at 11 km depth recorded at an epicentral distance of 132◦. The ‘reference’
solution is computed in the PREM model and homogenized solutions are all computed using order 2 homogenized average eigenfunction. The homogenized
solution are computed without (top graph), with order 0 (middle graph) and with order 1 correction for the source (bottom graph).

tenor, the order 1 correction is required to obtain an accurate result.
In many cases (e.g. deeper source) the 0 order correction is enough.
An interesting point of the order 0 correction at the source is that
it still gives a local source (that can be represented by an effective
moment tensor, see Appendix B). At the order 1, the correction of
the source is not local anymore by requiring higher order derivatives
of the solution.

Finally, knowing that the Rayleigh wavelength is roughly about
400 km at 100 s period in PREM, the ε � 0.25 which is not really
small. One can see that the results are nevertheless good enough to
work with data.

5 C O N C L U S I O N A N D P E R S P E C T I V E S

We have applied a classical two-scale homogenization technique to
the wave equation in layered media. We have shown that the order
0 homogenization provides the same result as the one previously
obtained by Backus (1962). It appears that the order 0 is not enough
to obtain an accurate solution especially for surface waves. Higher
order homogenization terms (up to 2) allow us to obtain accurate
surface waves. It appears that higher order homogenization often

consists in a modification of the boundary condition which corrects
for the inaccuracy observed for surface waves at the order 0. To
solve the homogenized equation, we have adapted normal mode
computation and normal mode summation programs. Of course,
the main goal of the work initiated with this paper is not to use
homogenization for 1-D media with normal mode algorithms, but
for 3-D media with numerical schemes, such as the SEM method .
In a first step, the equations found here could be converted from the
frequency-spectral domain to the time-space domain (for example,
−ω2is d2

dt2 and γ 2
l is related to the horizontal laplacian ∇2

1) in order to
be used in SEM. Doing so, it could be, for example, directly applied
to existing crustal models for which the horizontal properties are
slowly varying (typically, boxes of 200 km length) compared to the
vertical variation (down to some hundreds of metres).

The next step is to extend this work to 3-D rapidly varying
medium. This will not be straightforward for (at least) two reasons.
First, when the dimension of the medium is higher than one, the
classical two scale homogenization leads to a rapidly varying bound-
ary condition. This boundary layer effect needs another asymptotic
expansion close to the boundary of the medium to be matched
with the one in the volume of the medium. Second, in the case of
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Figure 14. Same as Fig. 13, but for the transverse component.

non-periodic media, the introduction of the smooth operator used
here may be complicated by the fact that the relation between the
original and the order 0 homogenized media is not explicit anymore,
but implicit. Nevertheless, once achieved, this work will consider-
ably simplify the meshing issue for some numerical methods and in
many cases.

For the inverse problem, this work and its future extension to 3-D
models will allow us to build a smooth parametrization consistent
with the smallest wavelength used. It can already be seen with this
1-D case that one should look for a transverse isotropic model, even
if the real model is known to be made of isotropic layers. It also
allows us to build a smooth starting model consistent with an existing
layered model like PREM. This is important because it solves the
problem of a priori miss-located interfaces. Finally, it appears that
the coefficients of the boundary condition should also be inverted.
Doing so, a stable inverse problem without a priori information
for the crust can be designed. Such an inversion would allow to
obtain an homogenized model from seismic data. After this step,
a strong difficulty remains: how to interpret such a model. Finding
physically meaningful (with small scales) model compatible with the
homogenized model is an other inverse problem highly non-linear
and probably highly non-unique. This problem will be addressed in
a future work.
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A P P E N D I X A : E X P R E S S I O N S F O R
M AT R I C E S A ε O R S

We use here the A, C , F , L , Nelastic parameters defined form wave
speeds,

Vpv = √
C/ρ for vertical P waves,

Vsv = √
L/ρ for vertical S waves,

Vph = √
A/ρ for horizontal P waves,

Vsh = √
N/ρ for horizontal S waves,

and η = F
A−2L . In the isotropic case, we have A = C = λ + 2µ, L =

N = µ and η = 1, where λ and µ are the Lamé elastic coefficients.
For the spheroidal case, we have

s Aε
l (r, ω) =




d/r 1/C el/r 0
−ρω2 + a −d/r −aγl/2 γl/r

−γl/r 0 2/r 1/L
aγl/2 −el/r −ρω2 + bl −2/r


 (A1)

with

a = 4

r 2

(
A − F2

C
− N

)
, bl = γ 2

l

r 2

(
A − F2

C

)
− 2N

r 2
,

d = 1 − 2F

C
, el = γl

F

C
.

In the toroidal case, we have:

t Aε
l (r, ω) =

(
2/r 1/L

−ρω2 + l N/r 2 −2/r

)
, (A2)

with l = (l − 1)(l + 2).
From these expressions, one can see that the averaged quantities

required to compute 〈S〉are 〈 1
C 〉, 〈 1

L 〉, 〈A − F2

C 〉, 〈 F
C 〉 and 〈N 〉which

is different from the average of the A, C , F , L , Nelastic parame-
ters. This is the same result as that obtained by Backus (1962). With
such averaging rules, an isotropic layered model has an anisotropic
average. For example, an isotropic layered model has N = L ,
but the average model in general won’t because 〈N 〉 and 〈 1

L 〉are
different.

A P P E N D I X B : O R D E R 0 C O R R E C T I O N
O F T H E M O M E N T T E N S O R

The relation between the original moment tensor M and the equiv-
alent one for the order 0 homogenized model Mh0 is

Mh0
rr = Mrr

Ch0

C
(B1)

Mh0
θθ = Mθθ + Mrr

Fh0 − F

C
(B2)

Mh0
φφ = Mφφ + Mrr

Fh0 − F

C
(B3)

Mh0
rθ = Mrθ

Lh0

L
(B4)

Mh0
rφ = Mrφ

Lh0

L
(B5)

Mh0
θφ = Mθφ (B6)

where C, F and L are the elastic parameters (defined in appendix
A) evaluated at the source depth and Ch0, Fh0 and Lh0 the same
elastic parameters for the order 0 homogenized model evaluated at
the source depth. An interesting consequence of the above relations
is that null trace moment tensors may have an explosive component
(trace different form 0) in the homogenized model.
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