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S U M M A R Y
An elastic wavefield propagating in an inhomogeneous elastic medium is only sensitive in an
effective way to inhomogeneities much smaller than its minimum wavelength. The correspond-
ing effective medium, or homogenized medium, can be computed thanks to the non-periodic
homogenization technique. In the seismic imaging context, limiting ourselves to layered me-
dia, we numerically show that a tomographic elastic model which results of the inversion of
limited frequency band seismic data is an homogenized model. Moreover, we show that this
homogenized model is the same as the model that can be computed with the non-periodic
homogenization technique. We first introduce the notion of residual homogenization, which
is computing the effective properties of the difference between a reference model and a ‘real’
model. This is necessary because most imaging technique parametrizations use a reference
model that often contains small scales, such as elastic discontinuities. We then use a full-
waveform inversion method to numerically show that the result of the inversion is indeed
the homogenized residual model. The full-waveform inversion method used here has been
specifically developed for that purpose. It is based on the iterative Gauss–Newton least-square
non-linear optimization technique, using full normal mode coupling to compute the partial
Hessian and gradient. The parametrization has been designed according to the residual ho-
mogenized parameters allowing to build a real multiscale inversion with progressive frequency
band enrichment along the Gauss–Newton iterations.

Key words: Numerical solutions; Inverse theory; Seismic tomography; Computational seis-
mology; Theoretical Seismology; Wave propagation.

1 I N T RO D U C T I O N

Since Backus (1962)’s work, it is well known that elastic waves
of a given minimum wavelength λmin propagating in the Earth are
sensitive to inhomogeneities of scale much smaller than λmin only
in an effective way. For a given fine-scale layered medium, far away
from the free surface and from the source, Backus (1962) showed
how to compute the corresponding effective medium. Backus’s re-
sult can be extended to more general cases thanks to the two-scale
homogenization technique for non-periodic media (Capdeville &
Marigo 2007; Capdeville et al. 2010a,b; Guillot et al. 2010), and
it is now possible, for a given general elastic 2-D or 3-D medium
and a given minimum wavelength, to compute the corresponding
2-D or 3-D effective (or homogenized) medium for a given λmin.
To solve the seismic forward problem of the elastic wave equation,
the knowledge of the effective model is an important advantage.
Indeed, the homogenized model is smooth and does not contain
any elastic discontinuity, which releases drastically the meshing
constraint and reduces the computational cost (Capdeville et al.

2010b). For the inverse problem, homogenization allows to mix re-
sults obtained at different scales (Fichtner et al. 2013). An intuitive
interpretation of the homogenization results is that the effective
medium computed according to λmin is the medium ‘seen’ by the
wavefield of minimum wavelength λmin. This interpretation has po-
tentially important consequences for the seismic imaging inverse
problems. Indeed, it is not possible, using seismic records only, to
have better information about the elastic model than what is ‘seen’
by the wavefield. As a consequence, a seismic inversion like a full-
waveform tomographic method, can retrieve at best an effective
medium but has no access to smaller scales. Moreover, this effec-
tive medium can be computed with the direct homogenization tech-
nique from the fine scale model. If it is difficult to mathematically
prove this conjecture, it is possible to numerically show it is in-
deed true. The main objective of the present work is to numerically
show that, knowing a fine scale model, computing the homoge-
nized medium gives the same result as inverting synthetic seismic
data (computed in the fine scale model) for the same minimum
wavelength.
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As a first step towards proving that an inverted elastic model ob-
tained from a tomographic method is indeed an homogenized model
in the general case, we limit ourselves in this paper to the layered
media case. We work at the global Earth scale, that is we consider
spherically symmetric earth models, knowing that our results will
be also valid for layered medium. The spherically symmetric case
has many advantages: the direct homogenization is quite simple and
the full-waveform inverse problem can be solved efficiently with a
limited amount of computing resources. Working with spherically
symmetric global earth models is also relevant to many current
tomography techniques used in global seismology. Indeed, many
source–receiver ‘path average’ inversion methods are based on the
assumption that an average 1-D model can be used between each
source–receiver pair. For such methods, typical measurements are
dispersion curves of surface wave fundamental and higher modes,
traveltimes of long-period body waves and eigenfrequencies (e.g.
Cara et al. 1980; Nakanishi & Anderson 1982; Cara & Lévêque
1987; Montagner & Tanimoto 1990; Nolet 1990; Stutzmann & Mon-
tagner 1993; Trampert & Woodhouse 1995; Ekström et al. 1997;
van Heijst & Woodhouse 1997; Yoshizawa & Kennett 2002; Beu-
cler et al. 2003; Lebedev & van der Hilst 2008). More sophisticated
methods, at global and exploration geophysics scales, based on 2-D
or 3-D kernels and full-waveform methods (e.g. Li & Romanow-
icz 1996; Pratt et al. 1998; Montelli et al. 2004; Capdeville et al.
2005; Tromp et al. 2005; Fichtner et al. 2009; Virieux & Operto
2009; Lekić & Romanowicz 2011) are more and more taking over
simple path average methods. Nevertheless, path average methods
still have an important future thanks to tomographic methods based
on noise cross-correlation measurements (e.g. Shapiro et al. 2005;
Nishida et al. 2009; Schimmel et al. 2011). This is mainly due to
the fact that the noise cross-correlation waveforms are difficult to
use because the Earth’s noise source distribution is not perfect and
poorly known (Cupillard 2008). For all the classical ‘path average’
tomographic methods, a reference model is necessary and quite im-
portant to design the radial parametrization. What is inverted for
is the difference, or residual, between the real earth model and the
reference model. Therefore, the inversion is expected to retrieve at
best what the wavefield ‘sees’ of the difference between the real
earth and the reference model. This leads us to introduce the new
concept of residual homogenization, that is the homogenization of
the difference between two models. We first introduce this new con-
cept for the forward homogenization problem case, and then we
introduce it for a full-waveform inverse problem.

The paper is organized as follows: in Section 2, the forward
method designed to build a residual homogenized model for a given
reference model is introduced and tested. In Section 3, the full-
waveform inversion is introduced. The inversion is tested for two
models that include small-scale inhomogeneities and the resulting
inverted models are compared with the homogenized model in the
same frequency band, showing that they are the same up to a given
accuracy. In Section 4 are shown the residual homogenization effects
on a gallery of earth models.

2 R E D I S UA L H O M O G E N I Z AT I O N F O R
T H E F O RWA R D P RO B L E M I N L AY E R E D
M E D I A

2.1 Equations for elastic waves in layered media

In this section, we first recall the first-order system formulation of
the elastic wave equations as it is classically done for the normal
mode theory. When gravity and anelasticity are not taken into ac-

count, the wave equation in an elastic domain � of boundary ∂�

can be written as

ρü − ∇ · σ = f , (1)

σ = c : ε(u), (2)

where ρ is the density, u the displacement field, ü the acceleration
field, σ the stress tensor, f the source force, c the fourth-order
elastic tensor, ‘:’ the double indices contraction (σ ij = ∑

klcijklεkl)
and ε(u) = 1

2 (∇u + T ∇u) the strain tensor with T the transpose
operator. We impose a free surface boundary condition on ∂�,
σ · n = 0, where n is the normal vector to ∂�. We assume that f
depends upon both time and space but we assume that the density
and elastic properties are not time-dependent.

In this paper, similarly to Capdeville & Marigo (2007), we limit
our work to layered media, in other words to 1-D media. All the
examples and validation tests presented in this paper are performed
in spherically symmetric global earth models of radius r�. We there-
fore use a spherical coordinates system r = (r, θ, φ) where r is the
radius, θ the colatitude and φ the longitude. This is absolutely not
a limitation and all results presented here can be applied without
modification to Cartesian or cylindrical coordinate systems for other
types of layered models. In spherically symmetric layered media,
we have c(r) = c(r ) and ρ(r) = ρ(r ).

In such a framework, the classical wave equation can be rewritten
as a first-order system of equations. To do so, the solution to (1) and
(2) with free surface conditions is often sought in the frequency and
the spectral domains for the horizontal directions (e.g. Takeuchi &
Saito 1972). In spherically symmetric models, we use

u(r, ω) =[
U m

l (r, ω)er + V m
l (r, ω)∇1 − W m

l (r, ω)(er × ∇1)
]

Y m
l (θ, φ),

(3)

where (er , eθ , eφ) is the spherical coordinate unit vector set, ∇1 is
the gradient operator on the unit sphere, Y m

l the spherical harmonic
of angular order l and azimuthal order m (e.g. Dahlen & Tromp

1998).
√

l(l+1)

r can be seen as the horizontal wavenumber. The radial
traction T = σ .er can also be written under the form

T(r, ω) =[
T m

Ul
(r, ω)er + T m

Vl
(r, ω)∇1 − T m

Wl
(r, ω)(er × ∇1)

]
Y m

l (θ, φ).

(4)

Using (3) and (4) into (1) and (2), we obtain, in the frequency
domain, for each l, two independent systems of equations, one for
(Ul , TUl , Vl , TVl ) (spheroidal case) and one for (Wl , TWl ) (toroidal
case), independent of m, that can be rewritten as a first-order system
of equations

∂qY l

∂r
(r, ω) = q Al (r, ω) qY l (r, ω) , (5)

where q can take two values, s for the spheroidal problem, t for the
toroidal problem. We have

sY l = T (rUl , rTUl , rγl Vl , rγl TVl ) (6)

for the spheroidal case and

tY l = T (r Wl , rTWl ) (7)

for the toroidal case, with γl = √l(l + 1). Expressions for q Al ma-
trices can, for example, be found in Takeuchi & Saito (1972), Aki
& Richards (1980) or in Appendix A. They depend only on the
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radius, on a non-linear combination of the five elastic parameters A,
C, F, L, N and on the density. These elastic parameters, necessary to
describe a vertical transversely isotropic (VTI) media, can be linked
to the wave speeds in the medium by

Vpv =
√

C/ρ for vertically travelling P waves,

Vsv =
√

L/ρ for vertically polarized S waves,

Vph =
√

A/ρ for horizontally travelling P waves,

Vsh =
√

N/ρ for horizontally polarized S waves (8)

and to

η = F

A − 2L
. (9)

In the isotropic case, we have A = C = λ + 2μ, L = N = μ and
η = 1, where λ and μ are the Lamé elastic coefficients. From the
form of the matrices q Al given in Appendix A, it can be seen that
the problem linearly depends upon the following six parameters:

p1(r ) = ρ(r ), (10)

p2(r ) = 1

C
(r ), (11)

p3(r ) = 1

L
(r ), (12)

p4(r ) =
(

A − F2

C

)
(r ), (13)

p5(r ) = F

C
(r ), (14)

p6(r ) = N (r ), (15)

which define the parameter vector p(r ). The six components of p(r )
are the same as the one found by Backus (1962) considering layered
media and long waves. For that reason, pi are here called the Backus
parameters. As it can be seen from eqs (10)–(15), parameters pi non-
linearly depend upon the A, C, F, L and N elastic parameters and
on the density ρ. The vector p fully defines the earth model and the
operators q Al and vice versa.

The solutions to (5) must be regular at r = 0 and the free surface
boundary conditions impose that radial traction must vanish for r =
r�. We therefore have T((r�, θ, φ), ω) = 0, which can be written as
(see eqs 6 and 7)

[sY l (r�, ω)]2 = [sY l (r�, ω)]4 = [tY l (r�, ω)]2 = 0 , (16)

where [.]i is the ith component of a vector. In the following, we
omit indices t and s if expressions are the same for spheroidal and
toroidal problems. The l index is also omitted in most of the expres-
sions. Before applying boundary conditions, eq. (5) has four inde-
pendent solutions for the spheroidal case and two for the toroidal
case. Only two solutions are regular at the centre of the Earth for
the spheroidal case and one for the toroidal case. The free surface
boundary condition can only be met for a discrete set of eigenfre-
quencies, {nωl , n ∈ N} where n is the radial order. For the toroidal
case, an eigenfrequency is found when the traction at the surface
vanishes and, for the spheroidal case, when the determinant of the
traction component of the two remaining solutions at the surface
vanishes. Finding all the eigenfrequencies to build a normal mode
catalogue of a given spherically symmetric earth model requires a
numerical scheme. The difficult part is to find all the eigenfrequen-
cies without losing any of them, but once this is done, the normal

mode catalogue can, for example, be used to compute synthetic seis-
mograms (see Dahlen & Tromp 1998 for a review). At this stage,
we already have all the necessary ingredients to address our subject
and there is no need to describe in more details the classical nor-
mal mode method theory to solve the wave equation in spherically
symmetric earth models.

2.2 Non-periodic homogenization for the wave equation
in layered media: summary of previous results

In this section, we summarize the results obtained by Capdeville
& Marigo (2007) and Capdeville et al. (2010a) about non-periodic
homogenization in layered media. For a given layered medium, this
asymptotic method allows to compute the corresponding effective
medium and correctors for a given minimum wavelength.

We first define a small parameter

ε0 = λ0

λmin
, (17)

where λ0 is a characteristic size for which inhomogeneities smaller
that λ0 are considered as microscopic and for which only effective
properties are relevant to the wave equation, λmin is the minimum
wavelength of the wavefield. The λ0 value is user-defined and allows
to define a lowpass filter operator such that, for any function of g(r),
the function

gε0∗(r ) ≡ F ε0 (g) (r ) (18)

does not contain any variation faster than λ0. The lowpass filter F ε0

can be defined from the Fourier orthogonal basis (see Appendix
B) as we have done in our previous works (Capdeville & Marigo
2007; Capdeville et al. 2010a,b; Guillot et al. 2010). Nevertheless,
other orthogonal bases can be used if they are more adapted to
strong and slow velocity changes with depth in the Earth, inducing
a strong change in the minimum wavelength from the bottom to
the top of the earth model. A well-chosen basis allows to obtain a
roughly constant ε0 everywhere despite the fact that λmin changes
with depth. See Appendix B for more details. We then introduce the
microscopic space variable

y = r

ε0
, (19)

where y is defined only on a limited segment [0, λmin] and all
quantities depending on y are extended to R by periodicity. The
principle of the homogenization procedure is to expand the solution
Y as a power series of ε0

Y(r ) = Yε0,0 (r, y) + ε0Yε0,1 (r, y) + ε2
0Yε0,2 (r, y) + ... (20)

When ε0 → 0, any change in y induces a very small change in r. This
leads to the separation of scales: y and r are treated as independent
variables. Each term of the series Yε0,i depends upon the two space
variables r and y (see Capdeville & Marigo 2007 and Capdeville
et al. 2010a for details). The Yε0,i coefficients of the series are
solutions of a coupled series of equations (Capdeville & Marigo
2007) that must be solved one by one.

∂Y
∂r

ε0,i

+ ∂Y
∂y

ε0,i+1

= Sε0Yε0,i (21)

with similar boundary conditions like (16), and where, in the non-
periodic case, Sε0 (r, y) is built as follows:

Sε0 (r, y) = F ε0 (A) (r ) + (I − F ε0 ) (A) (ε0 y) , (22)

where A is defined in eq. (5) and I is the identity operator. The last
equation can be understood as follows: any smooth variation of A,
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and therefore, any smooth variation of the parameter pi, is assigned
to the slow (r) variable and any fast variation of A is assigned to the
fast variable (y).

Solving the series of eq. (21), it is first shown that

Y0 = 〈Y0
〉
, (23)

where the cell average, 〈g〉 for any function g(r, y), is defined as

〈g〉 (r ) ≡ 1

λmin

∫ λmin

0
g(r, y)dy . (24)

This implies that Y0 does not depend upon the fast variable y. This is
an important and intuitive result showing that, to the leading order,
the solution to the wave equation is only affected in an average way
by inhomogeneities much smaller than the minimum wavelength.
Then, it is shown that Y0, which is the effective solution, is solution
of the effective equation

∂Y0

∂r
(r ) = Aε0∗(r ) Y0(r ), (25)

where the effective operator Aε0∗ is simply a lowpass filtered version
of A

Aε0∗ = 〈Sε0 〉 = F ε0 (A) (r ). (26)

Still solving the series of eq. (21), it is then obtained, to the first
order

Y(r ) = Yε0,0

(
I + ε0Xε0

(
r,

r

ε0

))
+ O

(
ε2

0

)
, (27)

where Xε0 is the non-periodic corrector, solution of ∂Xε0

∂y (y) =
Sε0 (r, y) − 〈Sε0 (r, y)〉 with periodic boundary conditions. Xε0 can
be seen as the site effect: it is a local correction to the receiver.
Finally, let us mention that, to the order first and second order of
the asymptotic expansion (20), the boundary conditions are affected
by the first- and second-order correctors (see Capdeville & Marigo
2007, 2008, for details). The new boundary condition is of type
Dirichlet–Neumann

T(r�, θ, φ) = D(u(r�, θ, φ)), (28)

where T is the normal traction to the Earth surface, u(r∂�, θ, φ))
the displacement at the Earth surface and where the operator D
depends on mainly five parameters related to integrals of non-linear
combination of the elastic properties in the near surface. With good
choices on the way is built the effective parameters near the free
surface, the number of independent parameters controlling D can
be reduced from five to two (Capdeville & Marigo 2007, 2008).

The effective form (26) and the fact that the Aε0∗ matrices linearly
depend on the pi parameters (see eqs A1 and A2) imply that the
effective parameters pε0∗

i are

pε0∗
i (r ) = F ε0 (pi ) (r ). (29)

The effective density and elastic parameters ρε0∗,
Aε0∗, Cε0∗ F ε0∗, Lε0∗ and N ε0∗ are then deduced from the
following relations:

ρε0∗ = F ε0 (ρ) , (30)

1

Cε0∗ = F ε0

(
1

C

)
, (31)

1

Lε0∗ = F ε0

(
1

L

)
, (32)

Aε0∗ − (F ε0∗)2

Cε0∗ = F ε0

(
A − F2

C

)
, (33)

F ε0∗

Cε0∗ = F ε0

(
F

C

)
, (34)

N ε0∗ = F ε0 (N ) , (35)

which is the classical Backus (1962)’s result. A well-known con-
sequence the above equations is that the effective medium is often
anisotropic, even if the original medium is isotropic. Once the effec-
tive density and elastic parameters defined, one can easily deduce
the effective velocities V ε0∗

ph , V ε0∗
pv , V ε0∗

sh , V ε0∗
sv as well as ηε0∗.

The above development gives accurate results, the convergence is
in ε2

0, and for a small enough ε0, the synthetic waveforms computed
in the original medium and the effective one are the same up to
the wanted precision. Refer to Capdeville & Marigo (2007) for test
examples.

2.3 Non-periodic residual homogenization for the wave
equation in layered media

In seismology, the inversion is often carried out with respect to
a reference model. This reference model can contain small scales
such as, for example, the PREM model (Dziewonski & Anderson
1981) which presents many elastic discontinuities. In the previous
section, we have summarized an absolute homogenization for which
no small scale is left in the effective medium. To account for the
presence of a reference model, we describe here a modified ho-
mogenization, carried out with respect to a reference model, which
we refer to as the residual homogenization. To do so, we assume
that we have a reference earth model, defined by its density and
elastic properties: (ρref , Aref , Cref , Fref , L ref , Nref ), allowing to de-
fine the operators Aref based on (A1) and (A2). We do not make
any particular assumption on the reference model and, for example,
this model can be discontinuous. We now define the operator Sε0

(eq. 22) as

Sε0 (r, y) = Aref (r )+F ε0 (A−Aref ) (r )+(I − F ε0 ) (A − Aref ) (ε0 y) .

(36)

With this construction, all the results of Section 2.2 are still valid
and we can find the effective operator, the receivers and sources
correctors as well as the boundary conditions. For the effective
properties, this new construction leads to

pε0∗(r ) = pref (r ) + F ε0 (p − pref ) (r ) , (37)

and therefore

ρε0∗ = ρref + F ε0 (ρ − ρref ) , (38)

1

Cε0∗ = 1

Cref
+ F ε0

(
1

C
− 1

Cref

)
, (39)

1

Lε0∗ = 1

L ref
+ F ε0

(
1

L
− 1

L ref

)
, (40)

Aε0∗ − (F ε0,∗)2

Cε0∗ = Aref − F2
ref

Cref
+ F ε0

(
A − Aref − F2

C
+ F2

ref

Cref

)
,

(41)

F ε0∗

Cε0∗ = Fref

Cref
+ F ε0

(
F

C
− Fref

Cref

)
, (42)
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N ε0∗ = Nref + F ε0 (N − Nref ) . (43)

A consequence of such a construction is that the discontinuities and
any other variations present in the reference model are still present
in the effective medium. Only the residual between the real medium
and the reference medium is homogenized and therefore smooth. In
the following, we refer to

δp(r ) ≡ p(r ) − pref (r ) (44)

as the Backus residual with respect to the reference model pref . With
such a definition, (37) can be rewritten

pε0∗(r ) = pref (r ) + F ε0 (δp) (r ) . (45)

Note that (45) falls back to the classical result (29) if pref (r ) is
chosen constant with r.

2.4 Residual homogenization examples

In this section, we present two validation examples of this procedure.
More tests showing interesting effects of the residual homogeniza-
tion are shown in Section 4. Our reference model will always be the
PREM model. Two models are used:

• TEST1 model, with strong inhomogeneities relative to the ref-
erence model near the 220 km depth discontinuity (see Fig. 1,
left-hand plot);

• TEST2 model, with the Moho discontinuity located at different
depth from the reference model (see Fig. 1, right-hand plot).

Fig. 2 shows the δp3(r) residual parameter, for the TEST1 model,
as a function of the Earth radius (black line) and F ε0 (δp3) (r ) (red
line) for ε0 = 0.5 and λmin = 80 km (with such parameters, the
maximum frequency for synthetic seismograms with good accu-
racy would be of 1/40 Hz). It can be seen that for the residual
parameter, the homogenization is trivial and involves only a linear
lowpass filtering operation. Once the effective Backus residuals are
obtained, using (39)–(43) and (8), the effective velocities and η∗
parameters can easily be obtained. They are plotted in Fig. 3 for
the TEST1 model and in Fig. 4 for the TEST2 model. More ex-
amples of the effects of the residual homogenization are shown in
Section 4. Finally, Figs 5 and 6 show examples of traces computed
in the residual effective model, for the TEST1 and TEST2 models,
respectively, and compared with the reference solution (computed

Figure 2. δp3(r ) = [p − pref ]3(r ) for the model TEST1 (black line), PREM

as a reference model and Fε0 (δp3) (r ) for the same model and ε0 = 0.5 (red
line).

in the target models TEST1 and TEST2, not to be confused with the
solutions obtained in reference model) and the solution obtained in
the PREM model (the reference model). In both cases, the reference
and homogenized traces show an excellent agreement.

In this paper, we do not study the convergence with ε0, but the
result would be the same as the one shown in Capdeville & Marigo
(2007, 2008), that is a convergence in ε2

0 of the effective solution
towards the reference solution.

3 F U L L - WAV E F O R M I N V E R S I O N

In this section, our objective is to numerically show that the ef-
fective medium obtained by residual homogenization (or classical
homogenization) and the one obtained from a seismic inverse prob-
lem are the same. For this purpose and to make sure to use as much
as possible information from the seismic traces, we introduce a
full-waveform inversion method. We could have used other inver-
sion methods, such as phase velocity inversion. Nevertheless, it is
difficult with such methods to invert for the five elastic parameters
plus density, which would have made our demonstration less ob-
vious. The full-waveform inversion scheme developed here is not

Figure 1. TEST1 (left-hand plot) and TEST2 (right-hand plot) velocities and densities plotted with solid black lines as a function of the radius for the last
kilometres close to the free surface. In red are plotted the velocities and density of an isotropic version of the PREM model for comparison.
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Figure 3. S-wave velocities (top left graph), P-wave velocities, (top right plot), density (bottom left plot) and η parameter (bottom right plot) as a function of
r from PREM (grey line) and TEST1 models (black line). The horizontal (red lines) and vertical (green lines) S- and P-wave velocities, density (red line) and η

parameter (red line) of the residual homogenized model of TEST1 with respect to PREM for ε0 = 0.5 are plotted.

Figure 4. S-wave velocities (top left graph), P-wave velocities, (top right plot), density (bottom left plot) and η parameter (bottom right plot) as a function of
r from PREM (grey line) and TEST2 models (black line). The horizontal (red lines) and vertical (green lines) S- and P-wave velocities, density (red line) and η

parameter (red line) of the residual homogenized model of TEST2 with respect to PREM for ε0 = 0.5 are plotted.

intended to be applied to real data. Indeed, the assumption that the
earth model is spherically symmetric will be heavily used and the
Earth is not spherically symmetric. The spherically symmetric Earth
approximation is often used for the phase velocity inversion, never-

theless amplitude is more sensitive to 3-D structure and our method
would have little chance to be successful for signal amplitude due to
a large theoretical error, at least when all the mode branches, from
body waves to surface waves, are used. If only the fundamental
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Figure 5. Vertical (top plot) and transverse (bottom plot) component seis-
mograms for a 110 km depth source and an epicentral distance of 130◦
computed in PREM (green line), in TEST2 model (red line) and in the resid-
ual homogenized TEST1 model with respect to PREM for ε0 = 0.5 and
with the order 2 boundary condition (dashed black line). The source has a
maximum frequency of 1/40 Hz.

Figure 6. Vertical (top plot) and transverse (bottom plot) component seis-
mograms for a 110 km depth source and an epicentral distance of 130◦
computed in PREM (green line), in TEST2 model (red line) and in the resid-
ual homogenized TEST2 model with respect to PREM for ε0 = 0.25 and
with the order 2 boundary condition (dashed black line). The source has a
maximum frequency of 1/40 Hz.

mode and a few harmonics are used, a real data application of the
present method could be attempted.

Let g be the forward modelling function that allows us to model
the waveforms data (d) for a given set of model parameters (m):
d = g(m). The inverse problem has to minimize the classical cost
function �

�(m) = T [g(m) − d]C−1
d [g(m) − d] + T (m − m0)C−1

p (m − m0) ,

(46)

where m0 is the a priori value of the model parameters (the starting
model), Cd and Cp are the covariance matrices of data and model
parameters, respectively. If g is a non-linear function, the minimum,
or the closest local minimum to the starting model, of the cost
function � can be found using the Gauss–Newton method iterative
process (Tarantola & Valette 1982). Given mi the inverted model at
iteration i, we can obtain model at the iteration i + 1 as

mi+1 = mi + ( TGi C−1
d Gi + C−1

p

)−1

× [ TGi C−1
d (d − g(mi )) − C−1

p (mi − m0)
]

, (47)

where Gi is the partial derivative matrix

Gi =
[

∂g(m)

∂m

]
m=mi

. (48)

In our case, the earth models are spherically symmetric, which al-
lows to use efficiently the classical normal mode summation method
to build g with no specific approximation except the summation
truncation, as well as the partial derivative matrix at each iteration
Gi with normal mode coupling, still with no specific approximation
(see Appendix C).

To perform our exercise, we make some particular choices. First,
if the covariance matrices Cd and Cp have an important meaning
for linear inversions, this is less obvious for significantly non-linear
cases such as the one considered here. We set C−1

p = 0, which
implies that the final model m∞ can be as far as necessary from
the starting model m0. Nevertheless, to avoid issues with the small
eigenvalues of t Gi C−1

d Gi , we add to it a damping diagonal matrix λi .
λi is allowed to vary during the inversion and the damping is smaller
and smaller with the increasing number of iterations. Furthermore,
as it is often done for many seismic inversion methods (e.g. Bunks
et al. 1995; Pratt 1999; Virieux & Operto 2009), to avoid to fall
too quickly in a local minimum, the frequency band of the data
changes with the iterations, starting with the low frequencies only
and then increasing the frequency band little by little. This practice
can be seen as a trick to avoid local minimum but, in our case, this
operation has a special meaning that will be discussed in Section 5.
To change the frequency band depending on the iteration number,
we introduce a band limited data set

di ≡ d ∗ wi , (49)

where wi is a lowpass filter selecting the wanted frequency band for
iteration i and ∗ the temporal convolution. As the frequency band
depends upon the iteration number, the function g also depends upon
i (gi (mi ) ≡ g(mi ) ∗ wi ). To avoid the classical problem of relative
amplitude between surface waves and body waves, the data are
normalized by the inverse of its envelope plus a constant quantity.
The data used at iteration number i can be written as

d̃i = di

e(di ) + c
, (50)

where e(·) denotes the envelope and c is a small value designed
to avoid divisions by zero. This operation balances the amplitude
and gives approximately the same weight to all seismic phases of
the seismogram, as it can be seen on the example given in Fig. 7.
From a notation point of view, it is convenient to hide this data
normalization in the matrix Cd, where, the envelope depending on
the lowpass filter wi, now also depends on i. This can be done as
follows:

Ci
d = T (e(di ) + c)−1Cd(e(di ) + c)−1. (51)
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Figure 7. Example of the effect of the envelope normalization (50) on a
vertical-component seismogram. In the top graph, is plotted the original
seismogram and on the bottom graph is plotted the same seismogram after
normalization.

Note that this operation is of minor importance for a synthetic test,
even though if it helps the convergence when artificial noise is added
to the data. Let us mention that this normalization does not imply
that the inversion scheme inverts for signal instantaneous phase
instead of the full waveform. Indeed, the same normalization by
the data envelope is also applied to the forward modelling operator
gi and to the partial derivative matrix Gi which implies that no
partial derivative of the synthetic envelope are used. Again, this
normalization plays a role only if noise or forward modelling errors
are involved.

According to the above choices, eq. (47) can now be rewritten
as

mi+1 = mi +
(

TGi Ci
d
−1

Gi + λi
)−1 [

TGi Ci
d
−1 (

di − gi
(
mi
))]

.

(52)

We now need to define the set of parameters mi . Classically, the
model parameters are either velocities or slowness parametrized
with spline functions or dicrete layers versus depth. When layers
are involved a vertical correlation length is introduced to reduce the
number of independent parameters. The upper-mantle structure is
dominantly recovered from the surface wave data which enable to
resolve only S-wave velocity. When Rayleigh and Love wave data
are simultaneously inverted, S-wave velocity radial anisotropy, cor-
responding to a VTI medium, can also be recovered. Dziewonski &
Anderson (1981) describe this 1-D earth model with the A, C, F, L,
and N elastic parameters plus the density as a function of the radius.
Because the model is overparametrized, correlations between pa-
rameters is further introduced (e.g. Montagner & Anderson 1989;
Sebai et al. 2006; Ekström 2011; Debayle & Ricard 2012). Here,
we invert for δp(r ), the Backus residual vector with respect to a
reference model (see eq. 44). For the radial discretization, we use
the Lagrange polynomial interpolation associated with the Gauss–

Figure 8. Example of Lagrange polynomial basis associated with the
Gauss–Lobatto–Legendre points for degree 40. Each polynomial is plot-
ted in grey line, except the one associated with r10 (h40

10(r ), red line) and the
one associated with r40 (h40

40(r ), green line).

Lobatto–Legendre (GLL) points spread in the inversion depth range
(see Fig. 8 for an example). For a polynomial degree N, the full de-
scription of the model is given by the value of each parameters at
the N + 1 GLL depths.

mi = (
δpi

1(r0), δpi
2(r0), . . ., δpi

6(r0), δpi
1(r1), . . ., δpi

j (rk) ,

. . ., δpi
6(rN )

)
,

(53)

where δpi
j (rk) is the residual Backus parameter number j at iteration

i and for the GLL radius rk. If

hN
k (r ) ≡

∏
i=0,N

i �=k

r − ri

rk − ri
(54)

is the Lagrange polynomial associated with the GLL point rk, then
the interpolation formula for the Backus residual parameters is

δpi (r ) =
N∑

k=0

δpi (rk)hN
k (r ) . (55)

The Lagrange polynomial expansion used to radially expand the
parameters δpi (r ) forces the continuity and the smoothness of these
parameters in the depth range of the inversion. Given that the ref-
erence model can contain discontinuities or scale smaller than the
ones than can accurately be expanded on the Lagrange polynomial
basis, constraining the residuals to be smooth is a strong assump-
tion, which can be wrong for most parametrizations. Nevertheless,
for the Backus residual parameters, this assumption is valid shown
by eq. (45) (see Fig. 2 for an example). For other parametriza-
tions than the Backus residuals, for example velocity residuals, this
smoothness assumption is not valid. Indeed, the relation between
the Backus residuals and most of the commonly used quantities,
such as velocities, slowness, etc. are non-linear. As a consequence,
if the reference model is discontinuous (or with any king of fast
variations), any other residual parameters than the Backus residu-
als are also discontinuous (see Fig. 9 for the Vs residuals for the
TEST1 model example). There is therefore a clear advantage to use
the Backus residuals as parameters for the inversion: it allows to
correctly assume the smoothness of the inversion parameters with
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Figure 9. Vsh and Vsv residuals with respect to PREM from the TEST1
homogenized model (see Fig. 3). These residuals are discontinuous at the
PREM 220 km depth discontinuity.

depth and through the discontinuities of the reference model. Fi-
nally, let us mention that to be fully complete, we have to invert for
the boundary term parameters mentioned eq. (28). In practice, we
indeed have the possibility to invert for the boundary term parame-
ters, but as shown by Capdeville & Marigo (2008), there is a strong
trade-off between the boundary parameters and the elastic model
values at the free surface. For the comparison between inverted and
homogenized models we intent to make here, this trade-off can be
a problem. To limit this problem, we make the choice to force the
boundary parameters to be small and we have made sure that, for
all the presented examples, the effect of the boundary term is small.
Nevertheless, to study very shallow inhomogeneities, one should
keep in mind to account for this trade-off.

Before starting the inversion, to have an idea on how many param-
eters, among the six Backus residuals, can be inverted as a function
of depth, we analyse the eigenvalues of the G0 matrix computed
in the reference model (here PREM) as a function of depth for a
Lagrange polynomial degree N = 40, in the [5000–6371 km] depth
range and for a minimum period of 33 s. To do so, we build a
smaller G0 matrix by keeping only the lines and columns corre-
sponding to a single h40

i (r ). This leads to a 6 × 6 matrix for each
GLL depth ri, for which we can compute the eigenvalues and plot
them as a function of ri (see Fig. 10). This test does not give any
information on the depth resolution, but it helps to identify poten-
tial trade-offs between the Backus residual parameters for a given
depth. Because the problem is non-linear and because each depth
should not be considered independently, this analysis can only be
considered as indicative. In Fig. 10, we can guess how many pa-
rameters can be inverted per depth. Of course, the actual number
of parameter that can indeed be inverted depends upon the noise
level. In Fig. 10, two horizontal grey lines, corresponding to two
examples of noise level, have been plotted. The dashed grey line
corresponds to a low noise level and the solid grey line represents a
higher noise level corresponding to a more realistic case. In Fig. 10,
the actual vertical positions of the two grey lines is just indicative
as a precise assessment of the noise level with respect to the eigen-
values is not possible for our non-linear global case. For the low
noise level, it can be seen that below 5200 km and above 6350 km
depth, we cannot retrieve the six parameters but in the range 5200–
6350 km we have a good chance to retrieve the six parameters. For
a real data inversion, the noise level may be much higher (corre-
sponding, e.g. to the solid grey line in Fig. 10) and in such a case

Figure 10. Square root of the eigenvalues of submatrices of TG0C0
d
−1

G0

obtained by keeping only the lines and columns corresponding to a single
hN

i (r ), plotted as a function of ri and normalized by the radius integral of
hN

i (r ). The reference model is PREM, N = 40 and a minimum period of 33 s
are used. Each black line corresponds to one of the six eigenvalue as function
of depth. The two grey lines correspond to two noise level examples.

there is a little chance to retrieve the six parameters at any depth.
For our synthetic tests, TEST1 model has been designed such that
information to be retrieved is in the range [5800–6300 km]. There-
fore, we can hope to access the six Backus residual parameters.
For TEST2, the inhomogeneities are concentrated in the shallow
[6300–6371 km] depth range and therefore we do not expect to re-
trieve all of the six Backus residual parameters, even for a low noise
level.

To perform our synthetic tests, we first use the TEST1 model as
a target model which means that the ‘data’ used for our inversion
scheme described above are computed in the TEST1 earth model.
We use a single three-component station and two earthquakes at the
same surface location but for two different depths (10 and 700 km)
corresponding to an epicentral distance of 132◦. The data period
band is [1000–33 s] and the Lagrange polynomial degree is N =
40 in the [5000–6371 km] depth range. To avoid to commit an
inversion crime, we add some random noise to the synthetic data
to be inverted. The noise has the same frequency band as the data
and is such that its standard deviation is 3 per cent of the standard
deviation of the data. Such a noise is probably weak compared to a
real case (it approximately corresponds to the low noise level hor-
izontal dashed line shown in Fig. 10), but is large enough to avoid
to use the forward modelling method error as an information and to
commit an inversion crime. Moreover, local correctors at the source
and receiver locations (see eq. 27) are not inverted for. This induces
a few per cents theoretical error (mainly on amplitude) which also
helps to prevent for an inversion crime. We intent to invert these
full waveforms starting from the PREM model and with PREM as
a reference model (the pref model is therefore PREM and m0 = 0).
To have an idea of the robustness of the inversion results, we per-
form eight inversions with each time a different realization of the
3 per cent random noise added to the data. The raw results of the
inversion are given in Fig. 11. The agreement between the inversion
outputs (black lines in Fig. 11) and the TEST1 target model (red
lines in Fig. 11) is not obvious. Nevertheless, computing a synthetic
data in one of the inverted model for a receiver that has not been
used for the inversion and comparing it with a reference synthetic
seismogram computed in the TEST1 target model shows a very good
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Figure 11. Raw results of the inversion. In grey, is plotted the reference model (PREM), in red the target model (TEST1) and in black the eight inversion results
for eight different realizations of the 3 per cent random noise added to the data.

fit, as it can be seen in Fig. 12. So, even if the Fig. 11 comparison is
not impressive, the inverted models are definitely not non-sense and
are able to model accurately data in the [1000–33 s] frequency band,
even for data that have not been used for the inversion. To perform
a better comparison, we use the fact that, for spherically symmetric
media, the important quantities are the Backus residual parameters
in the spectral domain (see Appendix B for the radial spectral do-
main definition). Indeed, we have seen that the effective Backus
residual parameters are obtained by lowpass filtering the residual
parameters for the direct upscaling. The lowpass filtering being a
simple product in the spectral domain (see Appendix B), a better
comparison between the target and inverted models can be done
in the spectral domain. The spectral domain comparison is done
in Fig. 13. This time the agreement between the inversion results
(black lines in Fig. 13) and the target model (red line in Fig. 13) is
this time more obvious. As expected, the inversions give the correct
answer up to an error bar that could be computed, but only for low
wavenumbers. Indeed, below a wavenumber that depends upon the
considered residual Backus parameter δpi, the inverted and target
models are in very good agreement, but above this number, they
quickly diverge. On the conservative side, in Fig. 13, all parameters
roughly agree for wavenumbers n � 70, which corresponds to a
period higher than 17 s, that is about half of the lowest period of
the inversion band. This means that the inversion is effective up to
a resolution of roughly λmin/2 where λmin is the minimum wave-
length associated with the minimum period of the data used for the
inversion. This is corresponding to the commonly admitted reso-
lution power for most inversion methods. It can be seen that some
parameters are very well recovered, but some, like the density (δp1)

Figure 12. Seismograms computed in the output model of the inversion for
a station that has not been used for the inversion (red line) to be compared
with the data computed in the target model (black line) and in the starting
model (green line). The epicentral distance is 137◦.
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Figure 13. Raw results of the inversion for the TEST1 model in the spectral domain. In red is plotted the target model (TEST1) and in black the eight inversion
results for eight different realizations of the 3 per cent random noise. For each plot, the PREM reference model would be the horizontal 0 line (not represented).
To give a more physical idea of the horizontal axis values, modes n = 25, 50, 100 and 200 have a period of, respectively, 47, 24, 12 and 6 s, which, for a wave
speed of 4 km s−1, would respectively correspond to a wavelength of 186, 95, 48 and 24 km. δp1 parameter is related to ρ, δp2 to 1/C, δp3 to 1/L, δp4 to A −
F2/C, δp5 to F/C and δp6 to N. See eqs (10)–(15) and (44) for the definition of the δpi residuals.

are retrieved with less accuracy: the results of different inversions
are scattered. Nevertheless, the different results gather around the
target model spectrum which indicates that, despite a non-negligible
error bar, the inversion is able to find all the six Backus residual
parameters, including the correct density. To compare the models
in the space domain, we conclude that the Backus residual spec-
tral expansion of the inverted models need to be muted to zero for
wavenumber beyond the resolution power of the inversion, and we
therefore need to compare the inverted results with the target model
homogenized to the same resolution. To do so, we homogenize the
target and inverted models up to n = 70 and the obtained results
are plotted in Fig. 14. The match between the target model and the
inverted models is this time very good, and we can conclude that
they are the same up to a small error, which numerically shows that
the inverted model is indeed the homogenized model.

An interesting observation can be made plotting the inverted pa-
rameter δp3 in the spectral domain for different iterations of the
inversion (see Fig. 15). As mentioned previously (see eq. 49), the
frequency content of the data increase with the increasing iteration

number, and consequently, the resolution of the inversion results
is also expected to increase with the increasing iteration number.
It is indeed what is seen in Fig. 15. However, the most interesting
observation that can be made from Fig. 15 is that, once inverted, the
obtained low wavenumbers almost do not change while adding new
frequencies. With a more sophisticated spatial parametrization, it
would therefore be possible to invert only a new wavenumber range
for each new frequency band added to the inversion while keeping
unchanged the lower wavenumber obtained from previous itera-
tions. Such an observation is only possible for the Backus residual
parametrization, and, with such a parametrization the inversion is
multiscale in the sense that adding frequencies to that data does not
modify low wavenumber of the inverted models.

We conduct the same experiment for the TEST2 model. From the
eigenvalue analysis shown in Fig. 10, three of the six eigenvalues
are going to zero at the free surface. Knowing that the inhomo-
geneities of TEST2 model are focused in the crust, that is, close
to the free surface for the considered wavelengths, we expect that
it will not be possible to retrieve all of the six Backus residual
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Figure 14. Upscaled results of the TEST1 inversion. In grey, is plotted the reference model (PREM), in red the target model (TEST1) and in black the eight
inversion results for eight different realizations of the 3 per cent random noise.

Figure 15. Inversion results for the TEST1 model, for δp3 in the spectral domain for three different increasing iteration numbers of the inversion (and therefore
three different increasing maximum frequencies of the data frequency band).

parameters. In Fig. 16 are plotted the results of the inversions, in
the spectral domain (left-side six plots) and in the space domain,
but homogenized down to n = 70 (right-side six plots). As ex-
pected, the results accuracy is not as good as for the TEST1 case.
Indeed, the different inversions are far more scattered for param-
eters δp4, δp5 and δp6 than for the TEST1 inversions. Moreover,
the δp2 amplitude is way to low and we can consider that δp2

is not retrieved at all. Nevertheless, comparing the target and in-
verted models in the space domain as it has been done for TEST1

(Fig. 16, right-side six plots), the quality of the results is acceptable
(the eight solutions gather around the true value), except for Vpv

and η. The TEST2 numerical experience shows that, once again,
the inversions retrieve the homogenized model, even if no specific
treatment has been done to take into account the specific pattern of
the shallow inhomogeneities. To improve a shallow inversion, one
should take into account the strong trade-off between the shallow
inhomogeneities (within roughly λmin/4 distance to the free sur-
face) and the homogenized Dirichlet–Neumann boundary condition
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Figure 16. TEST2 inversion results. Left-side six plots: raw results of the inversion in the spectral domain (see eqs 10–15 and 44 for the definition of the δpi

residuals). In red is plotted the target model (TEST2) and in black the eight inversion results for eight different realizations of the 3 per cent random noise. δp1

parameter is related to ρ, δp2 to 1/C, δp3 to 1/L, δp4 to A − F2/C, δp5 to F/C and δp6 to N. See eqs (10)–(15) and (44) for the definition of the δpi residuals.
Right-side six plots: upscaled results of the inversion. In grey, is plotted the reference model (PREM), in red the target model (TEST2) and in black the eight
inversion results for eight different realizations of the 3 per cent random noise.

coefficients (Capdeville & Marigo 2008). A potential solution to the
fact that only three parameters can be inverted for at the free sur-
face, would be to invert for the two significant parameters of the
Dirichlet–Neumann boundary condition and for the density while
forcing the Backus residuals parameters at the free surface to zero.
This would stabilize the inversion but would make the inversion
interpretation difficult. We discuss further the interpretation issue
in the conclusion section.

4 R E S I D UA L U P S C A L I N G G A L L E RY

We have numerically shown in synthetic examples, that the effec-
tive medium and the inverted medium are at best the same, that
is the inverted medium cannot be more accurate than the effective
medium. We can therefore directly use the homogenization upscal-
ing tool to infer what would be retrieved at best by an inversion
without actually running the inversion. As an example, we show
in Fig. 17 some potential effects of mislocated crust interface on
the interpretation of inversion. The homogenized S-wave speed is
plotted for six different target models (red line). Each target model
has a low- or fast-velocity zone located around 100 km depth. The
residual homogenization is performed with respect to PREM (grey
line) in the same conditions as for the previous section (for a period
cut-off of 33 s) and the resulting two homogenized wave speeds
are shown (green: Vsv; blue: Vsh). We have chosen to show only Vs

results to avoid any problems that could arise from the fact that a
real inversion would have difficulties to recover all the parameters
at the free surface (see TEST2 inversion test in the previous section).
For each plotted case, the reference crust is mislocated, that is the
target model crust is not the one of the reference model. For case
(a) (Fig. 17 a), the crust interfaces mislocation does not change
the apparent location of the 100 km depth low-velocity zone, but

creates an apparent high-velocity zone just below the Moho. For
case (b), the localized low-velocity zone disappears and for case
(c), we can even see a small-amplitude fast-velocity zone instead
of a slow-velocity anomaly. Case (d) would be difficult to interpret:
depending on which S-wave speed we are looking at, we can have
a different interpretation. Finally, interpretation of cases (e) and
(f) would be similar as the one of, respectively, cases (b) and (c).
To conclude, the message of this test is that, even if an inversion
gives a good result, the interpretation of this result can be non-
trivial and misleading. Finally, let us mention that the similar issue
of a wrong a priori crustal model have been studied by Bozdağ &
Trampert (2007) and Ferreira et al. (2010) and the uses of appar-
ent anisotropic crustal models to improve numerical efficiency has
been studied by Fichtner & Igel (2008) and Lekić & Romanowicz
(2011).

5 D I S C U S S I O N A N D C O N C LU S I O N S

In this paper, we have first shown, in the non-periodic determinis-
tic layered medium or spherically symmetric case, how to perform
residual homogenization. This homogenization with respect to a ref-
erence model allows to perform more sophisticated operations than
the classical homogenization. For example, it allows to homogenize
only some interfaces of a discontinuous medium while keeping the
other intact. Moreover, it allows to model what would produce an
inversion relative to a non-homogeneous reference model. As usual,
the residual homogenized model is anisotropic even if the fine scale
model is isotropic. What is new and maybe puzzling is that the ef-
fective media now still have fine scale features like discontinuities
and this is the case if the reference model contains fine scales. The
tests performed for the forward problem show very a good accuracy.
Note that, if we do not consider anelasticity for the homogenization
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Figure 17. Grey: PREM (reference model), red: target model; green and blue: residual homogenized model (green: Vsv; blue: Vsh).

process in this paper, there is a no limitation to account for attenu-
ation when solving the wave equation for the order 0 homogenized
solution (the effective wave equation). If the attenuation model con-
tains small scales, it can be upscaled the same way as for the elastic
part. Nevertheless, we have not studied that aspect yet and a simple
lowpass filtering of the attenuation model might be good enough
for a start.

Then, using a full-waveform inversion method, we have numer-
ically shown that an earth model resulting from an inversion is an
homogenized model. Note that this result can be extended to any
other inversion method based on frequency band limited data such
as phase velocity inversion in the sense that such methods cannot
recover more than an homogenized model (but it can recover less,
because of an incomplete data coverage for example).

From the inversion perspective, this work raises some important
issues. One point is that it helps to understand more clearly the
necessity to increase little by little the frequency content of the data
along the increasing iteration number of the non-linear least-square
inversion algorithm, to avoid local minimum of the misfit functions.
Indeed, the homogenization (or residual homogenization) principle
shows that the elastic model ‘seen’ by the wavefield changes de-
pending on the frequency cut-off applied to the seismic traces. The
lower the frequency cut-off is, the smoother is the effective model.
As an inversion can only recover what is ‘seen’ by the wavefield,

it implies that the target model depends upon the frequency. In
other words, we can control the target model by tuning the cut-
off frequency applied to the data. Knowing that for many cases,
the reference models are good for very low frequencies, we can
most of the time find a low enough frequency such that the target
model is close enough to the reference model so that a linearized
inversion scheme, such as the Gauss–Newton scheme, can easily
converge without falling into a local minimum. So does it make the
inversion result unique? So far not yet, mainly because of the free
surface (there is a strong trade-off between the Dirichlet–Neumann
boundary condition parameters mentioned in Section 2.2 and the
shallow Backus residual parameters). However, it definitely reduces
the non-uniqueness especially for deep inversion and for excellent
data coverage.

An other result is that, from the technical point of view, we have
shown that using a parametrization based on the Backus residual, the
inversion is mutliscale: inverting more and more higher frequency
data enlarges more and more the wavenumber spectrum of the in-
verted model without changing the low wavenumbers obtained from
smaller data frequency band. This is not the case using a classical
parametrization, such as velocity residuals.

The next important point is the interpretation of the results. As
we have seen, the inversion can only retrieve at best an homogenized
model and this can be a problem for the interpretation of the results.
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Indeed, the delocalization effect of the homogenization can lead to
non-trivial and misleading effects that can make the interpretation
difficult. Actually, the interpretation of the results in term of geolog-
ical structures (discontinuities in our layered case) would require a
separate inverse problem, allowing to include a priori informations.
This inverse problem can be seen as a dehomogenization problem:
for a given smooth tomographic model obtained with a long-period
waveform inverse problem, what are the possible fine scale models
fitting with some given a priori informations which, once homoge-
nized, are the same as this smooth tomographic model? The problem
has a high probability to be highly non-unique and one can guess
that we will need to rely on Monte Carlo type of inversion methods
(e.g. Bodin et al. 2012a,b). This dehomogenization inverse problem
is important as it addresses the main target of seismic inversions:
obtaining information of the underground properties.

This work and conclusions need to be extended to higher dimen-
sion problems (the now popular and challenging 2-D and 3-D full-
waveform inversions developed by, e.g. Pratt et al. 1998; Capdeville
et al. 2005; Tromp et al. 2005; Fichtner et al. 2009; Virieux & Op-
erto 2009; Lekić & Romanowicz 2011, and many others) and it will
be the purpose of future works.
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Bozdağ, E. & Trampert, J., 2007. On crustal corrections in surface wave
tomography, Geophys. J. Int., 172(3), 1066–1082.

Bunks, C., Saleck, F., Zaleski, S. & Chavent, G., 1995. Multiscale seismic
waveform inversion, Geophysics, 60(5), 1457–1473.

Capdeville, Y., 2005. An efficient Born normal mode method to compute
sensitivity kernels and synthetic seismograms in the Earth, Geophys. J.
Int., 163, 639–554.

Capdeville, Y. & Marigo, J.J., 2007. Second order homogenization of the
elastic wave equation for non-periodic layered media, Geophys. J. Int.,
170, 823–838.

Capdeville, Y. & Marigo, J.J., 2008. Shallow layer correction for spectral
element like methods, Geophys. J. Int., 172, 1135–1150.

Capdeville, Y., Stutzmann, E. & Montagner, J.P., 2000. Effect of a plume on
long period surface waves computed with normal modes coupling, Phys.
Earth planet. Inter., 119, 57–74.

Capdeville, Y., Gung, Y. & Romanowicz, B., 2005. Towards global earth
tomography using the spectral element method: a technique based on
source stacking, Geophys. J. Int., 162, 541–554.

Capdeville, Y., Guillot, L. & Marigo, J.J., 2010a. 1-D non periodic homog-
enization for the wave equation, Geophys. J. Int., 181, 897–910.

Capdeville, Y., Guillot, L. & Marigo, J.J., 2010b. 2D nonperiodic homoge-
nization to upscale elastic media for P-SV waves, Geophys. J. Int., 182,
903–922.
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A P P E N D I X A : A M AT R I C E S I N
S P H E R I C A L LY L AY E R E D E A RT H

For the spheroidal case, we have

sAε
l (r, ω) =

⎛
⎜⎜⎜⎜⎝

d/r 1/C el/r 0

−ρω2 + a −d/r −aγl/2 γl/r

−γl/r 0 2/r 1/L

aγl/2 −el/r −ρω2 + bl −2/r

⎞
⎟⎟⎟⎟⎠

(A1)

with

a = 4
r2

(
A − F2

C − N
)

, bl = γ 2
l

r2

(
A − F2

C

)
− 2N

r2 ,

d = 1 − 2F
C , el = γl

F
C .

In the toroidal case, we have

t A
ε
l (r, ω) =

(
2/r 1/L

−ρω2 + �l N/r 2 −2/r

)
(A2)

with �l = (l − 1)(l + 2).
From these expressions, one can see that the averaged quantities

required to compute 〈S〉 are the Backus pi parameters, that is 〈 1
C 〉,

〈 1
L 〉, 〈A − F2

C 〉, 〈 F
C 〉 and 〈N〉 which is different from the average of

the A, C, F, L, N elastic parameters. This is the same result as that
obtained by Backus (1962).

A P P E N D I X B : S PAT I A L F I LT E R I N G
A N D S P E C T R A L D O M A I N

In this appendix, we define more precisely the lowpass filter operator
F ε0 (·) used along the paper. We define B = {un(r ), n ∈ Z} a set
of orthogonal functions that can be considered as a basis for any
properties of the Earth on the radius segment R = [ra, r�]. ra is a
radius corresponding to a depth below which the waveform are not
significantly sensitive to the elastic properties of the earth model.
Let g(r) be a function of r on R [g can for example be any of the
Backus residual parameters δpi(r)], B being an orthonormal basis
for such a function, we can write

g(r ) =
∑

n

gnun(r ) , (B1)

where

gn =
∫

R
g(r )u�

n(r ) dr , (B2)

where � is the complex conjugate. The gn coefficients constitute the
radial spectral representation of g. Note that dr in (B2) might be
replaced by rdr to account for the sphericity, but it is of little effect
knowing that the considered depth range is small with respect to
r�. For a given λmin and for some Basis B (typically Fourier basis),
we can precisely link an ε0 to an n0 such that un0 oscillate with
characteristic wavelength of value λ0. In that case, we simply have

F ε0 (g) (r ) =
∑

n,|n|≤n0

gnun(r ) . (B3)

In practice, such a brutal cut-off is not a good idea because it
delocalizes to much the properties. To avoid this drawback, we use
a smoother transition to zero in the spectral model introducing a
cosine taper

wn1,n2 (n) =

⎧⎪⎪⎨
⎪⎪⎩

1 for |n| ≤ n1,

1
2

(
1 + cos

(
π

|n|−n1
n2−n1

))
for |n| ∈ ]n1, n2],

0 for |n| ≥ n2,

(B4)

where n1 and n2 are two values close to n0. We use

F ε0 (g) (r ) =
∑

n

gnun(r )wn1,n2 (n) . (B5)

A natural basis B is the Fourier basis. In such case, we use

un(r ) = cos

(
nπ

r� − r

r� − ra

)
. (B6)

Note the fact that we use cosine Fourier basis instead of the classical
complex exponential basis is due to the fact that we extend the g
function for r > r� by the symmetric of g with respect to r�. For
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Figure B1. Example Fourier wavelet wn1,n2 (r ) (left-hand plot) and the corresponding wn1,n2 (k) where k = n/(r� − ra) for a n0/(r� − ra) � 1 km−1.

Figure B2. Left-hand plot: two examples of normal wavelet wn1,n2,r0 (see eq. B10) for two values of r0, 6000 km (solid line) and 5000 km (dashed line), for
n1 =77 and n2 = 170 and for a normal basis computed in a smooth version of PREM. It can be seen that for the same wavenumber cut-off, the wavelet is wider
at depth. The wavelet is also slightly asymmetric. In the right plot is shown the filtering operator wn1,n2 (n) as a function of n (bottom axis) and as a function of
the corresponding eigenfrequency value (top axis).

such symmetric functions, a cosine expansion is enough. For the
Fourier case, we can compute the space domain wavelet

wn1,n2 (r ) =
∑

n

un(r )wn1,n2 (n) , (B7)

and in such a case, the filtering operator can be written as

F ε0 (g) (r ) = g ∗ wn1,n2 (r ) , (B8)

where ∗ is here the spatial convolution. An example of wavelet
wn1,n2 is given in Fig. B1.

For many media, like all realistic spherically symmetric global
earth models, the minimum wavelength strongly varies with depth.
This is due to the increase of the average wave speed with depth.
From the homogenization point of view, we can always choose the
smallest minimum wavelength to measure ε0, but this is not opti-
mum. To account for the strong change of minimum wavelength
with depth, we can choose a different set of function B than the
Fourier basis. Remembering that the Fourier functions are solutions
of the wave equation in a homogeneous medium, we can use solu-
tions of the radial wave equations solved in a very smooth version of
the actual earth model as the orthogonal function un. We therefore
use

un(r ) = rU0(r, nω0) , (B9)

where the U0 is the radial eigenfunction defined in eq. (6), nω0 the
infrequency of radial order n computed for l = 0 and in a smooth
earth model roughly reproducing the variation of the S-wave speed.
The smooth model does not need to be precisely defined and any

smooth model roughly reproducing the wavelength changes with
depth is acceptable. In such a case, the action of the filter F ε0 (.)
cannot be computed as a convolution like for the Fourier case,
nevertheless, we can plot the space representation of the wavelet
wn1,n2 for different depth. To do so, we compute

wn1,n2,r0 (r ) =
∑

n

un(r )wn1,n2 (n) dr0,n , (B10)

where

dr0,n =
∫

R
δ(r − r0)un(r ) dr . (B11)

Two examples of such wavelets are plotted in Fig. B2. We refer to
this way of performing the lowpass filtering as the ‘normal mode
filtering’.

A P P E N D I X C : PA RT I A L D E R I VAT I V E
C O M P U TAT I O N W I T H N O R M A L M O D E S

For spherically symmetric earth models, the partial derivatives for
the displacement solution to the wave equation with respect to the
Earth’s elastic and density can be efficiently computed from the
Earth normal mode method (this subject has been addressed by
many authors, e.g. Woodhouse & Dahlen 1978; Tanimoto 1984;
Lognonné & Romanowicz 1990; Capdeville et al. 2000; Romanow-
icz et al. 2008). This appendix is specifically based on Capdeville
(2005) and we keep the same notations. Considering only a pertur-
bation of the anelastic tensor δc, the displacement perturbation can
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be rewritten (see Capdeville 2005) as

δu(rr , ω) · v =
∫

V

[∑
K

ε�
K (r)RK

(ω2
k − ω2)

]
: δc(rd )

:

[∑
K

εK (r)SK

iω(ω2
k − ω2)

]
drd , (C1)

where K = (q, n, l, m), mode uK (r) = u(r, ωK ), ωK is the eigenfre-
quency number K, εK the deformation tensor corresponding to the
mode uK , RK = uK (rr ) · v is the receiver term for component v,
SK = (uK , f ) the source term. In the following, generalized spher-
ical harmonics expansion will be used to simplify expressions. To
do so, it is useful to use the contravariant canonical component of
δc

δ�αβγη =
∑
i jkl

C�
αi C

�
β j C

�
γ kC�

ηlδci jkl , (C2)

as well as for the deformation tensor associated with mode uK

ε
αβ

K (r) =
∑

i j

C�
αi C

�
β jεK ,i j (r), (C3)

where C is

(Ciα) =

⎛
⎜⎜⎝

0 1 0

1√
2

0 −1√
2

i√
2

0 −i√
2

⎞
⎟⎟⎠. (C4)

The generalized spherical harmonic expansions of RK, SK and ε
αβ

K

are well known.

RK (rr ) =
∑

α=−1,1

Rα
k (rr )Y αm

l (θr , φr ) , (C5)

SK (rs) =
∑

α=−2,2

Sα
k (rs)Y αm

l
�(θs, φs) , (C6)

ε
αβ

K (rd ) = Eαβ

k (rd )Y α+β m
l (θd , φd ), (C7)

where Y αm
l is the generalized spherical harmonics and k = (q, n, l).

The expression of Rα
k and Sα

k can be found in Woodhouse & Girnius
(1982) and Eαβ

k in Tanimoto (1986). Eq. (C1) can be rewritten as

δu(rr , ω) · v =
∑

kk′mm′ηη′
Rη

k Y ηm
l (r1r )Ca

kk′mm′ S
η′
k′ Y

η′m
l ′

�

(r1s), (C8)

where k′ = (q′, n′, l′), r1s = (θs, φs), r1r = (θr , φr ).

Ca
kk′mm′ =

∫ r�

0

∫
S1

∑
αβγ ηικ

Eαβ

k

�
(r )δ�αβγη(r )E ικ

k′ (r )Y α+β m
l

×(r1)Y ι+κ m′
l ′

�
(r1)r 2 dr dr1, (C9)

where the integral over the Earth sphere V has been decomposed
into an integration over the radius from 0 to the Earth radius (r�)

and an integration over the unit sphere surface (S1) and where
r1 = (θ, φ). Using the orthogonality of the generalized spherical
harmonics, we have∫

S1
Y α+β m

l (r1)Y ι+κ m′
l ′

�
(r1)dr1 = δll ′ δmm′ δ(α+β)(ι+κ) . (C10)

Using the fact that no coupling occurs between spheroidal and
toroidal modes due to spherically symmetric inhomogeneities and
(C10), eq. (C9) reduces to

Ca
kk′mm′ = Cqnn′lδll ′δmm′δqq ′ , (C11)

where

Cqnn′l =
∑

αβγ ηικ
α+β=ι+κ

α+β+γ+η=0

∫ r�

0
Eαβ

qnl

�
(r )δ�αβγη(r )E ικ

qn′l (r )eγ ιeηκr 2dr,

(C12)

where eαβ =∑iCiαCiβ . Using the summation property for the gen-
eralized spherical harmonics (Li & Tanimoto 1993; Capdeville et al.
2000), we have

m=l∑
m=−l

Y η′m
l

�

(θs, φs)Y ηm
l (θr , φr ) = eiη′γsr Pηη′

l (cos(βsr ))eiηξsr , (C13)

where Pηη′
l are the generalized Legendre functions. If the index s is

related to the ‘source’ location and r to the ‘receiver’ one, then the
angle −ξ sr is the backazimuth at the receiver, π − γ sr the azimuth
at the source and βsr is the angular epicentral distance.

Eq. (C1) can finally be rewritten as

δu(rr , ω) · v =
∑
qnn′l

RSqnn′lCqnn′l gqnl (ω) fqn′l (ω) , (C14)

where

RSqnn′l =
∑
ηη′

Rη

qml S
η′
qn′le

iη′γsr Pηη′
l (cos(βsr ))eiηξsr , (C15)

gqnl (ω) = 1

ω2
nl − ω2

(C16)

and

fqnl (ω) = 1

iω
(
ω2

nl − ω2
) . (C17)

Going back from the frequency domain to the time domain can be
done analytically using the residue theorem or with a fast Fourier
transform. It can be seen from the final expression (C14) that the
computation only involves coupling along the radial order n, which
reduces drastically the amount of computation compared to the
classical mode coupling due to a 3-D inhomogeneities. From (C14),
for a given earth model and a given parametrization (leading to a
set of δ�), the partial derivative matrix Gi can easily be built.
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