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S U M M A R Y
A general approach for constructing numerical equivalents of time-reversal mirrors is intro-
duced. These numerical mirrors can be used to regenerate an original wavefield locally within
a confined volume of arbitrary shape. Though time-reversal mirrors were originally designed
to reproduce a time-reversed version of an original wavefield, the proposed method is inde-
pendent of the time direction and can be used to regenerate a wavefield going either forward in
time or backward in time. Applications to computational seismology and tomographic imaging
of such local wavefield reconstructions are discussed. The key idea of the method is to directly
express the source terms constituting the time-reversal mirror by introducing a spatial window
function into the wave equation. The method is usable with any numerical method based on
the discrete form of the wave equation, for example, with finite difference (FD) methods and
with finite/spectral elements methods. The obtained mirrors are perfect in the sense that no
additional error is introduced into the reconstructed wavefields apart from rounding errors that
are inherent in floating-point computations. They are fully transparent as they do not interact
with waves that are not part of the original wavefield and are permeable to these. We establish
a link between some hybrid methods introduced in seismology, such as wave-injection, and
the proposed time-reversal mirrors. Numerical examples based on FD and spectral elements
methods in the acoustic, the elastic and the visco-elastic cases are presented. They demonstrate
the accuracy of the method and illustrate some possible applications. An alternative imple-
mentation of the time-reversal mirrors based on the discretization of the surface integrals in
the representation theorem is also introduced. Though it is out of the scope of the paper, the
proposed method also apply to numerical schemes for modelling of other types of waves such
as electro-magnetic waves.

Key words: Numerical solutions; Numerical approximations and analysis; Tomography;
Seismic tomography; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

The development of powerful computer clusters and efficient nu-
merical computation methods, such as finite difference (FD), finite
element (FE) and spectral element (SEM) methods has made it pos-
sible to compute seismic wave propagation in a heterogeneous 3-D
Earth with unprecedented accuracy (e.g. Moczo et al. 2002; Dumb-
ser et al. 2007; Peter et al. 2011; Cupillard et al. 2012). However,
the cost of these computations is still problematic in many situa-
tions. For example, high-resolution imaging of the subsurface in
exploration seismology or global scale Earth tomography require at
least a few thousands of such wave propagation simulations. Hence,

part of the ongoing research effort is dedicated to the development
of faster modelling methods for computing synthetic seismograms
in a 3-D heterogeneous Earth. Capdeville et al. (2002, 2003) pro-
posed to couple SEM simulations with normal modes calculation
(C-SEM). Robertsson & Chapman (2000) proposed to limit the
wave propagation calculations inside a subregion. Nissen-Meyer
et al. (2007) used 2-D simulations to compute 3-D seismograms in
a 1-D earth model. Capdeville, Guillot & Marigo (2010), Capdev-
ille et al. (2013) and Fichtner et al. (2013) developed upscaling
techniques to account for smaller scale heterogeneity at a reduced
computational cost. Thanks to some of these developments, and
for the first time, Lekić & Romanowicz (2011) and French et al.
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(2013) developed 3-D global models of the upper mantle using
SEM simulations. At the local and continental scale, full wave-
form inversions (e.g. adjoint tomography) that are using a large
quantity of wave propagation simulations can be implemented on
current generation computers (e.g. Bamberger et al. 1982; Chen
et al. 2007; Fichtner et al. 2010; Tape et al. 2009; Rickers et al.
2012; Zhu et al. 2012; Rickers et al. 2013). Due to their smaller
size, these models offer higher resolution. They provide us with
images of the crust and the upper part of the mantle. In an at-
tempt to extend such local full waveform inversions into the deep
earth, we developed a numerical equivalent of time-reversal mirrors
that permits to limit the wave propagation computation to a region
of interest within the earth. This paper details the implementation
of the proposed time-reversal mirror and discusses some possible
applications.

Time-reversal, as introduced by Fink et al. (Fink 1992, 1997; Fink
et al. 1989; Fink et al. 2001) and more recently applied to geophysi-
cal problems (e.g. Larmat et al. 2006; Larmat et al. 2008; Montagner
et al. 2012) is a two-step process. First, waves propagating through a
medium are recorded with an array of transducers. Then, the records
are reversed in time and re-emitted by the transducers back into the
medium, so that the wave energy is refocused in time and space
at the position of the source. The refocusing property is due to the
reciprocity in space and reversibility in time of the elastic/acoustic
wave equation, provided that attenuation is negligible. The array
of transducers used for time reversal is commonly referred to as
a time-reversal mirror, or, as a time-reversal cavity, in the special
case where it forms a closed surface. In theory, it is possible to
regenerate the time reversed version of the original wavefield inside
a time-reversal cavity by recording the wavefield and its gradient
and re-emitting appropriate signals with the mirror’s transducers.
However, achieving a perfect reconstruction of the original wave-
field experimentally is a difficult task due to physical limitations
(Cassereau & Fink 1992). For example, recording both the wavefield
and its gradient or generating arbitrary sources is not fully possible
with available transducers. In addition, the energy refocusing at the
source point needs to be canceled out using an acoustic sink in order
to regenerate only the causal part of the wavefield. Last, in the case
of dissipative media, the time symmetry is broken and regenerating
the exact time-reversed version of the original wavefield is not possi-
ble. Hopefully, numerical methods do not suffer such limitations as
arbitrary complex sources can be modelled. We will show that a per-
fect reconstruction of the original wavefield using numerical time-
reversal mirrors is achievable in the acoustic, elastic, and to some
extent in the visco-elastic case that is more delicate due to numeri-
cal instabilities (i.e. because the roundoff error is amplified with the
wavefield).

Though they are not always referred as such, time-reversal mir-
rors are used and have some important applications in computational
seismology. For example, the computation of sensitivity kernels
in full waveform inversion (e.g. Bamberger et al. 1982; Tarantola
1984; 1988; Tromp et al. 2005; Fichtner et al. 2006; Plessix 2006;
Liu & Tromp 2008; Chen 2011) or reverse time migration (Baysal
et al. 1983; Whitmore 1983; Biondi & Shan 2002; Yoon et al. 2003,
2004; Mulder & Plessix 2004; Bednar et al. 2006) requires to have
simultaneous access to both the forward wavefield (e.g. the wave-
field generated by an earthquake) at time T − t (where T is the
duration of the simulations) and a time-reversed wavefield at time
t (e.g. the back propagation of the difference between the observed
seismogram and the synthetic seismogram computed in the forward
calculation). Such a simultaneous access is unachievable when the

forward simulation and the adjoint simulation are run simultane-
ously in the time domain. One solution is to first run the forward
simulation and save the entire wavefield versus time and space so its
values can be later recovered at the desired instant, when running the
adjoint simulation. While it has been sucessfully implemented by
subsampling the forward wavefield (e.g. Fichtner et al. 2009), this
approach requires a significant amount of disk space. Another ele-
gant approach that greatly reduces the storage requirement is to use
an extra simulation where the time reversed version of the forward
wavefield is regenerated (e.g. Gauthier et al. 1986; Akcelik et al.
2003; Liu & Tromp 2006, 2008). That operation requires a numeri-
cal equivalent of a time-reversal mirror. In that case, two simulations
are being run in parallel (i.e. the adjoint simulation and the time-
reversed simulation), both wavefields are known simultaneously at
the desired instant, and the adjoint sensitivity kernel can be com-
puted on the fly, provided that dissipation is sufficiently weak. Al-
ternatives strategies for limiting the memory usage are discussed
in, for example Symes (2007). Alternative methods such as random
boundaries or time-varying boundaries have also been introduced
to back propagate a forward wavefield in parallel with the adjoint
simulation (e.g. Clapp 2009; Fletcher & Robertsson 2011).

As their name suggests, time-reversal mirrors were originally
thought to propagate a wavefield backward in time, however, thanks
to the time-reversal invariance of the wave equation, these tools
can be used equally to propagate a similar wavefield forward in
time. Used in such a manner, time-reversal mirrors relate to numer-
ous so-called hybrid methods or domain decomposition methods
that have been introduced in seismology. Hybrid methods gener-
ally divide the computational domain into two domains in which
wave propagation is computed separately, often with different meth-
ods. A larger volume where wave propagation is computed in a
background model and a smaller volume encompassed by the first
one and containing the object responsible for the scattered waves
of interest. Various hybrid methods are presented in, for example
Alterman & Karal 1968; Bielak & Christiano 1984; Bielak et al.
2003; Bouchon & Sanchez-Sesma 2007; Capdeville et al. 2002,
2003; Godinho et al. 2009; Moczo et al. 1997; Monteiller et al. 2013;
Opršal et al. 2009; Robertsson & Chapman 2000; To et al. 2005;
Wen & Helmberger 1998; Yoshimura et al. 2003; Zhao et al. 2008.
The motivation behind hybrid methods is that approximate solu-
tions for wave propagation and/or simpler (e.g. 1-D) background
models may be used in the larger volume while exact wave prop-
agation computations can be limited to the inner volume. This al-
lows for very efficient computation of the wavefield due to scatter-
ers that are localized in a specific region. Hybrid methods divide
into two categories, real time methods, where boundary conditions
are exchanged rapidly (e.g. Capdeville et al. 2002) and two-step
methods, where wave propagation is first performed in the back-
ground model and then used as an input to obtain the wavefield
inside the inner volume (e.g. Robertsson & Chapman 2000). Al-
though often treated as boundary condition problems, the meth-
ods falling into the second category can interestingly be thought
as a specific use of, and implemented with, time-reversal mirrors.
In that case, instead of imposing boundary conditions at the sur-
face of a given volume, an equivalent excitation source is used
to inject the wavefield into it. We will show, for example that the
wave injection method proposed by Robertsson & Chapman (2000)
can be seen as an exact numerical equivalent of a time-reversal
mirror.

In the acoustic case, the ideal response of a time-reversal mir-
ror can be expressed formally in the frequency domain with the
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Helmoltz-Kirchhoff representation theorem (e.g. Cassereau & Fink
1992; Fink & Prada 2000)

p∗(x) =
∮

S

1

ρ

(
G(x, x′)∇ p∗(x′) − p∗(x′)∇G(x, x′)

) · dS, (1)

where p is the acoustic pressure, ρ is density, G is the Green’s
function and the star symbol (∗) denotes the complex conjugate. In
the elastic case, and when accounting for the acoustic sink needed to
cancel out the energy refocusing at the source location, the response
can be expressed using the representation theorem (e.g. De Hoop
1958; Aki 1980; Snieder 2002)

u∗
i (x) =

∫
V

Gin(x, x′) f ∗
n (x′) dV ′

+
∮

S
Gin(x, x′)n j Cnjkl∂

′
ku∗

l (x′) d S′

−
∮

S
u∗

n(x′)n j Cnjkl∂
′
k Gil (x, x′) d S′, (2)

where u is the displacement vector, the Green’s tensor, Gin(x, x′),
denotes the displacement at location x in the i direction due to a unit
point force at x′ in the n direction, Ci jkl = Ci jkl (x) is the elasticity
tensor and the notation ∂ ′

k stands for the derivative with respect to
the x ′

k coordinate: ∂ ′
k f ≡ ∂ f/∂x ′

k . Eq. (2) means that, if the exciting
force fn(x′) is known throughout the volume V, and the wavefield
un(x′) and the associated traction n j Ci jkl∂

′
kul (x′) are known on the

surface S, we have enough information to regenerate the wavefield
everywhere within the volume V. Practically, the construction of an
elastic time-reversal mirror consists in determining the excitation
source that, applied on the surface S, will generate the response in
eq. (2), that is that will regenerate the original wavefield inside the
volume V.

In Section (2), we show that the mirror’s excitation source can
be directly expressed by introducing a spatial window function into
the wave equation. We show that, in the special case where the
window function is bi-valued (i.e. it is either equal to zero or one),
the response of the proposed excitation source satisfies the repre-
sentation theorem in eq. (2). In Section (3), we propose a general
method for implementing the proposed time-reversal mirrors nu-
merically. We detail the numerical scheme obtained when using FD
methods and the FE/SEMs methods. An alternative implementation
based on a direct discretization of the surface integrals in eq. (2)
is introduced in Section (3.2). In Section (5), we present numerical
examples demonstrating the accuracy of the proposed methods and
illustrating some possible applications.

2 D E R I VAT I O N O F T H E E L A S T I C
M I R RO R

In this section, we show that the mirror’s excitation force can be
naturally expressed by inserting the local version of the original
wavefield that we want to regenerate (see eq. 5) into the wave equa-
tion. Practically, this involves applying a spatial window function
to the original wavefield. We demonstrate that, when the window
function employed defines a closed subvolume, the response to the
obtained mirror’s excitation is given by the representation theorem
in eq. (2). Consider a displacement wavefield u(x, t) in an arbitrary
volume V that is a solution of the wave equation

ρün − ∂ j

(
Cnjkl∂kul

) = fn . (3)

Figure 1. For an arbitrary wavefield u defined in a general volume V, we
want to generate the wavefield uM that is equal to u inside a subvolume M
encompassed in V and zero elsewhere.

In the frequency domain, eq. (3) is

ρω2un + ∂ j

(
Cnjkl∂kul

) = − fn . (4)

Our goal is to construct a mirror or excitation force field that regen-
erates the wavefield uM (x, t) within a subvolume M ∈ V bounded
by a closed surface ∂M so that

uM (x, t) =
{

u(x, t) for all x ∈ M

0 for all x /∈ M
, (5)

as pictured in Fig. 1. The wavefield uM can be expressed as

uM (x, t) = u(x, t)w(x), (6)

where w is a time-independent window function. In this section, we
consider the situation where w is bi-valued, that is we have

w(x) =
{

1 for all x ∈ M

0 for all x /∈ M
. (7)

Note that the window function w as defined in eq. (7) is not
differentiable in the classic sense, however, its derivative may be
expressed in terms of Dirac’s delta distributions. The function w

may also be approximated with, and thought as, an arbitrary con-
tinuous function that is gradually varying from zero to one in the
vicinity of ∂M. Assuming that, the local wavefield uM is differen-
tiable in time and space, we now introduce the force field

f M
n = −ρω2uM

n − ∂ j

(
Cnjkl∂kuM

l

)
, (8)

which is by definition the mirror’s excitation force field that gener-
ates uM . Inserting uM

n = wun in eq. (8) and replacing ρω2un with
its value from eq. (4) we obtain

f M
n = w∂ j

(
Cnjkl∂kul

) + w fn − ∂ j

(
Cnjkl∂kwul

)
, (9)

or, after developing and simplifying

f M
n = w fn − Cnjkl∂ jw∂kul − ∂ j (ulCnjkl∂kw). (10)

When the original wavefield u(x, t) is known in the vicinity of ∂M,
the exciting force f M can be obtained by evaluating the right-hand
side of eqs (8)–(10). In the next section, we show that a discrete
equivalent of eq. (9) allows for a straightforward implementation of
the mirror.
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Figure 2. The distance function d(x) expresses the minimum distance form
a point x to the surface ∂M. The signed distance function �(x) shares the
same absolute value with d(x) but it is, respectively, negative and positive
inside and outside the volume M. The window function w is defined im-
plicitly as a function of �(x), it is equal to one inside volume M and zero
outside.

We now show that the response uM at location x due to the mir-
ror’s excitation f M in eqs (8)–(10) is indeed given by the representa-
tion theorem in eq. (2). The response uM can be expressed formally
by convolving the exciting force f M in eq. (9) with the Green’s
function G(x, x′) of the medium and integrating over volume, that
is we have

uM
i (x) =

∫
V

Gin(x, x′) f M
n (x′) dV ′. (11)

For the sake of clarity, before we evaluate eq. (11), we first explicit
w using implicit functions. At a given point x ∈ M , the distance to
the surface ∂M can be expressed as

d(x) = min
(∣∣x − x′′∣∣) for all x ′′ ∈ ∂ M, (12)

and the signed distance function φ(x) can be defined as

φ(x) =

⎧⎪⎨
⎪⎩

−d(x) for all x ∈ M

d(x) for all x /∈ M

d(x) = 0 for all x ∈ ∂ M

. (13)

Notice that, as d is the Euclidian distance, we have |∇φ| = |∇d| = 1
and the normal vector n to the surface ∂M is n = ∇φ, or, using
index notation ni = ∂ iφ. A graphical representation of the functions
d(x) and φ(x) is pictured in Fig. 2. The window function w can now
be defined implicitly using the 1-D Heaviside function H(x) as

w(x) = 1 − H (φ(x)) , (14)

and its gradient is

∂iw(x) = −δ (φ(x)) ni . (15)

As an example, in the case of a volume within a spherical shell of
radius one centred at the origin, one can use

φ(x) =
√

x2 + y2 + z2 − 1. (16)

We now have all the ingredients to evaluate the response uM in eq.
(11). Inserting eq. (10) into eq. (11) gives

uM
i (x) =

∫
V

w(x′)Gin(x, x′) fn(x′) dV ′

−
∫

V
Gin(x, x′)∂ ′

jw(x′)Cnjkl∂
′
kul (x

′) dV ′

−
∫

V
Gin(x, x′)∂ ′

j

[
ul (x

′)Cnjkl∂
′
kw(x′)

]
dV ′. (17)

When applying Gauss’s theorem to the last term on the right-hand
side of eq. (17), we obtain∫

V
Gin(x, x′)∂ ′

j

[
ul (x

′)Cnjkl∂
′
kw(x′)

]
dV ′

=
∫

V
∂ ′

j

[
Gin(x, x′)ul (x

′)Cnjkl∂
′
kw(x′)

]
dV ′

−
∫

V
∂ ′

j Gin(x, x′)ul (x
′)Cnjkl∂

′
kw(x′)dV ′

=
∮

S
n j Gin(x, x′)ul (x

′)Cnjkl∂
′
kw(x′)d S′

−
∫

V
∂ ′

j Gin(x, x′)ul (x
′)Cnjkl∂

′
kw(x′)dV ′

= −
∫

V
∂ ′

j Gin(x, x′)ul (x
′)Cnjkl∂

′
kw(x′)dV ′, (18)

where the surface integral vanishes because the integrand is com-
pactly supported on ∂M, that is because V can be arbitrary large,
the surface ∂M on which ∂ ′

kw(x′) �= 0 can be assumed to be strictly
inside S. Inserting eq. (18) into eq. (17), we obtain

uM
i (x) =

∫
V

w(x′)Gin(x, x′) fn(x′)dV ′

−
∫

V
Gin(x, x′)∂ ′

jw(x′) Cnjkl∂
′
kul (x

′) dV ′

+
∫

V
∂ ′

j Gin(x, x′)ul (x
′) Cnjkl∂

′
kw(x′) dV ′. (19)

Finally, substituting the indices j with k and n with l in the last
integral on the right-hand side, using the stiffness tensor sym-
metry Cnjkl = Clkjn and using the identities

∫
V w(x)g(x)dV =∫

M g(x)dV and
∫

V g(x)∂iw(x)dV = − ∫
V g(x)∂i H (φ(x)) dV =

− ∫
V g(x)niδ (φ(x)) dV = − ∮

∂ M g(x)ni d S, we obtain the represen-
tation theorem in its classic form

uM
i (x) =

∫
M

Gin(x, x′) fn(x′) dV ′

+
∮

∂ M
Gin(x, x′)n j Cnjkl∂

′
kul (x

′) d S′

−
∮

∂ M
un(x′)n j Cnjkl∂

′
k Gil (x, x′) d S′. (20)

The response in eq. (2) is simply obtained by substituting the com-
plex conjugate of the wavefield (phase-conjugation being equivalent
to time-reversal), its gradient and its sources into eq (20). Interest-
ingly, we derived the representation theorem without invoking reci-
procity. We showed that inserting a spatial window function into the
wave equation allows to naturally express the mirror’s excitation. In
the situation where the window function defines a closed subvolume,
the response to the mirror’s excitation is given by the representation
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theorem. In the next section, we adopt a similar approach based on
the discrete version of the wave equation to construct a numerical
equivalent of a time reversal mirror.

3 N U M E R I C A L M E T H O D

3.1 Direct discrete differentiation method

3.1.1 General displacement formulation

In this section, we start with the discrete wave equation and follow
the same procedure as in Section 2 to construct the discrete equiva-
lent of the mirror’s excitation. The obtained expressions are general
in the sense that they can be used along with any numerical method
solving the discrete wave equation. The proposed expressions for
the mirror’s excitation permit an exact reconstruction of the orig-
inal wavefield. The approach presented in this section allows to
construct time-reversal mirrors having complex geometry, as, the
surface on which the mirror acts, is implicitly defined by a spatial
window function.

Practically, the numerical reconstruction of an original wavefield
on a subgrid involves two successive steps. First, the excitation force
field in eqs (8) and (9) needs to be computed versus time. Then, the
induced response in eq. (11) is computed in the region of interest.
In this section, we assume that both operations are performed using
the same numerical method on identical meshes. However, in the
perspective of practical applications, it is important to keep in mind
that the excitation force field may be obtained using any other
numerical method or analytical solution provided that the wavefield
can be computed exactly in the desired background model and
interpolated at the grid points.

In order to solve the wave equation numerically, it first needs
to be discretized. Regardless of the method, the discrete equivalent
of eq. (3) can be written in the general form (e.g. Hughes 1987;
Fichtner 2010)

M · ¨̄u + K · ū = f̄, (21)

where M and K are the mass matrix and the stiffness matrix, re-
spectively, and the vector ū(t) usually contains the discrete values
of the wavefield u(x, t) evaluated at the grid points or some related
expansion coefficients. Suppose that, using a first simulation, we
solve the linear system in eq. (21) within an arbitrary volume for an
excitation f̄. We then want to regenerate the discrete approximation
ūM (t) of the local wavefield uM (t) = wu(t) that is equal to u in-
side a subvolume M and zero outside. One obvious way to proceed
is to record ū(t) versus time and space during the first simulation
so its values can be recovered afterwards to obtain ūM (t). Another
approach is to construct a mirror excitation f̄ M that satisfies

M · ¨̄u
M + K · ūM = f̄ M . (22)

and to perform a second simulation that solves the linear system in
eq. (21) where the source term f has been replaced by f M . In order
to compute the excitation f̄ M one can define a general matrix W̄ that
acts as the window function w in eq. (5) in the sense that it satisfies

ūM (t) = W̄ · ū(t). (23)

Inserting eq. (23) into eq. (22) gives an explicit expression for
f̄ M that depends only on the values ū computed during the first
simulation, we have

f̄ M = M · (
W̄ · ¨̄u

) + K · (
W̄ · ū

)
. (24)

One advantage of using eq. (24) along with an extra simulation
as opposed to recording the full wavefield lies in the fact that the
matrices M and K are usually sparse. This is because most numerical
methods use basis functions with compact spatial support. Due to
this, f̄ M is zero at most grid nodes and one only needs to store its
value at a few grid nodes. Note, however, that this is not necessarily
the case for methods using high-order operators to evaluate the
discrete spatial derivatives. We now consider, for a moment, the
case where the matrix W̄ is diagonal and bi-valued, that is its off
diagonal elements are zero and its diagonal elements are either
equal to zero or one. For example, assuming the vector component
ūi contains the displacement value at the grid node i, we have:
W̄ii = 1 for the nodes i belonging to a subgrid where we want to
reconstruct the wavefield and Wij = 0 elsewhere. In that situation,
in order to evaluate f̄ M using eq. (24) one only needs to know the
displacement ū and its time derivative ¨̄u recorded at grid points
inside the subvolume or subgrid where we want to reconstruct the
wavefield. Interestingly, by subtracting eq. (21) from eq. (24), it is
possible to express f̄ M as

f̄ M = f̄ − M · [
(I − W̄) · ¨̄u

] − K · [(
I − W̄) · ū

)]
. (25)

In this case, in contrast to eq. (24), one only needs to know the
displacement ū and its time derivative ¨̄u recorded at grid points
outside the subgrid where we want to reconstruct the wavefield.
It is important to observe that two complementary sets of coeffi-
cients (e.g. corresponding to the wavefield values recorded at nodes
inside and outside the subgrid of interest) contain the exact same
information needed to regenerate the original wavefield inside the
subdomain. As we will soon see, depending on the situation, using
either eq. (24) or eq. (25) to compute f̄ M can be more efficient com-
putationally even though both expressions are exactly equivalent.
In the situation where ¯̈u cannot be obtained because the past and/or
futures values of ū are not known (e.g. at the beginning and the end
of the simulation), it is possible to insert

¨̄u = M−1
(
f̄ − K · ū

)
(26)

in eqs (24) and (25) to obtain an expression that only depends on the
wavefield ū evaluated at the current time. In the desirable situation
where both W and M are diagonal, eq. (24) becomes

f̄ M = W̄ · f̄ − W̄ · (K · ū) + K · (
W̄ · ū

)
, (27)

and eq, (25) becomes

f̄ M = W̄ · f̄ + (I − W̄) · (K · ū) − K · [(
I − W̄) · ū

)]
. (28)

In summary, either one of eqs (24)–(28) can be used to compute
the mirror excitation f̄ M (t). The simplest strategy to regenerate the
wavefield ūM (t) inside a subvolume M is to solve the linear system
in eq. (21) using a first simulation. During that simulation, while the
values of ū(t) are known, the source term f̄ M (t) can be computed
and stored. Then, the linear system in eq. (22) is solved in a second
simulation using the appropriate mirror source f̄ M . As we will soon
see, computing f̄ M (t) explicitly during the first simulation is often
not needed. In most cases, it is better to store the values of the
wavefield ū at appropriate grid nodes.

3.1.2 Split formulation

In some situations, depending on the numerical method employed,
it is more convenient to work with a split formulation of the discrete
wave equation. For example, the displacement-stress formulation

M · ¨̄u + K1 · σ̄ = f̄, (29)

 at B
iblio Planets on N

ovem
ber 2, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Time-reversal mirrors for tomographic imaging 1585

σ̄ − K2 · ū = T̄, (30)

or the velocity-stress formulation

M · ˙̄v + K1 · σ̄ = f̄, (31)

˙̄σ − K2 · v̄ = ˙̄T, (32)

where v is the discrete approximation of the velocity vector, σ̄

is the discrete approximation of the stress tensor, K1 and K1 are
called stiffness matrices, by extension, and, f̄ and T̄ are the discrete
approximations of a vector source and a tensor source, respectively.
For these split-schemes, it is more appropriate (but not necessary) to
apply the spatial window w to all fields involved in the calculation.
For example, when using the velocity-stress formulation, one can
define the matrices W1 and W2 using the identities

σ̄ M (t) = W̄1 · σ̄ (t), (33)

v̄M (t) = W̄2 · v̄(t), (34)

where, σ̄ M (t) and v̄M (t) are the discrete approximation of the local
wavefields σ M (t) = wσ (t) and vM (t) = wv, respectively. Inserting
eqs (33) and (34) into eqs (31) and (32), respectively, leads to the
mirror excitations

f̄ M = M · (
W̄2 · ˙̄v

) + K1 · (
W̄1 · σ̄

)
, (35)

˙̄T
M = W̄1 · ˙̄σ − K2 · (

W̄2 · v̄
)
, (36)

or, when subtracting eqs (31) and (32) from eqs (35) and (36),
respectively,

f̄ M = f̄ − M · [
(I − W̄2) · ˙̄v

] − K1 · [
(I − W̄1) · σ̄

]
, (37)

˙̄T
M = ˙̄T − (I − W̄1) · ˙̄σ + K2 · [(

I − W̄2

) · v̄
]
. (38)

When M and W are diagonal, the excitations in eqs (35)–(38) can
be rewritten as

f̄ M = W̄2 · f̄ − W̄2 · (K1 · σ̄ ) + K1 · (
W̄1 · σ̄

)
, (39)

˙̄T
M = W̄1 · ˙̄T + W̄1 · (K2 · v̄) − K2 · (

W̄2 · v̄
)
, (40)

f̄ M = W̄2 · f̄ + (I − W̄2) · (K1 · σ̄ ) − K1 · [
(I − W̄1) · σ̄

]
, (41)

˙̄T
M = W̄1 · ˙̄T − (I − W̄1) · (K2 · v̄) + K2 · [(

I − W̄2·
)

v̄
]
. (42)

When working with the displacement-stress formulation, the cor-
responding mirror excitation can be obtained with the same proce-

dure, or, by simply replacing ˙̄v v̄, ˙̄σ and ˙̄T with ¨̄u, ū, σ̄ and T̄ in eqs
(35)–(42), respectively.

3.2 Multiple point sources method

In this section, we use the representation theorem in eq. (20) as a
starting point and discretize the surface integrals to express the mir-
ror excitation force in terms of multiple point sources. As opposed
to the direct discrete differentiation method presented in Section
3.1, the present approach requires some approximations and the ac-
curacy of the reconstructed wavefield depends on the quality of the
quadrature used to discretize the surface integrals (e.g. Mittet 1994).
Moreover, the surface defining the time-reversal mirror needs to be
explicitly defined in the present case.

When introducing the traction density vector T with components
Ti = njCijkl∂kul and the moment density tensor M with components

Mkl = uinjCijkl, eq. (20) becomes

ui (x) =
∫

V
Gin(x, x′) fn(x′)dV ′

+
∮

S
Gin(x, x′)Tn(x′)d S′

−
∮

S
Mkn(x′)∂ ′

k Gin(x, x′)d S′. (43)

The surface integrals in eq. (43) can be approximated using an
arbitrary numerical quadrature having the general form∫

S
f (x)d S ≈

n∑
i=1

αi f (xi ), (44)

where, S is the designated integration region, f (x) is an integrand
defined on V, the points xi are called quadrature nodes, and αi are
the quadrature weights. As an example, in Section 5, we simply
defined the surface S as a set of triangular faces in which we used
a simple one-point quadrature, that is where, one quadrature node
is placed at the centroid xi of each face and the quadrature weight
αi is simply the area of the corresponding face. Using eq. (44), eq.
(43) can be approximated with

ui (x) ≈
∫

V
Gin(x, x′) fn(x′) dV ′

+
n∑

i=1

αi Gin(x, x′
i )Tn(x′

i )

−
n∑

i=1

αi Mkn(x′
i )∂

′
k Gin(x, x′

i ), (45)

where the surface integrals have been replaced by discrete sums
that are easier to handle numerically. Using the Dirac delta function
property f(x) = ∫

Vf(x′)δ(x′ − x)dx′, the response u in eq. (45) can
be expressed in terms of equivalent body-forces as

ui (x) ≈
∫

V
Gin(x, x′) fn(x′)dV ′

+
n∑

i=1

∫
V

Gin(x, x′
i )αi Tnδ(x′ − xi )dV ′

−
n∑

i=1

∫
V

Gin(x, x′
i )αi Mkn∂

′
kδ(x′ − xi )dV ′. (46)

This equation does not involve the partial derivative of the Green’s
function anymore and has the same form as eq. (11) with the corre-
sponding source term

f M =
ns∑

i=1

fi +
n∑

i=1

fT
i +

n∑
i=1

fM
i , (47)

where,

fi (x, t) = si (t)δ(x − xi ), (48)

fT
i (x, t) = Ti (t)δ(x − xi )αi , (49)

fM
i (x, t) = −∇ · [Mi (t)δ(x − xi )] αi . (50)

Here, we assumed that the source f responsible for the wavefield
u consists of ns single-force point sources fi . Provided that we are
able to compute the response due to a single-force point source
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and a moment tensor point source, the mirror excitation can be
constructed as follow:

(i) Define explicitly the surface enclosing the volume in which
we want to reconstruct the wavefield.

(ii) Approximate the surface integrals in eq. (43) using an ar-
bitrary quadrature, that is compute the quadrature nodes xi , the
quadrature weights αi and the unit vectors ni normal to the surface
S at the quadrature nodes xi .

(iii) Compute and record the responses ui and their derivatives
due to the source f responsible for the original wavefield at the
quadrature nodes xi

(iv) Evaluate the source term in eqs (48)–(50) using
Ti = njCijkl∂kul and Mkl = uinjCijkl.

Imposing the time-reversal mirror then simply consists of ap-
plying all the point sources obtained simultaneously during the
simulation.

3.3 Time-reversing numerical schemes

In the previous sections, we derived the mirror excitation force at
any arbitrary instant. In order to reconstruct an original wavefield
locally inside a subvolume surrounded by the mirror, this excitation
must be applied versus time at the boundary of the subvolume.

If we wish to regenerate the original wavefield going forward in
time, for a given numerical scheme, this simply consists of using
the mirror excitation as the source term.

If we wish to regenerate the original wavefield going backward
in time, one can adopt two different approaches.

A first approach is to use the time symmetry of the elastic wave
equation. That means that one can use the same numerical scheme
to regenerate the wavefield going backward as the one used to model
wave propagation forward in time. In this case, the mirror excitation
must be time reversed (f M (t) → f M (−t)) prior to the simulation.

A second approach is to crudely undo the numerical algebra. In
this case, the numerical integration scheme is modified so that the
past values of the wavefield are expressed as a function of the future
values of the wavefield. For example, if eq. (21) is integrated using
the explicit central-difference scheme

ū(t + 
t) = 2ū(t) − ū(t − 
t) + 
t2M−1 · [
f̄ M (t) − K · ū(t)

]
,

(51)

to simulate the wave propagation forward in time, one can use the
rearranged expression

ū(t − 
t) = 2ū(t) − ū(t + 
t) + 
t2M−1 · [
f̄ M (t) − K · ū(t)

]
,

(52)

to simulate the wave propagation backward in time.
When using a numerical scheme that is symmetric in time, as in

our last example, both approaches are exactly equivalent. However,
this is not always the case. For example, when using the second ap-
proach, an explicit scheme might transform into an implicit scheme
and vice versa. Because of this, it is safer to adopt the first approach
as it guarantees the stability of the simulations when going back-
ward in time, provided that, the numerical scheme used to propagate
waves forward in time is stable. The interest of the second approach
lies in the fact it is potentially able to perfectly recover the original
values of the wavefield if the discrete algebra is done exactly. How-
ever, rounding errors prevent such a perfect reconstruction and may
lead to numerical instabilities. In our numerical examples, we pre-
ferred the first approach to time reverse the numerical scheme. The

only place where the second approach has been used is to update
the memory variables needed to undo the attenuation when time-
reversing a viscoelastic wavefield. This, because time reversing the
attenuation is intrinsically unstable whatever the chosen approach.

3.4 Initial value

Practically, numerical simulations have a finite duration and some
energy may still be present inside the subvolume where we want
to reconstruct the wavefield at the time when we stop the first
simulation. In order to reconstruct the wavefield perfectly using a
time-reversal mirror, that energy must be accounted for as in an
initial value problem in the second simulation. This can be done by
taking a snapshot of the wavefield at the end of the first simulation to
get the appropriate initial conditions in the time-reversed simulation.
The initial conditions are obtained by applying a spatial window to
the recorded wavefield, and, eventually changing the sign of the
wavefield variables. When using the direct discrete differentiation
method to obtain the mirror excitation, eqs (23), (33) and (34)
should be used to apply the spatial window. When using the multiple
point source method to compute the mirror excitation, choosing an
adequate spatial window may be more delicate and depends on the
number of point sources used and on the way they are implemented.
One thing to keep in mind when choosing the spatial window is
that the representation in eq. (43) does not match the boundary
condition uM (x, t) = u(x, t) ∀ x ∈ ∂ M , that is, the reconstructed
wavefield is not equal to the original wavefield at the boundary of
the subvolume (e.g. Fannjiang & Albert 2009). If the point sources
are implemented using 1-D delta functions (e.g. Fichtner 2010) and
the density of source points is large enough, a general rule of thumb
is to define the Heaviside function

H (x) =
∫ x

−∞
δ(s)ds, (53)

where δ is the same delta function as the one used to implement the
point sources. The window function w is then obtained by inserting
eq. (53) into eq. (14).

In addition to the application of the spatial window, to obtain the
adequate initial conditions when invoking the time-reversal sym-
metry of the wave equation, the sign of odd wavefields variables
(e.g. particle velocity) must be reversed while the sign of the even
wavefield variables (e.g. displacement, acceleration) stays the same.

Note that the initial condition may also be obtained by running
an extra simulation where the mirror is first used to reconstruct the
wavefield going forward in time. At the end of this extra simulation,
one can simply take a snapshot to obtain the initial conditions,
applying the spatial window is not needed as the mirror has already
been applied.

3.5 Attenuation

In order to regenerate the time-reversed version of an original wave-
field in a visco-elastic medium, the effect of attenuation must be
undone, that is, the time-reversed wavefield needs to be amplified
accordingly to recover the initial amplitudes. While this amplifica-
tion is straightforward to implement, it leads to numerical schemes
that are intrinsically unstable as the roundoff error is amplified with
the wavefield (e.g. Liu & Tromp 2006). To keep the numerical error
small compared to the wavefield’s amplitudes, one solution called
‘checkpointing’ is to periodically reset the wavefield values dur-
ing the time-reversed simulation (e.g. Restrepo & Griewank 1998;
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Griewank & Walther 2000; Hinze et al. 2005; Symes 2007). Prac-
tically that means that snapshots of the whole wavefield must be
recorded periodically during the first simulation. These snapshots
are then used to reset the time-reversed simulation by imposing new
initial conditions as discussed in the previous section.

4 S O M E P R A C T I C A L A S P E C T S O F
T H E N U M E R I C A L I M P L E M E N TAT I O N

4.1 Finite differences

4.1.1 Acoustic equation using centred FDs

In the 2-D acoustic case, for a smoothly varying medium, and when
using central FD operators to evaluate the partial derivative in eq.
(3), eq. (21) takes the classic form

un+1
i, j − 2un

i, j + un−1
i, j


t2
= c2

[
un

i+1, j − 2un
i, j + un

i−1, j


x2

+un
i, j+1 − 2un

i, j + un
i, j−1


y2

]
+ fi, j , (54)

where, un
i, j is the acoustic pressure at the grid node having spatial

indices (i, j) and evaluated a time step (n), 
x and 
t are the spatial
and time sampling intervals, respectively, and c is the sound speed.
When using the centred FD scheme in eq. (54), the excitation source
in eq. (24) becomes

f M
∣∣n

i, j
= ũn+1

i, j − 2ũn
i, j + ũn−1

i, j


t2
wi, j

− c2

[
wi+1, j ũ

n
i+1, j − 2wi, j ũ

n
i, j + wi−1, j ũ

n
i−1, j


x2

+ wi, j+1ũn
i, j+1 − 2wi, j ũ

n
i, j + wi, j−1ũn

i, j−1


y2

]
. (55)

where ũ denotes the original wavefield that we want to reconstruct
locally. In Fig. 3, the grid points at which f M

∣∣n

i, j
is not equal to zero

are represented by black filled squares. These points corresponds to
locations at which the difference stencil (pictured in Fig. 3) overlaps
the surface ∂M. We see that, in order to reconstruct the wavefield in
the volume M, it is sufficient to compute and store the values fM on
a two grid point thick layer following ∂M in the present case.

Reconstructing the original wavefield ũ consists in solving eq.
(54) after the source term fi, j has been replaced with f M |ni, j . When
doing so, we notice that the values f M |ni, j do not need to be computed
explicitly when reconstructing ũ. Instead, it is possible to store the
displacement values ũ along a two grid point thick inner layer
following ∂M and to proceed as follows to update the displacement
values at grid points where f M|i, j �= 0

(i) Prior to evaluating the right-hand side in eq. (54), subtract
the wavefield wi, j ũ

n
i, j from the current wavefield un

i, j at all nodes
involved in the calculation of .f M|i, j. That is, un

i, j → un
i, j − ũn

i, j at
the inner scheme nodes in Fig. 3.

(ii) Evaluate the right-hand side of eq. (54) (using the up-
dated values un

i, j → un
i, j − wi, j ũ

n
i, j ) and add the remaining term

ũn+1
i, j −2ũn

i, j +ũn−1
i, j


t2 wi, j to the result

(iii) Proceed to the time integration to obtain un+1
i, j .

From now on, we will refer to that procedure as an inner scheme
as it requires to store the wavefield on an inner layer following ∂M
as pictured in Fig. 3. When using eq. (25) in place of eq. (24), the

Figure 3. An example of a FD grid. The acoustic pressure is evaluated and
stored at the grid nodes represented by squares. The FD stencil used to
evaluate the spatial derivative is pictured in the top left corner. To regenerate
a wavefield inside the grey area surrounded by ∂M, the source term in eq.
(55) needs to be applied at the nodes represented by black filled squares.
These are the nodes for which the FD stencil overlaps the boundary ∂M. The
source term can either be computed and recorded during the first simulation
or implicitly computed during the second simulation using an inner, an outer
or an overlapping scheme. Depending on the chosen scheme, the acoustic
pressure may be recorded at the inner scheme nodes, at the outer scheme
nodes or at the overlapping scheme nodes.

mirror excitation can be expressed as

f M
∣∣n

i, j
= f̃i, j − ũn+1

i, j − 2ũn
i, j + ũn−1

i, j


t2
mi, j

+ c2

[
mi+1, j ũ

n
i+1, j − 2 mi, j ũ

n
i, j + mi−1, j ũ

n
i−1, j


x2

+ mi, j+1ũn
i, j+1 − 2mi, j ũ

n
i, j + mi, j−1ũn

i, j−1


y2

]
, (56)

where mi, j = (1 − wi, j ). This leads to an outer scheme where the
displacement values ũ need to be stored along a two grid point thick
outer layer following ∂M and consisting of the following steps:

(i) Prior to evaluating the right-hand side in eq. (54), add the
wavefield (1 − wi, j )ũ

n
i, j to the current wavefield un

i, j at all nodes
involved in the calculation of .f M|i, j. That is, un

i, j → un
i, j + ũn

i, j at
the outer scheme nodes in Fig. 3.

(ii) Evaluate the right-hand side of eq. (54) (using the updated
values un

i, j → un
i, j + (1 − wi, j )ũ

n
i, j ) and add the remaining term

f̃i, j − ũn+1
i, j −2ũn

i, j +ũn−1
i, j


t2 (1 − wi, j ) to the result.

(iii) Proceed to the time integration to obtain un+1
i, j .

It is also possible to use a mixed scheme that uses an inner scheme
outside the volume M and an outer scheme inside the volume M so
that the term involving the time derivative of ũ vanishes. In that case,
one only needs to store the values of the wavefield ũ at the nodes
where f M �= 0 (i.e. the black filled squares in Fig. 3). Practically, the
values inside the volume M are obtained by evaluating eq. (54) after
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adding the recorded values to the wavefield outside M and the values
outside M are obtained by evaluating eq. (54) after subtracting the
recorded values to the wavefield inside M. That last approach is
certainly the easiest one to implement when using FDs and when
the properties of the medium remain unchanged at the source nodes.
We shall see, however, that for the FE/SEM method, using an inner
or an outer scheme can greatly reduce the number of grid points at
which the wavefield values must be recorded.

4.1.2 Elastic wave equation on staggered grids

The FD method on staggered grids was first introduced to model
electromagnetic wave propagation (Yee 1966) and was later adapted
to model elastic-wave propagation (e.g. Virieux 1986). Most stag-
gered FD numerical schemes are based on the velocity-stress for-
mulation where eqs (31) and (32) are time integrated using the
leapfrog scheme

v̄(t + 
t/2) = v̄(t − 
t/2) + 
tM−1 · [
f̄(t) − K1 · σ̄ (t)

]
,

(57)

σ̄ (t + 
t) = σ̄ (t − 
t) + 
t
[

˙̄T(t + 
t/2) + K2 · v̄(t + 
t/2)
]
.

(58)

Knowing the stress field σ̄ at time (t), eq. (57) is used first to
update the velocity field v̄ from time (t) to time (t + 
t/2). Then,
knowing the velocity field v̄ at time (t + 
t/2), eq. (58) is used
to update the stress field v̄ from time (t) to time (t + 
t). The
matrices K1 and K2 are obtained by FD approximations of the
spatial derivatives in the wave equation. For example, when using a
fourth-order approximation (e.g. Levander 1988), the derivative of
the stress field σ̄xx with respect to x is approximated by

∂σ̄xx

∂x

∣∣∣∣
n

i, j,k

≈ − 1

24
x

[
σ̄xx |ni+ 3

2 , j,k
− σ̄xx |ni− 3

2 , j,k

]

+ 9

8
x

[
σ̄xx |ni+ 1

2 , j,k
− σ̄xx |ni− 1

2 , j,k

]
, (59)

where i, j, k are the spatial indices, and n is the time step index. In
order to implement the time-reversal mirror, one simply needs to

substitute the source terms f̄ and ˙̄T in eqs (57) and (58) with the
mirror excitations in eqs (39)–(42). As shown in Fig. 4, because
the fourth-order FD operator expands over four grid nodes, the

excitations f̄ M and ˙̄T
M

are imposed on a three grid point thick
layer following the surface of the subvolume where we want to
regenerate the wavefield. As for the acoustic scheme, it is also
possible to impose the mirror excitation using an inner, an outer
or an overlapping scheme. These schemes can be obtained by the
procedure described in the previous section applied to eqs (57) and
(58), independently. In this case, the velocity field v̄ and the stress
field σ̄ must be recorded on a three grid point layer thick inside,
outside or overlapping the boundary ∂M, depending on the chosen
scheme, as pictured in Fig. 4. In fact, implementing the time-reversal
mirror using an overlapping scheme combined with the fourth-order
space accurate FD scheme introduced by Levander (1988) is exactly
equivalent to the ‘wave-injection’ method proposed by Robertsson
& Chapman (2000).

4.2 Spectral element

The SEM method was first introduced to solve fluid dynamics prob-
lems (e.g. Patera 1984; Maday & Patera 1989) and later adapted to

Figure 4. An example of a 2-D staggered FD grid as introduced by Virieux
(1986) to model the propagation of elastic waves. The FD stencil used to
evaluate the spatial derivative at the nodes represented by squares is pictured
in the bottom right corner. The black squares shows the nodes at which the

normal component ˙̄T
M

xx and ˙̄T
M

yy of the tensor ˙̄T
M

in eqs (35)–(42) have
a non-zero value. These are the nodes where the FD stencil overlaps the

boundary ∂M. The nodes where the remaining source terms ˙̄T
M

xy , f̄ M
x and

f̄ M
y take a non-zero value can be obtained similarly by checking whether

or not the FD stencil overlaps the boundary ∂M. As in the acoustic case,
these source terms can either be computed and recorded during the first
simulation or implicitly computed during the second simulation using an
inner, an outer, or an overlapping scheme. As the FD stencil extends over
four grid points, all the fields need to be recorded on a three grid point thick
layer inside, outside or overlapping the boundary ∂M, when using an inner,
an outer or an overlapping scheme, respectively.

simulate wave propagation (Seriani et al. 1995; Faccioli et al. 1997;
Komatitsch 1997). In this method, the computational domain is di-
vided into elements where the solution of the problem is expressed
in terms of local basis functions compactly supported inside the ele-
ments. For example, the discrete approximation of the p-component
ū p of the displacement vector inside the element Ge is expressed
as:

ū p(x, t)
∣∣
x∈Ge

=
Nψ∑
i=1

u p

∣∣i

e
(t)ψ i

e(x), (60)

where, ψ i
e is the ith basis function inside element Ge and u p

∣∣i

e
(t) are

the corresponding expansion coefficients. When taking the Galerkin
projection of the wave equation, for each element Ge, one obtains
the local, that is element-wise discrete force balance

Me · üe(t) + Ke · ue(t) = fe(t), e = 1, . . . , ne, (61)

where ue, Me and Ke are the local coefficient vector, the local mass
matrix and the local stiffness matrix, respectively. The local linear
systems in eq. (61) can then be assembled to obtain the global force
balance

Mglobal · üglobal(t) + Kglobal · uglobal(t) = fglobal(t), (62)
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where uglobal, Mglobal and Kglobal are the global versions of the coef-
ficient vector, the mass matrix and the stiffness matrix, respectively.
We refer to the excellent book by Fichtner (2010), for practical
details on obtaining eq. (61) and assembling the linear system in
eq. (62). Some useful information can also be found in Pozrikidis
(2005) and Hughes (1987).

In order to implement the time-reversal mirror using the SEM
method, it is natural to define a local mirror excitation vector f M

e in
each element as

f M
e = Me · üM

e + Ke · uM
e , (63)

where the vector uM
e contains the expansion coefficients correspond-

ing to the discrete approximation ūM
e inside element Ge of the win-

dowed wavefield uM defined in eq. (6). The linear systems in eq.
(63) can then be assembled to obtain the global mirror excitation

f M
global = Mglobal · üM

global + Kglobal · uM
global. (64)

In the SEM method, the basis functions ψ i
e are usually Lagrange

polynomials of degree (Nψ − 1) constructed using the Gauss-
Lobatto-Legendre (GLL) collocation points. In that case, the dis-
crete approximation of the p-component ūM

p of the displacement
vector uM

e can be expressed as

ūM
p (x, t)

∣∣
x∈Ge

=
Nψ∑
i=1

uM
p

∣∣i

e
(t)ψ i

e(x) (65)

=
Nψ∑
i=1

wi
e u p

∣∣i

e
(t)ψ i

e(x), (66)

where u p

∣∣i

e
(t) are the expansion coefficients associated with the

original wavefield that we want to regenerate inside the mirror, and
the coefficient wi

e simply correspond to the values of the window
function w(x) evaluated at the GLL points. By identifying the terms
on the right-hand side of eq. (66) we obtain

uM
e = We · ue, (67)

where We is the diagonal matrix

We =

⎡
⎢⎢⎢⎣

w1
e · · · 0

...
. . .

...

0 · · · w
Nψ
e

⎤
⎥⎥⎥⎦. (68)

One big advantage of the SEM method is that the mass matrices Me

are diagonal. In this case, inserting eq. (67) into eq. (63) and using
eq. (61), the mirror excitation can be expressed as

f M
e = We · fe − We · (Ke · ue) + Ke · (We · ue) , (69)

or equivalently, when subtracting eq. (61) to eq. (69),

f M
e = We · fe + (I − We) · (Ke · ue) − Ke · [(I − We) · ue] . (70)

When ignoring the source term We · fe, the mirror excitation as
expressed in eq. (69) is simply the difference between the local
internal force calculated using the windowed wavefield and the
windowed version of the internal force calculated from the full
wavefield (i.e. not windowed). Eq. (70) is similar but the window
function w is replaced by the negative of the complementary window
function (1 − w).

When inserting We = αeI, where, αe is a scalar coefficient, and
I is the identity matrix, in eqs (69) and (70), we see that f M

e is
effectively zero inside the element Ge. That means that, the only

Figure 5. An example of a 2-D FE/SEM grid containing quadrilateral and
triangular elements, delimited by solid lines. The diamond symbols repre-
sents the grid nodes at where the wavefield values are evaluated. The black
filled diamonds shows the grid nodes at which the wavefield values needs
to be known to compute the mirror excitation when using an inner scheme.
The grey filled diamonds shows the grid nodes at which the wavefield values
needs to be known to compute the mirror excitation when using an outer
scheme.

elements that contribute to the mirror excitation f M
global are the ones

where the value of the window function w evaluated at the GLL
nodes is not constant. In other words, these are the elements crossed
by the surface ∂M bounding the subvolume in which we wish to
regenerate the wavefield.

To implement the mirror, the local excitations f M
e may be calcu-

lated during a first simulation and stored. Then, in a second simula-
tion, the mirror is applied by inserting the stored values as the source
term in eq. (61) prior to the assembly of the global system. How-
ever, this approach requires to store the local mirror excitations
at all GLL points inside each element contributing to the global
mirror excitation. We now show that, as with the FD method, it is
also possible and preferable to store the wavefield values instead
of the excitations themselves. Consider the case where the window
function w used to construct the mirror is equal to one inside the
subvolume M bounded by ∂M and zero outside, as pictured in Fig. 5.
On the one hand, in order to evaluate the mirror excitation in one
element Ge using eq. (69), we need to know both the internal force
f int
e = (Ke · ue) and the displacement ue at the GLL nodes inside

the subvolume M. On the other hand, in order to evaluate the mirror
excitation using eq. (70), we need to know both the internal force
(Ke · ue) and the displacement ue at the GLL nodes outside the sub-
volume M. In the worst case, the surface ∂M splits the GLL nodes in
two equal halves and using either one of eqs (69) and (70) requires
the same amount of disk space to store the values of f int

e and ue at the
GLL nodes involved in the calculation of f M

e . In the best case, the
surface ∂M follows the boundary of the element and one only needs
to store the values of f int

e and ue at some GLL nodes on the faces of
the element, as pictured in Fig. 5. Hence, for minimizing the disk
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usage, we propose to adopt the following procedure to implement
numerical mirrors using the SEM method:

(i) Select all elements where the window function evaluated at
the GLL nodes is not constant (e.g. the elements crossed by the
surface ∂M when using a binary window function w).

(ii) For all the selected elements, check which of the window
function w and the complementary window function (1 − w) is
equal to zero at most GLL nodes.

(iii) In the situation where w = 0 at most GLL nodes, record the
local internal force and the displacement at the GLL nodes where
w �= 0 during the first simulation. Then, impose the mirror using
eq. (69) in the second simulation.

(iv) In the situation where (1 − w) = 0 at most GLL nodes,
record the local internal force and the displacement at the GLL
nodes where (1 − w) �= 0 during the first simulation. Then, impose
the mirror using eq. (70) in the second simulation.

Practically, implementing the mirror using the SEM method sim-
ply consists of modifying the way the local internal forces are com-
puted in the elements where f M

e �= 0. When using eq. (69) to com-
pute the mirror excitation, the local internal forces can be obtained
using the following inner scheme procedure:

(i) Prior to the computation of the internal forces in each element,
add the recorded value of the displacement to the current value of
the displacement.

(ii) Compute the local internal force in the elements.
(iii) Subtract the recorded values of the local internal force from

the value of the local internal force computed in the previous step.

When using eq. (70) to compute the mirror excitation, the local
internal forces can be obtained using the following outer scheme
procedure:

(i) Prior to the computation of the internal forces in each element,
subtract the recorded value from the displacement to the current
value of the displacement,

(ii) Compute the local internal force in the elements,
(iii) Add the recorded values of the local internal force to the

value of the local internal force computed in the previous step.

5 N U M E R I C A L E X A M P L E S
A N D A P P L I C AT I O N S

5.1 A simple time-reversal mirror

We first illustrate the different source terms in eqs (1), (2)
and (43) that are needed to regenerate a time-reversed wave-
field. In Fig. 7, we present forward and time-reversed simula-
tions where a spherical P wave is propagating through a ho-
mogeneous medium. We used a FD method (Levander 1988) to
model wave propagation in an elastic medium. The grid used in
the simulation has dimensions 175
x × 175
y × 175
z, where,

x = 
y = 
z = 2/3 m. The represented grid chunk in the figure
has dimensions: 115
x × 115
y × 115
z. The P-wave velocity
of the propagating medium is Vp = 2152 m s−1, the S-wave velocity
is Vs = 1310 m s−1 and the density is ρ = 2650 kg m−3. The total
duration of the simulation is 300
t, where, 
t = 1.327 × 10−4 s.
We used an explosive source placed at the centre of the grid with a
Gaussian source time function that is producing a pulse with central
frequency fc = 225 Hz. The different snapshots are taken at times
t1 = 0, t2 = 60
t, t3 = 120
t, t4 = 180
t.

Figure 6. (a) An icosahedron. (b) An icosphere obtained by successive sub-
division of the original icosahedron. The time-reversal mirror is constructed
by placing a point source at the barycentre of each triangular face of the
icosphere. The amplitude of the point sources is proportional to the area of
the faces. The arrows represent the vectors normal to the faces.

In the time-reversed simulations, we implemented the time-
reversal mirror using the multiple point source method described in
Section 3.2. We constructed a spherical mirror by successive sub-
division of an icosahedron as presented in Fig. 6. The radius of the
ico-sphere is r = 23.3 m. We used three subdivision steps that result
in a total number of point sources Nsrc = 2 × 1280 + 1. That is:
One sink point source, that is the first term on the right-hand side in
eqs (2), (43) and (47) that is the time reversed-version of the source
responsible for the original wavefield; 1280 monopole sources, that
is the second terms on the right-hand side in eqs (2), (43) and (47)
involving the Green’s function; 1280 dipole sources, that is the third
terms on the right-hand side in eqs (2), (43) and (47) involving the
derivative of the Green’s function.

Fig. 7(a) shows the forward simulation where the P wave is
expanding versus time around the point source. The simulation
starts at time t = 0 and ends at time t = 300
t.

Fig. 7(b) shows the backward simulation where the time-reversal
mirror is used to regenerate the time-reversed wavefield. The sim-
ulation starts at time t = 300
t and ends at time t = 0. In this
simulation, all the source terms in eqs (2), (43) and (47) are imple-
mented.

Fig. 7(c) shows a backward simulation where only the monopole
sources are accounted for. We see that, these sources generate a
two way wavefield, that is one P wave going inward the mirror, and
one P wave going outward the mirror. As we are looking at the
bulk-pressure, these two waves have opposite polarities. Note that
the amplitude of these two waves is half the one of the original P
wave represented in Fig. 7(a) when comparing identical positions
of the waves.

Fig. 7(d) shows a backward simulation where only the dipole
sources are accounted for. As with the monopoles sources, we ob-
serve a two way wavefield. The difference is that, in this case, these
two waves have similar polarities. As for the monopole sources, the
amplitude of these two waves is half that of the original P wave.

Fig. 7(e) shows a backward simulation where both the monopoles
and the dipole sources have been accounted for. As the two wave-
fields, generated by the monopole and the dipole sources, have
opposite polarities outside the mirror, the outgoing waves cancel
out. The resulting wavefield is a one-way wavefield emitted inward
the mirror. Inside the mirror, the two wavefields are in phase and
their amplitudes add up to match that of the original wavefield in
Fig. 7(a). As we are going backward in time, the spherical wave
produced is refocusing in time and space at the source location.
However, we observed that, after it has refocused, the spherical
wave is expanding again as time is going backward. To cancel out
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Figure 7. Snapshots showing the Bulk pressure (i.e. σ xx + σ yy + σ zz) at four different instants in the forward simulation (a) and in various time-reversed
simulations (b, c, d, e, f ). The transparent sphere represents the time-reversal mirror. The grid used in the simulation has dimensions 175
x × 175
y × 175
z,
where, 
x = 
y = 
z = 2/3 m. The represented grid chunk in the figure has dimensions: 115
x × 115
y × 115
z. The P-wave velocity of the propagating
medium is Vp = 2152 m s−1, the S-wave velocity is Vs = 1310 m s−1 and the density is ρ = 2650 kg m−3. The total duration of the simulation is 300
t, where,

t = 1.327 × 10−4 s. We used an explosive source placed at the centre of the grid with a Gaussian source time function that is producing a pulse with central
frequency fc = 225 Hz. The different snapshots are taken at times t1 = 0, t2 = 60
t, t3 = 120
t, t4 = 180
t. The different time-reversed simulations illustrate
the wavefields generated by the monopole, the dipole and the sink components of the mirror’s excitation. (a) Forward simulation. (b) Complete time-reversed
simulation where all the source terms are accounted for, that is, the monopole sources, the dipole sources and the sink. (c) Time-reversed simulation where only
the monopole sources are accounted for. (d) Time-reversed simulation where only the dipole sources are accounted for. (e) Time-reversed simulation where
both the monopole and the dipole sources are accounted for. (f) Time-reversed simulation where only the sink is accounted for.

this spherical wave propagating at negative times, one must add
the sink term represented in Fig. 7(f). We then obtain the desired
time-reversed wavefield plotted in Fig. 7(b).

Fig. 7(f) shows a backward simulation where only the sink source
is accounted for. It generates a one way wavefield expanding around
the source. It produces the same wavefield as in Fig. 7(a) but the
wave front is expanding as time is going backward.

5.2 Using a time-reversal mirror to regenerate a wavefield
going forward in time

Fig. 8 illustrates the fact that the time-reversal mirror tool can also be
used to regenerate an original wavefield going forward with respect
to time.

Fig. 8(a) is similar to Fig. 7(a) and pictures the wavefield observed
in the forward simulation.

The wavefield pictured in Fig. 8(b) looks similar to the one in
Fig. 7(b) but has been regenerated going forward in time. Interest-
ingly, in that case, the mirror acts as a perfect absorbing boundary.

The simulations presented in Figs 8(c)–(f) are similar to those in
Figs 7(c)–(f), respectively, but the source time functions associated
with the monopole sources, the dipole sources and the sink source
have not been time reversed.

The wavefields presented in Figs 8(c) and (d) are generated by
the monopole sources an the dipole sources, respectively. Outside
the mirror they have the same polarity, opposite to the one of the
original wavefield in Fig. 8(a). Inside the mirror, they have opposite
polarities. Both wavefields have the same absolute amplitudes.
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Figure 8. Snapshots showing the Bulk pressure (i.e. σ xx + σ yy + σ zz) at four different instants in various forward simulations. The transparent sphere represents
the time-reversal mirror. The grid used in the simulation has dimensions 175
x × 175
y × 175
z, where, 
x = 
y = 
z = 2/3 m. The represented grid
chunk in the figure has dimensions: 115
x × 115
y × 115
z. The P-wave velocity of the propagating medium is Vp = 2152 m s−1, the S-wave velocity is
Vs = 1310 m s−1 and the density is ρ = 2650 kg m−3. The total duration of the simulation is 300
t, where 
t = 1.327 × 10−4 s. We used an explosive source
placed at the centre of the grid with a Gaussian source time function that is producing a pulse with central frequency fc = 225 Hz. The different snapshots are
taken at times t1 = 0, t2 = 60
t, t3 = 120
t, t4 = 180
t. The different simulations are comparable to the one in Fig. 7 but are not time reversed. (a) Forward
simulation, that is with no mirror. (b) Forward simulation with the mirror and where all the source terms are accounted for, that is, the monopole sources, the
dipole sources and the sink. (c) Forward simulation where only the monopole source component of the mirror are accounted for. (d) Forward simulation where
only the dipole source component of the mirror are accounted for. (e) Forward simulation where both the monopole and the dipole source components of the
mirror are accounted for. (f) Forward simulation whith the time-reversed sink only.

In Fig. 8(e), we see that the wavefield generated by the monopole
sources and the dipole sources taken together is a one way wave-
field going outward from the mirror. This is because the two
wavefields interfere destructively and constructively inside and
outside the mirror, respectively. This wavefield has the same
amplitude as the one in Fig. 8(a) but has an opposite sign.
Hence, it cancels out the original wavefield as it escapes the
mirror.

When regenerating a wavefield going forward in time, the sink
term is just the source itself and simply regenerates the original
wavefield as pictured in Fig. 8(f).

5.3 Using the direct discrete differentiation method to
construct time-reversal mirrors having complex geometry

In Fig. 9, we emphasize the fact that the direct discrete differen-
tiation method permits to implement time-reversal mirrors having
complicated geometry with ease. We used 2-D centred FDs to solve
the acoustic wave equation as discussed in Section 4.1.1. In the
forward simulation, we propagated a plane wave into a random
medium obtained by smoothing a spatial realization of the white
noise. The spatial distribution of the sound speed in the medium is
pictured in the left-hand panel of Fig. 9(a). The plane wave has been
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Figure 9. (a) From left to right, fluctuation of the sound speed in the propagating medium, window function w(x, y) implicitly defining the time-reversal mirror,
source area (i.e. grid points where the right-hand side of eqs (55) and (56) is not equal to zero). (b) Snapshot showing a plane wave propagating through the
medium at three different instants (t1 = 414
t, t2 = 828
t, t3 = 1242
t). The model has dimensions 469
x × 441
y, where 
x = 
y = 1 m. The total
duration of the simulation is 1300
t, where, 
t = 2.5 × 10−4 s. (c) Snapshot showing the wavefield in (b) regenerated locally using the time-reversal mirror.

injected by forcing the acoustic pressure to match a time-varying
boundary condition at the top side of the domain. The source pulse
is the derivative of a Gaussian with central frequency fc = 32 Hz.
In the horizontal direction, we applied periodic boundary condi-
tions to simulate an infinite medium. The model has dimensions
469
x × 441
y, where 
x = 
y = 1 m. The total duration of the
simulation is 1300
t, where, 
t = 2.5 × 10−4s.

In Fig. 9(b), we present three snapshots taken during the forward
simulation at time t1 = 414
t, t2 = 828
t, t3 = 1242
t. We
observe that the fluctuation of the sound speed in the propagating
medium induces a significant amount of scattering that results in a
complicated wavefield.

To construct the time-reversal mirror excitation, we first con-
structed the spatial window function w pictured in the central panel
of Fig. 9(a). The function w has value one inside the ‘Time’ word
and zero outside. For the ‘Reversal’ word, we smoothed the edges
of the letters so the function w goes gradually from zero to one.
Inside the ‘Mirror’ word, we used a checkerboard pattern where the
values of the function w alternate between 1/4 and 1.

During the forward simulation, we directly evaluated the right-
hand side of eq. (55) and stored the value of f M at the desired grid
nodes, that is the nodes where f M �= 0. These nodes are pictured

in black on the right-hand side of Fig. 9(a). At the end of the
simulation, we took a snapshot of the acoustic pressure, which
was then multiplied by the spatial window w to obtain the initial
condition needed in the time-reversed simulation.

In the time reversed simulation, the stored values of f M were used
as the source term. The wavefield regenerated by the time-reversal
mirror is pictured in Fig. 9(c). At any given point the value of the
regenerated wavefield is exactly equal to the value of the original
wavefield in Fig. 9(b) multiplied by the window function in the
central panel of Fig. 9(a). The error in the regenerated wavefield is
virtually zero as it is entirely due to round-off errors that are also
present in the forward wavefield.

5.4 Comparison between the direct discrete differentiation
method and the multiple point sources method

In Fig. 10, we compare results obtained with the direct dis-
crete differentiation method to results obtained with the multi-
ple point sources method and when using a similar setup. We
used a FD method (Levander 1988) to model wave propaga-
tion in an elastic medium. The numerical grid has dimensions:
150
x × 150
y × 150
z, where 
x = 
y = 
z = 2/3 m. The
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Figure 10. Comparison of the regenerated wavefields when using the direct discrete differentiation method and the multiple point source method. The snapshots
shows the particle velocity at three different instants. The numerical grid has dimensions: 150
x × 150
y × 150
z, where, 
x = 
y = 
z = 2/3 m. The
duration of the simulations is duration of the simulation 250
t, where, 
t = 1.327 × 10−4 s. The S-wave velocity is Vs = 1310 m s−1, the P-wave velocity
is Vp = 2152 m s−1 and the density is ρ = 2650 kg m−3. We used a double couple source, located at the centre of the domain. The mirror has a spherical
shape with radius rs = 28.57 m and its centre has coordinates xs = 49.3, ys = 39.8 and zs = 49.3. (a) Forward simulation. (b) Time-reversed simulation
where the time-reversal mirror is implemented using the direct discrete differentiation method. (c) Time-reversed simulation where the time-reversal mirror is
implemented using the multiple point sources method. (d) Same as in (c) but the number of point sources used has been reduced by a factor four.

duration of the simulations is duration of the simulation 250
t,
where 
t = 1.327 × 10−4 s. The S-wave velocity is Vs = 1310 m
s−1, the P-wave velocity is Vp = 2152 m s−1 and the density is
ρ = 2650 kg m−3. We used a double couple source, located at the
centre of the domain, with moment tensor

M0 =

∣∣∣∣∣∣∣
0 0 0

0 0 1

0 1 0

∣∣∣∣∣∣∣ . (71)

The mirror has a spherical shape with radius rs = 28.57 m. The
centre of the sphere has coordinates xs = 49.3, ys = 39.8 and

zs = 49.3. We intently offset the centre of the mirror with respect to
the source position so that the different wavefronts are not parallel
to the mirror. In addition we stopped the forward simulation at a
time when some wave energy is still present inside the mirror so that
initial conditions must be imposed in the time-reversed simulations.

The wavefield observed in the forward simulation is pictured in
Fig. 10(a). In Fig. 10(b), we present the result of a time reversed sim-
ulation where the mirror was implemented using the direct discrete
differentiation method. The mirror was defined using a window
function w that takes the value one at nodes inside the sphere and
the value zero at nodes outside the sphere. To obtain the necessary
initial conditions, we simply took a snapshot of the wavefield at
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the end of the forward simulation and multiplied it by the window
function. The wavefield presented has been obtained using the inner
scheme procedure described in Section 4.1.2 to implement the mir-
ror. The other schemes give similar results that are not presented.
As we already discussed, the error in the regenerated wavefield is
virtually inexistent as it is entirely due to round-off errors that are
also affecting the forward wavefield.

In Fig. 10(c), we present the result of a time-reversed simulation
where the mirror was implemented using the multiple point source
method. We constructed the mirror by successive subdivision of an
icosahedron as presented in Fig. 6. We used four subdivision steps
that result in a total number of point sources Nsrc = 2 × 5120 + 1.
This corresponds to an average distance d = 1.02
x between two
neighbouring point sources. It corresponds to eight points per wave-
length for the S wave that is roughly the minimum number of points
per wavelength required to accurately model the propagation of S
waves. To construct the initial conditions, we defined the window
function

w =

∣∣∣∣∣∣∣
0 ∀ φ < −l
1
2

[
1 + sin

(
πφ

2l

)] ∀ −l < φ < l

1 ∀ l < φ

, (72)

where

φ(x, y, z) = rs −
√

(x − xs)2 + (y − ys)2 + (z − zs)2 (73)

is the signed distance function, and l is the thickness of a layer in
which the window function is gradually varying form zero to one.
The initial conditions are obtained by taking a snapshot at the end

of the forward simulation, changing the sign of the velocity and
multiplying the stress and the velocity by the window function in
eq. (72). Note that the window function w is effectively taking the
value 1/2 on the mirror’s surface so the initial conditions match the
boundary conditions in eq. (2). In this example, we observe that,
when using a sufficient number of point source per wavelength,
the error in the regenerated wavefield is barely visible and not
problematic.

Fig. 10(d) has been obtained in the same way as Fig. 10(c)
but the number of point sources has been divided by four, that
is Nsrc = 2 × 1280 + 1. This corresponds to an average distance
d = 2.03
x between two neighbouring point sources. It corresponds
to about four points per wavelength for the S wave that is below the
minimum number of points per wavelength needed to accurately
model propagation of S waves with the FD method. In this situa-
tion, we see that some energy is leaking out of the mirror resulting in
a significant error affecting the regenerated wavefield. When com-
paring the snapshots in Figs 10(c) and (d), we observe that varying
the number of point sources used to construct the mirror permits to
tune the accuracy of the regenerated wavefield.

5.5 On the use of numerical mirrors for the fast
computation of synthetic seismograms

In Fig. 11, we show that the time-reversal mirror tool, when it is
used to regenerate wavefields going forward in time, permits to
efficiently compute the seismic response of a medium that has been

Figure 11. Snapshots of the wavefield following an earthquake computed in a piece of Earth using a 2-D SEM method. The model spans 20 degrees and
extends from the surface of the Earth to a depth of 600 km. It is divided into 6090 elements. Inside the elements, the solution is approximated using fourth-order
polynomials. The numerical mesh allows to accurately propagate waves with periods greater than 10 s. The source time function has a central frequency
fc = 1/25 Hz, the total duration of the simulations is 3000
t, where, 
t = 0.17 s. All the snapshots presented have been taken at time t = 1200
t. We used
absorbing boundaries, on the left, right and bottom side of the model, and a free surface on the top side. (a) Shear-wave velocity in the PREM model. (b)
Shear-wave velocity anomaly that is added to the PREM model when computing the response in a perturbed model. (c) Snapshot of the wavefield observed
after an earthquake as modelled in the forward simulation. (d) Is similar to (c) but using the perturbed model obtained by adding the anomaly in (b) to the
PREM model in (a). (e) Wavefield regenerated forward in time inside a mirror having a tunnel shape. (f) Same as in (e) but using the perturbed model. (g)
Wavefield regenerated forward in time inside a mirror having an ellipsoidal shape. (h) Same as in (g) but using the perturbed model.
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perturbed locally as proposed by Robertsson & Chapman (2000)
and Robertsson et al. (2000).

Fig. 11(a) shows the computational domain as well as the ref-
erence earth model used for the 2-D SEM simulations. The model
spans 20 degrees and extends from the surface of the Earth’s to
a depth of 600 km. it is divided into 6090 elements delimited by
solid lines. Inside the elements, the solution is approximated using
fourth-order polynomials. The numerical mesh allows to accurately
propagate waves with periods greater than 10 s. The velocity model
employed is the PREM model (Dziewonski et al. 1981).

Fig. 11(b) represents a velocity anomaly that is added to the
reference model in Fig. 11(a) to model wave propagation in a locally
perturbed model.

Fig. 11(c) shows the wavefield following an earthquake computed
using the reference model in Fig. 11(a). The source time function
has a central frequency fc = 1/25 Hz, the total duration of the
simulations is 3000
t, where 
t = 0.17 s. The snapshot has been
taken at time t = 1200
t. We used absorbing boundaries, on the
left, right and bottom side of the model, and a free surface on the
top side.

Fig. 11(d) is similar to Fig. 11(c) but the earth model has been
perturbed by adding the anomaly in Fig. 11(b) to the reference
model in Fig. 11(a). When comparing Fig. 11(d) to Fig. 11(c) we
observe additional scattered waves that are due to the presence of
the anomaly.

Fig. 11(e) shows the local regeneration of the wavefield pictured
in Fig. 11(c) inside a subvolume having a tunnel shape and going
forward in time. To inject the wavefield inside the subvolume, we
implemented a time reversal mirror using the direct differentiation
method (see Section 4.2). The model employed to model wave
propagation is the reference model in Fig. 11(a) and we observe a
perfect reconstruction of the original wavefield, that is the obtained
wavefield is exactly equal to the wavefield in Fig. 11(c) inside the
subvolume delimited by the mirror and zero outside.

Fig. 11(f) has been obtained using the same procedure as in
Fig. 11(e), but, the perturbed model in Fig. 11(b) has been used
instead of the reference model in Fig. 11(a) when modelling wave
propagation. In this case, we observe additional scattered waves
due to the presence of the anomaly. Because these waves are not
part of the original wavefield, they are not cancelled out when they
cross the time-reversal mirror and some energy is leaking out of the
subvolume. In fact, inside the subvolume, the regenerated wavefield
is exactly equal to the wavefield in Fig. 11(d), while, outside the
subvolume, the observed residual is exactly the difference the be-
tween the wavefield computed in the perturbed model (in Fig. 11d)
and the wavefield computed in the reference model (in Fig. 11c).

Figs 11(g) and (h) have been obtained exactly as Figs 11(e) and
(f), respectively. The only difference is that the time-reversal mirror
used to regenerate the wavefield has an ellipsoidal shape.

Figs 11(f) and (h) illustrate the fact that, the ability to model
the response in a locally perturbed model using the time-reversal
mirror has important applications as it allows to restrict the compu-
tational domain to the volume inside the mirror. For example one
can efficiently compute the response in multiple models that are
similar outside the mirror but different inside. This, by using the
time-reversal mirror to inject the wavefield recorded in the unper-
turbed model inside the region where the model has been perturbed.
One can use, for example, absorbing boundaries outside the mirror
to isolate the computational domain inside the mirror.

In the situation where the sources and the receivers are located
inside the mirror as in Fig. 11(e), one directly obtains the response
corresponding to the perturbed model. The only part of the signal

that is lost corresponds to the wavefield that escapes the mirror and
that is backscattered inside the mirror. These may be considered
as second or higher order effects if the dimension of the mirror is
appropriate. For example, the shape of the tunnel mirror in Fig. 11(e)
may be obtained based on the sensitivity kernel associated with a
given seismic wave. Note that exact results could be obtained by
modifying the time-reversal mirror as proposed by van Manen et al.
(2007).

In the situation where the sources and/or the receivers are located
outside the volume enclosed in the mirror as in Fig. 11(g), one can
record the residual wavefield on the surface of the mirror and use a
wavefield extrapolation method to obtain the seismic response at the
receivers (e.g. Robertsson & Chapman 2000). The big advantage
of this approach is that the wavefield in the complete unperturbed
model only needs to be computed once. Moreover, the response
of the unperturbed model may be computed using a method that
is different from the one used to model the wavefield inside the
mirror. In that perspective, the proposed time-reversal mirrors are
an efficient tool to develop hybrid methods where a fast solution is
used for wave propagation in the larger volume outside the mirror,
and an exact method is used inside the mirror.

5.6 Using time reversal mirrors for adjoint tomography

In Fig. 12, we present a time-reversed wavefield obtained using the
regional SEM software RegSEM (Cupillard et al. 2012). Fig. 12(a)
represents the wavefield produced by an earthquake in eastern Eu-
rope. The seismic source has coordinates, 45.73◦(latitude), 26.67◦

(longitude), 93.8 Km (depth) and moment tensor

M0 =

∣∣∣∣∣∣∣
1.98 −3.92 −3.88

−3.92 0.77 0.005

−3.88 0.005 −2.75

∣∣∣∣∣∣∣ · 10−17. (74)

The bandwidth of the source time function goes from 10−3 to 10−2

Hz. We used the PREM model (Dziewonski & Anderson 1981)
to define the velocities and the attenuation inside the propagating
medium.

The time-reversal mirror is implemented using the direct dis-
crete differentiation method and follows the faces of the elements
to minimize the disk space usage. In the time-reversed simulation,
presented in Fig. 12, the wavefield has been amplified to undo the
attenuation affecting the wavefield in the forward simulation. To
keep the time-reversed simulation stable, we used a point matching
technique where the wavefield is reset periodically every 1000 time
steps. As the numerical error is growing with time, when amplify-
ing the wavefield in the time-reversed simulation, the regenerated
wavefield is less accurate compared to the purely elastic case. Still,
the checkpointing technique permits to limit the error and nearly
perfect results can be obtained. The time-reversed simulation in
Fig. 12(b) can typically be run in parallel with an adjoint simula-
tion (i.e. where we back propagate the misfit between the observed
seismograms and the seismogram computed in the current model)
to compute sensitivity kernels.

6 C O N C LU S I O N

We introduced two different methods to construct numerical equiva-
lents of time-reversal mirrors. The first method is based on the direct
discrete differentiation of the original wavefield. The second method
approximates the surface integrals in the Helmoltz-Kirchhoff rep-
resentations using a set of point sources. Both methods allow us to
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Figure 12. Numerical example of a time-reversed simulation as it can be used, for example, in regional adjoint tomography. The magnitude of the displacement
wavefield produced by an earthquake in eastern Europe is pictured. The seismic source has coordinates, 45.73◦(latitude), 26.67◦ (longitude), 93.8 Km (depth).
The bandwidth of the source time function goes from 10−3 to 10−2 Hz. We used the PREM model (Dziewonski & Anderson 1981) to define the velocities
and the attenuation inside the propagating medium. (a) Snapshot of wavefield observed after an earthquake in eastern europe modelled using the RegSEM
SEM software. Note that the displacement magnitude is pictured using a logarithmic colour scale. (b) Time-reversed simulation where the wavefield in (a) is
regenerated locally thanks to the time-reversal mirror.

regenerate an original wavefield locally inside a confined volume
surrounded by the time-reversal mirror. The wavefield can be re-
generated equally going forward in time or backward in time. The
direct discrete differentiation method is perfectly accurate and re-
quires to store the values of the original wavefield at some specific
grid points. The multiple point source method is less grid depen-
dent in the sense that the point sources can be placed off the grid
nodes. While the accuracy of the multiple point source method is
inferior compared to the one of the direct discrete differentiation
method, it can be tuned by varying the number of point sources
used to approximate the continuous integrals. We showed that the
proposed time-reversal mirrors can be used to efficiently model the
seismic response in a medium that has been perturbed locally. This
opens the possibility to use the proposed mirrors to develop hybrid
techniques where different methods are used to model wave propa-
gation inside and outside the mirror. The present study is part of a
more general effort to achieve regional scale adjoint tomography in
the deep Earth.
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Moczo, P., Kristek, J., Vavryčuk, V., Archuleta, R.J. & Halada, L., 2002.
3D heterogeneous staggered-grid finite-difference modeling of seismic
motion with volume harmonic and arithmetic averaging of elastic moduli
and densities, Bull. seism. Soc. Am., 92(8), 3042–3066.

Montagner, J.-P., Larmat, C., Capdeville, Y., Fink, M., Phung, H., Romanow-
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