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The vast majority of parallel scientific applications distributes computation among processes that are in a busy
state when computing and in an idle state when waiting for information from other processes. We identify the
propagation of idle waves through processes in scientific applications with a local information exchange between
the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average
busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between
two processes due to remote data dependency. This study provides a description of the large number of processes
in parallel scientific applications as a continuous medium. This work also is a step towards an understanding
of how localized idle periods can affect remote processes, leading to the degradation of global performance in
parallel scientific applications.
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I. INTRODUCTION

Since the beginning of distributed computing and the
installation of large cluster supercomputers, an unexpected
degradation of application performance was observed. One of
the most famous examples was observed on the 8192 processor
ASCI Q supercomputer at the Los Alamos National Labora-
tory [1]. A close investigation of the performance degradation
showed that system and architecture noise, relatively small
idle periods with less than <1% overhead per process [2],
can have a strong impact on the overall performance of
the distributed application on the supercomputer [1]. Recent
works show that the propagation of these local idle periods in
some cases leads to the so-called “noise bottleneck” problem,
where an increase of interconnection network speed does
not improve the application performance [2]. Future exascale
supercomputers will support the parallel execution of billions
of processes [3]. Idle periods might affect the whole system,
resulting in an ineffective usage of exascale supercomputers.
For these reasons, it is of capital importance to understand how
an idle period on a single process propagates to other processes.
It is well known that relatively short idle periods have a
strong impact on the overall performance of the distributed
applications on a supercomputer [4]. However, the physical
mechanism of how noise propagates and affects all the other
processes is still uncertain. In this article, we shed light on
the propagation of noise by showing how an idle period
propagates to other processes by local synchronization with
other processes. By spectral analysis of the processes behavior
in a typical distributed scientific application, it is shown that
there is a propagation of nondispersive idle waves at phase
velocity that is inversely proportional to the average busy
period. This is the initial time that a large number of processes
in a scientific application is described as a continuous medium
and that idle waves in distributed applications have been
identified and analyzed.

In scientific applications running on supercomputers, com-
putation is divided among processes, each one solving part of
the problem. For instance, scientific applications often solve
partial differential equations (PDE) that are first discretized
and then solved numerically on a grid. Typically, the domain-

decomposition technique is used: the variables defined on a
part of the mesh (domain) are assigned to a single process that
performs calculations on these data [5]. Often data located on
a different process are needed, and therefore communication
between processes is performed. Data are communicated
either explicitly by sending and receiving messages (message
passing) or by directly accessing memory space located on
a different process (remote direct memory access) [6]. The
single process of the distributed application can be in the
idle state when the process is awaiting data from other
processes, or it can be in the busy state when it carries out
computation or system work. In scientific applications using
the message-passing parallel programming model, only busy
processes send messages while an idle process becomes busy
when it receives a message. In this article, a simple, distributed
stencil application whose communication occurs only among
nearest-neighbor processes is studied. It is shown how an
extended busy period on one process generates idle periods
that propagate to other processes as waves. These idle waves
are perturbations traveling through processes accompanied by
a transfer of information [7].

This article is organized as follows. The second section
describes the simulation method used in this work, the third
section presents the results, and finally the fourth section
summarizes the results and concludes the article.

II. METHODS

The majority of scientific applications solves PDEs on a
grid that is distributed over several processes. As an example
of such a distributed computing application, the heat equation
in one-dimensional Cartesian geometry for the variable u is
solved. The equation is discretized by a finite difference in time
explicitly with n representing the time level on a computational
grid whose grid-cell index is denoted with i as follows:

∂u/∂t = α ∂2u/∂x2

=⇒ un+1
i = un

i + α
(
un

i−1 − 2un
i + un

i+1

)
�t/�x2, (1)

i = 1,2, . . . ,M,
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where t,x are time and space, α is a constant, �x and �t

are the grid spacing and time step, respectively. The domain
decomposition technique is used: each process calculates
Eq. (1) for N = M/No. of processes cells. Special care is
needed to calculate the boundary values for un

1 and un
N as

the un
0 and un

N+1 values are located on the memory space
of different processes [8]. These two values are located on
the processes storing information about contiguous domains.
These processes are called “nearest-neighbor” processes. Be-
fore proceeding to the calculation, messages are exchanged so
it is possible to calculate values for un

1 and un
N . This exchange

of messages implies an implicit local synchronization with
nearest-neighbor processes as each process is waiting for
messages from contiguous domains.

The code to solve Eq. (1) in a distributed environment
has been implemented in FORTRAN programming language.
The Message Passing Interface (MPI) communication library
is used to send and receive messages carrying information
about the values un

1 and un
N [6]. The code uses blocking

send and receive operations: these functions only return and
proceed with the execution only after the communication is
finished [6]. The busy periods of the distributed computation
are obtained by using traces from the FORTRAN code running
on the supercomputers: the timing between two different
MPI function calls and the number of bytes transmitted for
each process have been recorded in files called “traces”. The
sensitivity error in timing the function call is ±1 μs. In this
work, the LogGOPSim simulator of parallel applications [9]
has been used. The busy periods of the application are provided
to LogGOPSim simulator that calculates the idle periods by
modeling the communication using the LogGOPS network
model [9–11]. In this model, the most important parameters
to describe the transport of a message from one process to
another one are the latency L (the start-up time to send a
message), the time cost per byte for sending a message g

(gap parameter), and o that reflects the CPU overhead for
a communication [9]. In the reference simulations presented
here, we use L = 2.5 μs and o = 1.5 μs. These values mainly
depend on the interconnection network in use and vary on
different supercomputer architectures. L and o values can
be determined experimentally using the Netgauge tool [12].
Typical L and o values for different kind of architectures
range between 1.5–10 μs and 0.5–3.5 μs, respectively [2]. The
message size in the test application is only 8 bytes (size for a
double precision floating-point format), so the communication
cost related to g is negligible. The rendezvous protocol that
is in use when having small messages is always used to
simulate send and receive operations [9]. The traces of the
application busy periods are obtained on the KTH Lindgren
Cray supercomputer that consists of 1516 computing nodes,
each equipped with two 12-core “Magny-Cours” AMD pro-
cessors and is connected with a Cray Gemini interconnection
network. The FORTRAN PGI compiler version 4.0.46 and CRAY

MPI implementation, based on MPICH implementation, version
5.5.1 were used in the tests.

III. RESULTS

The perturbation of the busy period is driven by increasing
the number of cells to compute on one process at a given
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FIG. 1. (Color online) Physical mechanism for the generation of
idle waves in a computation distributed over nine processes. Time is
presented in the x axis, while the rank of the process is presented in
the y axis. The busy periods are represented by the dark gray (red),
idle periods in black, and communication in light gray (blue) lines. An
extended busy period in the process with rank four generates two idle
periods on nearest-neighbor processes (rank three and five). These
idle periods propagate to other processes by local synchronization of
nearest-neighbor processes as a wave.

computational cycle in the FORTRAN application. The physical
mechanism of the generation of idle waves is clear when
investigating the plot in Fig. 1. By driving a perturbation on
rank four, two idle waves are generated. An extended busy
period first generates two idle periods on the nearest-neighbor
processes that are waiting for the information of the boundary
values. The propagation speed of the idle wave can be
intuitively determined by inspecting Fig. 1 and by considering
the communication time needed by a driven idle period to
travel through processes (identified by a rank number in the
plot). For instance, in Fig. 1 the time taken by the idle period
to propagate from rank 5 to 7 is equal to the sum of the
communication time for sending a message from rank 5 to 6
and from rank 6 to 7 and one busy period on rank 6.

In the simulation presented in Fig. 2, a perturbation of the
busy period is driven on the process with rank 50 at time t =
110 ms. The average busy period in the simulation is 〈TB〉 =
1744.9 μs. 〈TB〉 is the average time of the busy period over
all the processes. Each process TB depends on three factors:
the computational period, the speed of computing units, and
the external (to the application) system operations on the
processor. The contour plot in the top panel of Fig. 2 presents
the busy and idle times in white and black, respectively. Two
propagating idle wave fronts in black are clear in this plot. An
insert in the top panel shows an enlargement of the time-rank
space with one wave front. The propagation speed for the two
idle waves is calculated by measuring the slope of the black line
and results in vP � ±0.0012 rank/μs. The amplitude of the
two idle wave fronts decreases after traveling approximately
30 processes. A spectral analysis of the system allows us to
understand the nature of the idle waves and to calculate their
phase and group velocities. The numerical dispersion relation
is shown in the bottom panel of Fig. 2. It is obtained by
first taking a two-dimensional fast Fourier transform of the
time-rank signal after applying a Hamming window [13] in
time direction (to account for the temporal nonperiodicity)
and plotting its absolute value in logarithmic scale [14,15] in
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FIG. 2. (Color online) Idle waves in a simulation with 96 pro-
cesses, N = 100 000 and a driven perturbation of the busy period
(five times the average busy period) on process with rank 50 at time
t = 110 ms. The plot in the top panel presents time on the x axis
and process rank on the y axis. The white and black colors indicate
the busy and idle periods, respectively. The bottom panel shows
the numerical dispersion relation plot obtained by spectral analysis
(maximum amplitude in red). Two nondispersive waves with opposite
propagation speeds vP � ±0.0012 rank/μs are present.

angular wave number k-angular frequency ω space. Note that
the idle waves are nondispersive. This fact, combined with the
observation of the amplitude decrease of the wave front (top
panel of Fig. 2), suggests some damping mechanism of the
generated idle waves.

It has been found that idle waves are always present in the
simulations whether or not a perturbation is driven. In fact,
busy periods are different even if the computational workload
is the same, i.e., the number of cells per rank is the same. This
is because the computing units might be faster or might be
used for system operations. Figure 3 shows a contour plot of
the busy period in a simulation with 2040 processes without a
driven perturbation. The busy periods range between �TB =
2137–1538 μs with average 〈TB〉 = 1785 μs and standard
deviation σT B = 139 μs. Some processes have constant busy
periods in time while some other processes have varying busy
periods. It can occur that the nearest-neighbor processes have
different busy periods, leading to the generation of a sea of
idle waves. The bottom panel of Fig. 3 presents the numerical
dispersion relation of the idle waves propagating with phase
velocity vP � ±0.0012 rank/μs.

As is clear in Fig. 1, the propagation speed of idle waves
vP depends on the average busy period of the application
〈TB〉 and on the interconnection network parameters, latency
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FIG. 3. (Color online) Idle waves in a simulation with 2040
processes with N = 100 000 and without a perturbation. In the
top panel, a contour plot of busy periods. The insert presents an
enlargement of the contour plot including 168 processes. The bottom
panel shows the numerical dispersion relation of idle waves.

L, and the CPU overhead for communication o. A series
of simulations with varying 〈TB〉, L, and o was carried
out to determine the dependency of vP on 〈TB〉, L, and o.
The top panel of Fig. 4 shows 1/vP with varying 〈TB〉 and
constant L = 2.5 μs,o = 1.5 μs. The linear best fit of the
data points is 1/vP = 0.48〈TB〉 + 15.3. The bottom panel
presents 1/vP with varying L (bottom x axis and black line)
and o (top x axis and red line) and constant 〈TB〉 = 152 μs,
o = 1.5 μs (for varying L) and L = 2.5 μs (for varying o).
The linear best fits of the data points for the two cases are
1/vP = 0.97L + 84.2 (black line) and 1/vP = 3.07o + 81.8
(red line). Several additional experiments confirm the linear
dependency of 1/vP on 〈TB〉, L, and o with corresponding
approximated coefficients 0.5, 1, and 3.0. An equation for the
propagation speed of the idle waves has been experimentally
determined as

vP � ±2/(〈TB〉 + 2L + 6o) rank/s. (2)

In our simulations, we found that the strong interaction of
two driven idle fronts leads to the disappearance of the two
driven idle waves, similar to the destructive interference of two
waves. This is clear from Fig. 5, where a contour plot of the
busy and idle periods in a simulation with periodic boundary
conditions on 384 processes is shown in white and black colors,
respectively. A perturbation is driven on the process with rank
zero and propagates in two opposite directions. The two idle
waves interact approximately at time 4 ms and disappear after
the destructive interaction. An insert in Fig. 5 presents an
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FIG. 4. (Color online) 1/vP dependency on 〈TB〉 (top panel), L

(bottom panel black line), and o (bottom panel red line). Linear best
fits are superimposed to the data points.

enlargement of the two idle wave interactions in the space
time-rank.

Collective communication is an operation that involves all
processes [16]. In scientific applications, a common use of
collective communication is to calculate the inner product of
two vectors distributed among different processes. The local
(to the process) components of the vectors are first multiplied
and summed on a single process. Then the result of the local
inner product is communicated from all the processes to one
process, which is typically with rank zero (root process) and is
added to the results from other processes. Collective commu-
nication is achieved by several point-to-point communications
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FIG. 5. Interaction between two idle waves in a simulation with
384 processes, N = 100 000, and a driven perturbation of the busy
period on rank zero. The plot presents time on the x axis and process
rank on the y axis. The white and black colors indicate the busy
and idle periods, respectively. The insert in the picture represents an
enlargement of the rank-time plot during the idle wave interaction.
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FIG. 6. (Color online) Numerical dispersion relation obtained
from a simulation with communication with nearest-neighbor com-
munication and a collective operation at each computational cycle
with N = 100 000 on 96 processes.

that do not necessarily involve nearest-neighbor processes. For
this reason, idle waves propagating through nearest-neighbor
processes cease to propagate in the presence of a collective
operation. To prove this, we add a collective operation after
the nearest-neighbor communication and the computation of
Eq. (1) at each cycle of our application. In this simulation, the
reduction operation is modeled with LogGOPSim using the
binomial tree algorithm. The numerical spectral analysis of
this case is presented in Fig. 6. A clear signature of idle waves
propagating through nearest-neighbor communication is not
present.

We finally present the results relative to simulations using
nonblocking send and receive operations. The nonblocking
communication consists of two phases: in the first phase
the communication starts and then a completion is enforced
in the second phase. This two-stage operation allows us to
overlap communication and computation by starting commu-
nication first, computing some operations that do not depend
on communicated values, and enforcing the completion of
communication before finishing computing. In our scientific
application, this is achieved by starting communication of
the boundary values first, computing the value un+1

i for
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FIG. 7. (Color online) Numerical dispersion relation obtained
from a simulation using nonblocking send and receive for commu-
nication between nearest-neighbor processes with N = 100 000 on
96 processes. In this case, the propagation speed of idle waves is
vP � ±0.0027 rank/μs.
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i = 2, . . . ,N − 1, completing the communication, and finally
computing un+1

1 and un+1
N . We remark that synchronization

between nearest-neighbor processes is still present when
nonblocking communication is used. For this reason, idle
waves propagate even in the presence of nonblocking com-
munication with nearest-neighbor processes. Because of the
overlap of computation and communication, the propagation
speed of idle waves is inversely proportional to the effective
average busy period. Figure 7 shows the numerical dispersion
relation obtained from a simulation with nonblocking send
and receive for communication between nearest-neighbor
processes with N = 100 000 on 96 processes. The two idle
waves propagating with opposite velocities are still present.
Idle waves in nonblocking communication are faster than the
idle waves in blocking communication (see Fig. 2) as the
effective average busy period is smaller when there is an
overlap of communication and computation.

IV. DISCUSSION AND CONCLUSION

This work provides for a description of a large number of
processes in a scientific application as a continuous medium
and identifies the presence of idle waves propagating through
processes via local synchronization. The main results reported
in this article are as follows.

(1) Idle periods are generated locally (to the process) as a
result of a local busy period unbalance and propagate globally
by local synchronization of the processes. In this way, a
localized computing unbalance can impact the performance
of all the distributed computing processes.

(2) Idle waves are nondispersive in nature and their
propagation speed depends on the average busy period and
on the interconnection network parameters. If the average
busy period is much larger than the time required to send
and receive a message, then vP ≈ 2/〈TB〉 rank/s. This speed
is relatively slow when compared to the whole execution time
of the applications, i.e., in an application with 100 processes it
takes 50 computational cycles (with computing time 〈TB〉) for
an idle wave to travel across all the processes. For this reason,
idle waves remain in the system for a relatively long time in
the absence of absorption mechanisms.

(3) Idle waves are always present with and without a
driven perturbation. This is because computing units have
different computing speeds, and system calls might disturb the
computation. Perturbations of the busy period occur frequently
in scientific applications. The major source of idle waves is the
root process as it is often used for I/O activities in combination
with other tasks.

(4) Idle waves are damped in time. In addition, we observed
that two driven idle fronts strongly interact and that the wave
fronts amplitudes are strongly modified (damped) after the
interaction.

(5) Collective communications, operations that involve all
the processes in the application, lead to the absorption of idle
waves propagating through nearest-neighbor communication.

(6) The idle wave propagation mechanism is based on
the local synchronization of processes. Idle waves are still
present when nonblocking communication operations are
used since synchronization remains. In fact, the nonblocking
communication consists of two phases: in the first phase the
communication starts and then a completion is enforced in
the second phase. Nonblocking communication still requires
the synchronization of processes allowing the idle waves to
travel.

In our simulations, we assume that the interconnection net-
work is fully connected, while network topologies are typically
sparsely connected. For this reason, network congestion is not
taken into account in the simulation. In addition, a simple
nearest-neighbor communication pattern has been studied
while large computer codes often exhibit more complicated
communication pattern. As part of future work, idle waves in
application with more complex communication patterns will
be studied.

The experiment dispersion relation of the idle waves
obtained from the numerical simulations reads [using vP given
by Eq. (2)]

ω2 − v2
P k2 = 0. (3)

The numerical experiments also suggest the presence of some
damping mechanisms (see Fig. 2). This should guide the
building of a model that describes the dynamics of the idle
periods duration Ip in large parallel computing applications
considered as a continuous medium. The dynamics of idle
period duration should be described by a damped wave
equation of the form(

∂2

∂t2
+ 2ν

∂

∂t
+ v2

P

∂2

∂x2

)
Ip = 0, (4)

where x is a continuous description of the rank space and ν

a damping rate to be characterized. The preparation of such
model should be addressed in future works.

This study poses the basis for understanding the implication
of local synchronization and the propagation of idle waves.
The main result is that a local (to the process) degradation of
performance can propagate globally to all the other processes,
leading to an overall degradation of the parallel application on
the supercomputer. We suggest that many cases of unexpected
performance degradation of distributed scientific applications
can be explained in terms of idle waves.
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