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S U M M A R Y
Today’s numerical methods like the Spectral Element Method (SEM) allow accurate simulation
of the whole seismic field in complex 3-D geological media. However, the accuracy of such a
method requires physical discontinuities to be matched by mesh interfaces. In many realistic
earth models, the design of such a mesh is difficult and quite ineffective in terms of numerical
cost. In this paper, we address a limited aspect of this problem: an earth model with a thin
shallow layer below the free surface in which the elastic and density properties are different
from the rest of the medium and in which rapid vertical variations are allowed. We only consider
here smooth lateral variations of the thickness and elastic properties of the shallow layer. In
the limit of a shallow layer thickness very small compared to the smallest wavelength of the
wavefield, by resorting to a second order matching asymptotic approximation, the thin layer
can be replaced by a vertically smooth effective medium without discontinuities together with
a specific Dirichlet to Neumann (DtN) surface boundary condition. Such a formulation allows
to accurately take into account complex thin shallow structures within the SEM without the
classical mesh design and time step constraints. Corrections at receivers and source—when
the source is located within the thin shallow layer—have been also derived. Accuracy and
efficiency of this formulation are assessed on academic tests. The stability and limitations of
this formulation are also discussed.

Key words: Numerical approximations and analysis; Surface waves and free oscillations;
Computational seismology; Wave propagation.

1 I N T RO D U C T I O N A N D M O T I VAT I O N S

Over the last 10 yr, computational seismology has made important

progress allowing accurate computation of the whole wavefield in

complex 3-D models. In particular, the Spectral Element Method

(SEM) (e.g. Priolo et al. 1994; Faccioli et al. 1996; Komatitsch

& Vilotte 1998) has been shown to be very effective for large scale

seismology (e.g. Komatitsch & Tromp 2002; Capdeville et al. 2003;

Chaljub et al. 2003). The SEM is a high-order variational method

based on hexahedra-type of mesh which, like the finite element

method, can accurately take into account discontinuities of the elas-

tic and density properties when discontinuities are matched by a

mesh interface. Such a constraint leads to a lack of geometrical flex-

ibility. Designing a cubic element mesh discretization of an earth

model that honours discontinuities can be a difficult process that

leads to small size elements. When using an explicit time marching

scheme, such small elements impose a small time step in order to

respect the stability condition, increasing dramatically the simula-

tion cost. This is typically the case when using crustal models built

on several thin layers located just below the free surface. In that

case, the mesh discretization can hardly be done. So far, only crude

approximations to this problem have been used. A first one is just to

remove the crustal model where the mesh is too difficult to design

and to replace it by a simpler model for which the mesh design is

easier. A second solution is to design a mesh that does not hon-

our the crust model discontinuity interfaces, especially the bottom

Moho discontinuity interface where it gets too thin. In that case, the

discontinuity interfaces do not match with a mesh interface and can

be located within an element. In both solutions the accuracy can-

not be warranted, and in the latter case it becomes mesh dependent

and difficult to predict. To illustrate this problem, let us consider a

spherically symmetric sphere, of the same radius (6371 km) as the

earth, and two models.

(i) A fully homogeneous, model 1, with V s = 6 km s−1, V p =
8 km s−1 and ρ = 3000 kg m−3.

(ii) A homogeneous model with a 20 km thin slow layer below

the surface, model 2, with V s = 3 km s−1, V p = 8 km s−1 and ρ =
3000 kg m−3, and the same properties as model 1 below 6351 km.

This simplistic example is quite representative of some of the diffi-

culties associated with more realistic earth models like when using

PReliminary Earth Model (PREM, Dziewonski & Anderson 1981),

for the mantle, together with 3-D crustal models, like CRUST2.0

(Bassin et al. 2000) or 3SMAC (Nataf & Ricard 1996).

Simulations of a 100 s corner period wavefield are done using the

coupled mode-SEM (Capdeville et al. 2003). The domain for the

normal mode solution is defined as the domain from the centre up to

4371 km while the SEM solution domain is defined as the domain
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1136 Y. Capdeville and J.-J. Marigo

Figure 1. 2-D vertical cross-section of one region of meshes 1 (top) and 2 (bottom) used to propagate waves in, respectively, model 1 and 2 (see text). The

element edges are in solid line and the integration point mesh is plotted with dashed lines. mesh 1 is made of two layers of elements and mesh 2 is made of

three. The last element layer of mesh 2 is vertically so thin (20 km) compared to the 990 km edge size of the other two element layers that a zoom is needed to

see it. The polynomial degree is 8 in each direction.

from 4371 km up to the surface. Three different SEM meshes have

been considered.

(i) Mesh 1 (Fig. 1, top), corresponds to the discretization of model

1 with two elements of 1000 km thickness and a polynomial approx-

imation of degree eight in each direction. For the minimum propa-

gating wavelength considered here (roughly 600 km outside of the

shallow layer), this corresponds to a two wavelength sampling for

each element. Mesh 1 is slightly oversampling the wavefield.

(ii) Mesh 2 (Fig. 1, bottom), corresponds to the discretization of

model 2. The 20 km thin layer below the surface is actually matched

by an element layer. Vertically, mesh 2 has now three elements ver-

tically, two of 990 km and one of 20 km size.

(iii) Mesh 2b is a relaxed version of mesh 2, where the up-

per elements have now a vertical thickness of 250 km instead of

20 km. For this mesh, the upper thin layer below the surface is now

contained in the upper layer of elements and the discontinuity is not

honoured by a mesh interface.

Stability condition for the second-order Newmark explicit time dis-

cretization leads to a time step of about 1.5 s for mesh 1 and 0.05 s

for mesh 2. It is worth to note here the drastic impact of the mesh 2

discretization: computing time for mesh 2 is expected to be 30 times

larger than for mesh 2. Even though this situation may be slightly

improved when using a different degree for the vertical polyno-

mial approximation in the upper layer, mesh 2 simulations will still

be much more expensive than mesh 1 simulations. Computing time

limitations lead in practice to fall back on simplistic approximations

among which we present two. In the first one, the upper thin layer

is simply ignored and model 2 is approximated using model 1 with

mesh 1. A second approximation is to resort to a mesh that does not

match the discontinuity interface, this is the case when using mesh

2b for the discretization of model 2. In that case, the discontinuity in-

terface of model 2 is roughly approximated within the upper element

layer. This allows to relax the time step restriction associated with

mesh 2 but fail to approximate accurately the discontinuity interface.

Actually, this last approximation is commonly used in practice when

considering crustal models in earth global models, (e.g. Komatitsch

& Tromp 2002). To assess the implications of these two choices in

terms of accuracy, synthetic seismograms have been computed for

two source locations, a deep one (source 1, 160 km deep) and a

shallow one (source 2, 10 km deep). The source–receiver epicentral

distance is 90◦ and the source is an arbitrary double couple moment

tensor.

In Fig. 2, the synthetic seismograms corresponding to the refer-

ence solution, that is, computed for model 2 using mesh 2, and to

the first crude approximation, that is, using model 1 with mesh 1,

are compared. Synthetics are computed for the deep source location.

For both vertical and transverse components, this type of approxi-

mation (ignoring the shallow layer) is clearly not accurate, especially

for surface waves which exhibit a strong phase shift. It is quite re-

markable that such a small layer can have such a large effect on

seismograms. In Fig. 3, same comparison is performed but now for

the second type of approximation, that is, using model 2 with mesh

2b . Even though the phase shift of the surface waves is now slightly

reduced, it is still quite large. Finally, in Figs 4 and 5, the same com-

parisons are performed but now in the case of the shallow source

location. Similar conclusions can be drawn, but these time differ-

ences in amplitude can also be clearly noted and not only for surface

waves.

First this relatively extreme example shows how large the effect

of a shallow structure can be, especially on surface waves phase

velocity, even if the shallow structure is much thinner than the
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Figure 2. Comparison between reference seismograms computed in model 2 (solid line) using mesh 2 and seismograms computed in model 1 using mesh 1

(dashed line). The source is a moment tensor at 161 km depth and the epicentral distance is 92 degree. R1 and R2 phases are the minor and major arc Rayleigh

surface wave trains. G1 and G2 phases are the minor and major arc Love surface wave trains. The source origin time is 500 s (this is the case for all seismograms

presented in this paper).
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Figure 3. Same configuration and reference solution as for Fig. 2. The second solution (dashed line) is this time computed in model 2 but using mesh 2b. mesh

2b is very close to mesh 2 but with a thickness of the last spherical layer of elements of 250 km instead of 20 km for mesh 2 such that the physical discontinuity

of model 2 is not matched by an element boundary.

wavelength. This fact has been known for long by seismologists

working on large scale seismic imaging for whom shallow struc-

ture corrections are a constant issue (e.g. Montagner & Jobert 1988;

Marone & Romanowicz 2007). Second, the results of this simple

example clearly illustrate that the crude approximations classically

used for simulation of complete wavefield propagation in earth mod-

els incorporating crustal models are not accurate. This problem is

very close to the two scale homogenization problem used to com-

pute effective media and effective wave equations, (see, for example

Leonach & Grover 2000; Capdeville & Marigo 2007, for an appli-

cation to the wave equation in layered media), but here small scales

remain localized close to the free surface only. Such a boundary layer

type problem has been widely study in composite material mechan-

ics (Dumontet 1986; Abdelmoula & Marigo 2000), but very little

in the wave propagation context (e.g. Boutin & Roussillon 2006).

In the static context, the goal of the works simply consists in adding

a first order boundary layer corrector to the leading term. To derive

those correctors, a widely used technique is the matched asymp-

totic expansions. This formal but constructive technique is well

known in the framework of fluid mechanics (to study the bound-

ary layers of the flow near an obstacle), but was introduced more

recently in solid mechanics (Nguetseng & Sanchez-Palencia 1985;

Sanchez-Palencia 1987). The mathematical justification of this ap-

proach and convergence results have been obtained for some model
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Figure 4. Same as Fig. 2 but for a 10 km depth source. The source is in the shallow layer.
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Figure 5. Same as Fig. 3 but for a 10 km depth source. The source is in the shallow layer.

problems based on Laplace-type equation with rapidly oscillating

bulk coefficients or rapidly oscillating boundary conditions (Allaire

& Amar 1999; Amar 2000). In this paper, we address the problem of

the effective behaviour of a thin shallow layer on the wave equation.

To keep the equations simple, we shall consider here the case of

an infinite half-space rather than a spherically symmetric medium.

However, the results obtained here can be directly extended to spher-

ical geometry with only slight or even no modifications. We first re-

call the classical procedure used to solve the wave equation in such

a medium using the spectral expansion in the horizontal directions.

We then solve the problem by removing the shallow layer and find-

ing the effective boundary conditions using a matching asymptotic

approach. The solutions in the spectral-frequency domain are then

transformed back to the space-and-time domain. The SEM imple-

mentation is provided and finally accuracy tests at the global scale

are shown together with a discussion of stability and validity lim-

itations. Even if the global scale is chosen here for the validation

tests, the range of applications is not limited to this scale and can

be applied, for example, at the scale of a basin with a thin sediment

layer on the top.

2 T H E O R E T I C A L D E V E L O P M E N T

2.1 Preliminary: solving the wave equation in 1-D media

We choose here to work with an infinite half-space with material

properties only varying with the vertical axis (layered medium).

Working with a spherically symmetric medium would provide very

similar and often exactly the same results but with some unnecessary

heavier hand calculus. For the flat geometry, it is convenient to use a

cylindrical coordinate system, where any position x can be written

x = (z, r, φ) = r cos(φ)x̂ + r sin(φ)ŷ + zẑ where x̂, ŷ and ẑ are the

Cartesian unit vectors and z the vertical axis. We also introduce the

C© 2008 The Authors, GJI, 172, 1135–1150

Journal compilation C© 2008 RAS

 at IN
IST

-C
N

R
S on N

ovem
ber 2, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Shallow layer correction for SE like methods 1139

following notation, for any vector v, its horizontal part is noted with

an index 1: v1 = v − vz ẑ with vz = v · ẑ the vertical part.

If gravity and anelasticity are not taken into account, the wave

equation can be written

ρü − ∇ ·σ = f, (1)

σ = c : ε(u), (2)

where ρ is the density, u the displacement field, ü the acceleration

field, σ the stress tensor, f the source force, c the fourth order elastic

tensor, : the double indices contraction andε(u) = 1
2
(∇u+T ∇u) the

strain tensor withT the transpose operator. A free surface boundary

condition is imposed at the surface (t = σ · ẑ = 0, where ẑ is the

vertical axis unit vector) and the solution must vanish as z goes

to minus infinity. We assume that f both depends upon time and

space.

In layered transverse isotropic media, the 21 independent coef-

ficients of the elastic tensor c(z) reduce to five, for example, the

classical A(z), C(z), F(z), L(z) and N(z) elastic parameters. To take

advantage of the layered model assumption, we use the classical

spectral expansion of the displacement and traction on a horizontal

plane in the horizontal direction (e.g. Takeuchi & Saito 1972):

u(x, ω)

=
∫

k

∑
m

[Uk(z, ω)Pkm + Vk(z, ω)Bkm + Wk(z, ω)Ckm] dk, (3)

t(x, ω)

= σ(x, ω) · ẑ, (4)

=
∫

k

∑
m

[TUk(z, ω)Pkm + TV k(z, ω)Bkm + TW k(z, ω)Ckm] dk,

(5)

with

Pkm = Ykm(r, φ)ẑ, (6)

Bkm = 1

k
∇1Ykm(r, φ), (7)

Ckm = 1

k
(ẑ × ∇1)Ykm(r, φ), (8)

where k is the horizontal wavenumber, m the azimuthal wavenum-

ber, ∇1 is the surface gradient vector, Y km(r , φ) = J m(kr )eimφ ,

where J m is the order m Bessel function of the first kind. Intro-

ducing (3) and (5) in the wave eqs (1) and (2) without the source

term f, we obtain two independent systems of equations of the

form:

∂z qYk(z, ω) = q Sk(z, ω)qYk(z, ω). (9)

The index q can take two values, q = s for the spheroidal (or P-
SV ) problem and q = t for the toroidal (or SH) problem. We have

sYk = T (Uk, TUk, Vk, TV k) for the spheroidal problem and tYk =
T (Wk, TW k) for the toroidal problem,

sSk(z, ω) =

⎛⎜⎜⎜⎝
0 1

C ka0 0

−ω2ρ 0 0 k

−k 0 0 1
L

0 −ka0 k2a1 − ω2ρ 0

⎞⎟⎟⎟⎠ (10)

with a0(z) = F(z)/C(z), a1(z) = A(z) − F2(z)/C(z) and

t Sk(z, ω) =
(

0 1
L

k2 N − ω2ρ 0

)
. (11)

Note that these two problems do not depend on m, which explains

the fact that U k , V k . . . have no m subscript. The free boundary

conditions are [qY(z, ω)] j∈Bq = 0 where [Y] j is the component j
of the Y vector, B s = {2, 4} and B t = {2}. As z → −∞, qYk

must vanish.

To obtain synthetic seismograms, the classical procedure is to find

a complete set of normal modes solving (9). For a given solution type

q and wavenumber k, only a discrete number of frequencies ωqkn

are solutions. Once the eigenfunction basis is known, a synthetic

seismogram is found by expanding the solution for a given source

on this normal mode set:

u(x, ω) =
∫

k

∑
qnm

1

ω2 − ω2
qkn

uqkmn(x)

(∫
Ω

u�
qkmn .f dΩ

)
dk, (12)

where uqknm is a mode, [e.g. usnkm = U k(ωkn) Pkm + V k(ωkn) Bkm for

a spheroidal mode],
∫
Ω dΩ the volume integration,∗ is the complex

conjugate. Moreover, if f is a double couple point source located in

xe with a time history f (t),

f(x, ω) = − f (ω)M · ∇δ(x − xe) (13)

we have∫
Ω

u�
qkmn .f dΩ = f (ω)M : ε�

qkmn(xe), (14)

= f (ω)M : ∇u�
qkmn(xe), (15)

where M is the (symmetric) earthquake moment tensor and εqkmn =
ε (uqkmn).

For the next two sections, the wavefield will often be decomposed

into two parts, one spheroidal (P-SV ) and one toroidal (SH), u =
uPSV +uSH where

uP SV =
∫

k

∑
m

(UkPkm + VkBkm) dk, (16)

uSH =
∫

k

∑
m

WkCkm dk. (17)

Similarly, we can write t = tPSV + tSH . The following properties can

be easily demonstrated and will be useful to compute the solutions

back in the space domain from the spectral domain:

∇1 · Ckm = 0, (18)

∇1 × Bkm = 0, (19)

∇2
1 · Pkm = −k2Pkm, (20)

Using (18) and (19) we have

∇1 · uSH = 0, (21)

∇1 × uP SV
1 = 0. (22)

The following classical identity will also be useful: for any regular

enough vector v(x) we have

∇2
1 v1 = ∇1(∇1 · v1) − ∇1 × (∇1 × v1). (23)
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1140 Y. Capdeville and J.-J. Marigo

Figure 6. Sketch showing variation with z of one of the original medium property. The medium property shown here can stand for the density or elastic wave

velocities.

2.2 Matching asymptotic expansions in the shallow layer

Because the following development is the same for each frequency,

for each wavenumber and for the spheroidal or toroidal cases, the

dependency of vectors and operators with respect to q, k and ω is

dropped in this section. Because S operators fully define the elastic

(As, Cs, Fs, Ls, Ns) and density (ρs) parameters of the model, we

will often refer to S as an ‘earth model’.

We now assume the elastic properties and density are constant or

smoothly varying with depth everywhere in the model, except in a

thin layer just below the surface where they are varying rapidly with

z as described in Fig. 6. The top of the model is in z = a, the bottom

of the shallow layer at z = b0 and, therefore, the layer thickness is

H 0 = a − b0. We assume the layer to be thin with respect to the

minimum wavelength of the wavefield: ε0 = H0

λmin
	 1. This defines

the ‘real model’ Sε0 .

In the following, we assume to be given a smooth model Ss(z)

defined on [0, a] and a shallow layer model SH (z) defined on [b, a]

of thickness H = a − b. Ss is ‘smooth’ in the sense that it doesn’t

contain any small scales and SH can vary rapidly in [b, a]. We build

Sε , with ε = H
λmin

, such that

Sε(z) =
{

Ss(z) if z < b,

SH (z) if z ≥ b.
(24)

This defines a series of models Sε as ε (or b) varies. What we call

the ‘real model’ is just a particular case of this series obtained for

ε = ε0 (or b = b0).

In practice only the real model Sε0 is known. Ss is a priori not

given and has to be built depending on the properties of Sε0 below

b0. For example, if the model below the depth b0 is constant as a

function of z, a valid (i.e. that doesn’t depend on ε) construction is:

Ss(z) =
{

Sε0 (z) if z < b0,

Sε0 (b−
0 ) if z ≥ b0,

(25)

where Sε0 (b−
0 ) is the value of Sε0 just below b0. For less simple cases,

the Ss operator corresponds to a simpler model than the original

model that can be any smooth prolongation of the model below the

thin layer as long as it does not depend on ε. SH is easily built by

scaling SH0 (z) = Sε0 (z) for z in [b0, a].

We introduce a new variable y = z−b
ε

, a zoom on the shallow

layer, such that y = 0 at the bottom of the layer and y = ya = H
ε

at

the free surface (see Fig. 6) as well as the S (y) operator:

S(y) = Sε(εy + b). (26)

The main idea of this procedure is to solve the wave equation with

a heavy numerical method in the smooth model Ss which is a much

simpler task than in the original model and to use an asymptotic

matching condition to compute the missing upper boundary condi-

tion. To find this missing upper boundary condition, we introduce

two vectors,

(i) Yε solution of

∂zYε(z) = Ss(z)Yε(z). (27)

(ii) Dε solution of

∂yDε(y) = εS(y)Dε(y). (28)

The boundary conditions for (27) and (28) are a free surface bound-

ary condition for Dε at y = ya, Yε must vanish as z → −∞ and

the two solutions must match in an overlapping area which will be

specified later. Yε has a ε dependency through this last boundary

condition even if its wave equation (27) doesn’t depend on ε. In

(28), the ε appears because of the transformation ∂z → 1
ε
∂y in the

original wave equation (9).

We use two asymptotic expansions for Yε and Dε:

Yε(z) =
∞∑

i=−1

εiY i (z), (29)

Dε(y) =
∞∑

i=−1

εiDi (y). (30)

The sums start at i = −1 because we will see later that the first

terms non-trivialy equal to zero starts at i = −1. Introducing these

expansions into (27) and (28), for each i, we obtain

∂zY i = SsY i (31)

∂yDi+1 = SDi . (32)

The boundary conditions are

[Di ] j∈B = 0 for y = ya, (33)

Y i → 0 as z → −∞. (34)
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Shallow layer correction for SE like methods 1141

Di and Y i must match somewhere. (35)

For the third boundary condition, we assume there exists a large

negative y where the solution Dε(y) is still valid as well as Yε(εy+b)

such Dε(y) = Yε(εy + b). In the limit when ε tends towards zero,

even if − y is large, ε y + b is close to a and, therefore, a Taylor

expansion for Y i around a can be used:

Y I [a + ε(y − ya)] =
∞∑
j=0

ε j (y − ya) j

j!

∂ jY i

∂z j
(a). (36)

Introducing (36) in (29) and imposing that the two solutions Dε and

Yε match for very large − y, we find the matching conditions:

lim
y→−∞

Di (y) −
i∑

j=0

(y − ya)i− j

(i − j)!

∂ i− jY j

∂zi− j
(a) = 0. (37)

Eqs (31) and (32) have now to be solved for each i with the

boundary conditions (33) and (34) and the matching conditions (37).

For i < −2, we obtain Di+1 = Y i+1 = 0.

For i = −2, (32) gives ∂yD−1 = 0. With the boundary conditions

and matching condition, the only solution to the previous equation is

D−1 = 0, which also impose Y−1 = 0.

For i = −1, (32) gives ∂yD0 = 0. D0 is, therefore, constant in the

shallow layer. The matching condition gives D0 = Y0(a). These

expected results show that the shallow layer has no effect on the

solution Y at order 0. Neglecting the shallow layer by just ignoring

it and replacing it by the smooth model is, therefore, an order zero

approximation.

For i = 0, (32) gives

∂yD1 = SD0. (38)

Knowing that D0 is constant in y and D0 = Y0(a), the last equa-

tion can easily be integrated:

D1(y) = D1(ya) +
[∫ y

ya

S(y′) dy′
]

Y0(a). (39)

The matching condition for i = 1 gives

lim
y→−∞

[
D1(y) − (y − ya)∂zY0(a) − Y1(a)

] = 0. (40)

Knowing that S (y) =Ss(εy + b) for y < 0, using (31) for i = 0 and

(39), the matching condition (40) gives

D1(ya) − Y1(a) + X1(0)Y0(a) = 0, (41)

with

X1(y) = −
∫ ya

y

[
S(y′) − Ss(a)

]
dy′. (42)

Eq. (41) makes the link between the two solutions D1 and Y1. Using

[D1(ya)]i∈B = 0, it gives the boundary conditions for Y1 in z = a:[
Y1(a)

]
i∈B

= [
X1(0)Y0(a)

]
i∈B

. (43)

For i = 1, (32) gives

∂yD2 = SD1. (44)

Integrating the last equation, we find

D2(y) = D2(ya) +
{∫ y

ya

S(y′)[X1(y′) − X1(0)] dy′
}

Y0(a)

+
[∫ y

ya

(y′ − ya)S(y′) dy′
]

Ss(a)Y0(a)

+
[∫ y

ya

S(y′) dy′
]

Y1(a). (45)

The matching condition for i = 2 is

lim
y→−∞

[
D2(y) − 1

2
(y − ya)2∂2

z2Y0(a) − (y − ya)∂zY1(a)

−Y2(a)

]
= 0. (46)

Knowing that S(y) = Ss(εy + b) for y < 0, using (31) for i = 0 and

(45), the matching condition (46) gives

D2(ya) + X2(0)Y0(a) + X1(0)Y1(a) − Y2(a) = 0, (47)

with

X2(y) =

−
∫ ya

y
{S(y′)[X1(y′) − X1(0)] − [X1(y′) − X1(0)]Ss(a)} dy′.

(48)

To obtain the last equation, we have assumed that ∂ zSs(a) 	 Ss(a)

which implies we have been able to build a smooth model that does

not vary much in the thin shallow layer with respect to its absolute

value. This assumption is easy to meet for the earth. Neverthe-

less, when this assumption is not valid, one can with some algebra

but no real difficulty complete the last expression. Finally, using

[D2(ya)]i∈B = 0, (47) gives the boundary conditions for Y2 in

z = a:[
Y2(a)

]
i∈B

= [
X2(0)Y0(a) + X1(0)Y1(a)

]
i∈B

. (49)

We are now able to solve eqs (31) and (32) for order 0, 1 and

2. Nevertheless, it is not very convenient for methods like SEM to

solve different orders one after another. Instead of doing so, it is

more interesting to somehow solve for the sum of all orders. To do

so, we solve for Ŷ2
and D̂2

, solutions of (27) and (28), respectively,

with the free boundary condition at the surface and regularity of the

solution as z → −∞ but with the following matching condition:

D̂2
(

a − b

ε

)
=

[
I − εX̂2(0)

]
Ŷ2

(a), (50)

with

X̂2(y) = X1(y) + εX2(y). (51)

One can check that

Ŷ2 = Y0 + εY1 + ε2Y2 + O(ε3), (52)

D̂2 = D0 + εD1 + ε2D2 + O(ε3). (53)

The source and the receiver are often located in the shallow layer

and it is useful to know D̂2
[(z − b)/ε] as a function of Ŷ2

(z). It can

be shown that, for z > b,

D̂2
(

z − b

ε

)
=

{
I − ε

[
X̂2(0) − X̂2

(
z − b

ε

)] }
Ŷ2

(z), (54)

For double-couple sources, it is useful to know the first derivative

of the solution with respect to z in the shallow layer:

∂zD̂2

(
z − b

ε

)
= Sε(z)

{
I − ε

[
X̂2(0) − X̂2

(
z − b

ε

)]}
Ŷ2

(z) + O(ε3). (55)

The expressions obtained here are very similar to the ones ob-

tained by Capdeville & Marigo (2007) which indicates that the

transition from this shallow layer correction to the more general

homogenization case should be straightforward.
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2.3 From the horizontal spectral domain

to the space domain

In order to use the results obtained in the previous section with nu-

merical methods based on a space formulation, one needs to convert

them from the horizontal spectral domain to the space domain. This

has to be done for the boundary condition in any case and for the

source and the receiver when they are located in the shallow layer.

In the following, we name u and t the displacement and traction

corresponding to the Ŷ solution and uc and tc the displacement

and traction corresponding to the D̂ solution corrected for the shal-

low layer effect. More generally, all quantities (vector components,

strain tensor . . .) corresponding to the D̂ solution are noted with a

‘c’ upper script.

2.3.1 Boundary conditions

We explicit here the spectral to space domain conversion only for

the first order of the toroidal case. The complete case is given in

Appendix A. The matching condition (50) gives[
(I − ε t X̂

1
k)t Ŷ

1

k

]
2

(a) = 0, (56)

which, using (11) and (42) can be written

TW k(a, ω) = ε
[
k2 X 1

N (0) − ω2 X 1
ρ(0)

]
Wk(a, ω), (57)

where

X 1
N (y) = −

∫ ya

y
[N (y′) − N s(a)] dy′ (58)

X 1
ρ(y) = −

∫ ya

y
[ρ(y′) − ρs(a)] dy′ (59)

with N (y) = N ε(εy + b), ρ(y) = ρε(εy + b). Using (3), (5), (20)

and returning to the time domain, for all x belonging to the free

surface, to the first order we have:

tSH (x, t) = −ε
[
X 1

N (0) ∇2
1 uSH (x, t) − X 1

ρ(0) üSH (x, t)
]
. (60)

In practice, the toroidal part and spheroidal part of a wavefield can-

not be accessed and only the total wavefield u is known. If u is

used instead of uSH in (60), because ∇2
1u = ∇2

1uSH + ∇2
1uPSV and

∇2
1uPSV is in general non-zero, there will be an unwanted contri-

bution of the spheroidal part of the displacement on the toroidal

traction. To avoid this problem, the identity (23) and the property

(21) can be used to show that

∇2
1 uSH = −∇1 × ∇1 × u1 (61)

and, therefore, for all x belonging to the free surface, we have

tSH (x, t) = ε
[
X 1

N (0) ∇1 × ∇1 × u1(x, t) + X 1
ρ(0) üSH (x, t)

]
.

(62)

Note that the problem may seem to be not completely cleared be-

cause of the last term of the last equation still depends on uSH .

Nevertheless, it is shown in Appendix A that the exact same term

appears in the spheroidal part of the solutions and, therefore, it is

safe to replace uSH by u here.

As mentioned earlier, the complete expression of the traction on

the free boundary is given in Appendix A, and has the form, for all

x belonging to the free surface and all times t,

t = Aε(u, ü). (63)

Because the last equation is a boundary condition in traction that

depends upon the displacement, it is called a Dirichlet to Neumann

condition (DtN).

2.3.2 Receiver correction

Most of the time, the receivers are located on the free surface and,

therefore, a shallow layer correction must be applied. This time, the

solution needed is D̂(ya) knowing Ŷ(a) given by (50). Up to the

order 1, using (50) for the first component in the toroidal case, and

the first and third component in the spheroidal case, we find, for a

receiver located in xr,

uc(xr , t) = u(xr , t) + εX 1
a0(0) (∇1 · u1) (xr , t) ẑ, (64)

where X 1
a0 is given in Appendix A. It can be seen that, to order 1 in

ε, only the vertical component of the spheroidal case has a non-zero

correction. The order 2 correction for the receiver has not been used

in this paper.

2.3.3 Sources located in the shallow layer

If the source is located in the shallow layer, a correction also needs

to be applied. As shown in eq. (15), the moment tensors is applied

to the strain tensor. Using (54) and (55) in y = (ze − b)/ε, where

ze is the vertical location of the source, we can find Mc : ∇uc(xe)

as a function of u. Mc is the ‘real’ moment tensor used to compute

the solution in the original model underlying Sε . As for the receiver

correction, we limit the asymptotic expansion to the order 1. Only

the toroidal case is developed here, the spheroidal case is given in

Appendix B. We have, for any symmetric M:

M : ∇u = M11 : ε11 + M1z · (∇1uz + ∂zu1) + Mzzuz, (65)

where ε11 = 1
2
(∇1u1 + T ∇1u1),

M1z = T (Mrz, Mφz, 0), (66)

M11 =

⎛⎜⎝ Mrr Mrφ 0

Mφr Mφφ 0

0 0 0

⎞⎟⎠ . (67)

Considering the following toroidal displacement for any k and m,

uc = W c
k Ckm, (68)

we have

Mc : ∇uc = Mc
11 : εc

11 + Mc
1z · ∂zu

c
1, (69)

= W c
k Mc

11 : ∇Ckm + 1

Lε
e

T c
W kMc

1z · Ckm, (70)

where Lε
e = Lε(ze) and the relation ∂z W c

k = 1
Lε

e
T c

W k has been used.

Using (54) in the toroidal case, we find, to the first order

W c
k = Wk − εLe X 1

eL∂z Wk, (71)

T c
W k = Le∂z Wk − ε

(
k2 X 1

eN − ω2 X 1
eρ

)
Wk, (72)

where

X 1
L (y) = −

∫ ya

y

[
1

L
(y′) − 1

Ls
(a)

]
dy′, (73)

X 1
eL = X 1

L (0) − X 1
L

(
ze − b

ε

)
, (74)

X 1
eN = X 1

N (0) − X 1
N

(
ze − b

ε

)
, (75)
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X 1
eρ = X 1

ρ(0) − X 1
ρ

(
ze − b

ε

)
, (76)

with L(y) = Lε(εy + b). Using (3), (20), (23), the property (21)

and the symmetry of the moment tensor, we can show that

Mc : εc SH = M0
1z · εSH

1z − ε
X 1

eN

Ls
M0

1z · (∇1 × ∇1 × u1)

+εω2
X 1

eρ

Ls
M0

1z · uSH − εX 1
eL LsMc

11 : ∂zε
SH
11 , (77)

where M0
1z = Ls

e
Lε

e
Mc

1z and Ls
e = Ls(ze). It appears clearly here that,

for a moment tensor source, there is an order 0 effect of the shallow

layer through the Ls
e/L

ε
e ratio. The M0 moment tensor (see Appen-

dix B for complete expression) is the order 0 apparent moment

tensor. If located outside of the shallow layer, we have M0 = Mc

but not if source is located in the shallow layer. Including the time

dependence f (t) of the source (77) can be rewritten as a force vector,

f(x, t) = F [ f (t)δ(x − xe)], (78)

where for any scalar function g(x, t)

F (g) = M0
1z · ∇1g ẑ − ε

X 1
eN

Ls
e

∇1 × ∇1 × M0
1z g

− ε
X 1

eρ

Ls
e

M0
1z g̈ − εX 1

eL Ls
eMc

11∇1g. (79)

To be complete, the spheroidal part of the solution needs to be

included in the source correction. This is done in Appendix B.

2.4 Spectral element implementation

We now consider a bounded domain Ω that can be a part of the

infinite half-space or the whole Earth (in the spherical geometry

case) and its boundary ∂Ω. In the infinite half-space, we consider

that ∂Ω is limited to the free surface and that a solution is found for

the other faces of the domain (like absorbing boundaries). The SEM

solves the wave equation under the weak form, that is, the solution

u, for all admissible displacements w and all times t must satisfy

(ρü, w) + a(u, w) − 〈t, w〉
∂Ω = (f, w) (80)

with (w, ρu)|t=0 = 0 and (w, ρu̇)|t=0 = 0, where (·, ·) is the classical

L2 inner product, the symmetric elastic bi-linear form

a(u, w) =
∫
Ω

∇u : c : ∇w dx (81)

and

〈t, w〉
∂Ω =

∫
∂Ω

t · w dx. (82)

Usually the term 〈t, w〉∂
 vanishes because of the free boundary

condition. In our case, we have

〈t, w〉
∂Ω =

∫
∂Ω

Aε(u, ü) · w dx, (83)

where Aε is defined in eq. (A16).

If the source happens to be located in the shallow layer, the source

term (f, w) can be computed from eq. (B11).

The classical spectral element approximation can then be applied

without any major difficulty, at least for the first order. The boundary

condition term requires to compute terms with gradient and curl on

a surface, like for example, for the toroidal contribution:

〈∇1 × ∇1 × u1, w〉
∂Ω =

∫
∂Ω

(∇1 × w1) · (∇1 × u1) dx, (84)

where the Green’s theorem has been used. In flat geometry, comput-

ing terms like (84) is straightforward, but in spherical geometry this

is less simple. Indeed, because of the pole singularities, the spher-

ical coordinates cannot be used. Instead, the local coordinates of

the ‘cubed sphere’ are used (Sadourny 1972; Ronchi et al. 1996).

These local coordinates system are non-orthogonal curvilinear sys-

tems leading to less simple expressions than in the flat case. Nev-

ertheless, with some patience, these expressions can be retrieved

and computed without any numerical difficulty. The second order

terms are potentially problematic. Indeed, as presented in Appen-

dix A, the DtN operator Aε leads to terms in (81) which involve third

order spatial derivatives, which is not compatible with C0 spectral

elements. Even if most of the terms of 〈t, w〉∂
 can be symmetrize

(see Appendix A) and the problem of the third order spatial deriva-

tives can be worked out by introducing auxiliary variables (Givoli

2004; Givoli et al. 2006) or by using a spatial filtering to remove

unphysical small spatial frequencies of u before using it in Aε , none

of these solution is used here. Instead, we commit a variational crime

(Strang & Fix 1973) by implementing the second order DtN term

as it is given in Appendix A, which appears to give an accurate so-

lution, at least for cases shown in this paper. Nevertheless, proper

solutions to this problem will be explored in future works.

For the time evolution, a classical explicit Newmark time march-

ing scheme is used. With the introduction of the DtN boundary

condition (83), because of its dependency on acceleration, this time

marching scheme becomes implicit. This problem is similar to the

one obtained when coupling a normal solution with the SEM through

a DtN operator (see Capdeville et al. 2003). The order 1 acceleration

terms can be included in the mass matrix, but the order 2 terms have

to be treated implicitly. Nevertheless, this modification is minor and

localized on the surface of the mesh. From the stability point of

view, the DtN boundary condition can be a problem depending on

the elastic, the density contrast and on the thickness of the shallow

layer. For example, the order 1 acceleration terms, once included

in the mass matrix, can lead to a locally negative mass matrix for

mesh points localized on the surface. Obviously, such a case cannot

be stable. Depending on the mesh design, on the thickness, on the

elastic and on the density properties of the shallow layer, all terms

of Aε potentially lead to instabilities when ε gets large enough. For

order 2 terms, this stability issue is probably linked to the variational

crime mention earlier. Nevertheless, this stability problem has not

been an issue for any of the cases presented in this paper.

3 VA L I DAT I O N T E S T S

All the validation tests presented in this paper are done in spheri-

cal geometry. This introduces a small modification of the boundary

condition for the spheroidal part given in Appendix C. In order

to validate the above theoretical development we first perform a

test in the model 2 defined in the introduction. The source–receiver

configuration is the same as the one used in Section 1. The refer-

ence solution is computed in model 2 using mesh 2. The order 0

asymptotic solution is obtained by computing the seismogams in

model 1 using mesh 1. The results have already been shown in Sec-

tion 1, Fig. 2, and are not accurate. On Fig. 7 is shown in dashed

line the asymptotic solution for the order 1 (left-hand plots) and

order 2 (right-hand plots) for the boundary condition and order 1

for the receiver and to be compared with the reference solution

(solid line). The source used is not in the shallow layer (161 km

deep), therefore, no correction is required for the source. This result

has to be compared with the two approximate solutions used in the
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Figure 7. Comparison between reference seismograms (solid line) obtained in model 2 and solutions obtained in model 1 with the asymptotic boundary

conditions at the order 1 (left-hand plots) and at the order 2 (right-hand plots) and with order 1 receiver correction. The geometrical configuration is the same

as for Fig. 2. Residuals are shown Fig. 8.

introduction: removing the shallow layer (Fig. 2), which is actually

the order 0 asymptotic solution, and using a mesh that doesn’t hon-

our the physical discontinuity with an element boundary (Fig. 3). It

appears that the order 1 is accurate for the transverse component

but not for the vertical one. On the transverse component, some

small discrepancy with the reference solution can nevertheless be

observed for times corresponding to the Rayleigh waves. This is

due to the small transverse component of the spheroidal solution.

The order 2 corrects a large part of the error observed for the order

1. This is still not perfect but far much better than any of the ap-

proximate solutions tried in the introduction. The only differences

between the order 1 and 2 for the transverse component are due to

the small transverse component of the spheroidal solution. Indeed,

it appears that the order 1 for the toroidal solution is, in fact, the

order 2 accuracy (the order 2 terms of the toroidal asymptotic ex-

pansion for the boundary condition are all zero). To have an idea of

the convergence towards the reference solution as the thickness of

the shallow layer decreases, a similar test with a layer thickness of

10 km has been performed. In Fig. 8 is shown the residuals between

the reference solution and the solution obtained with the order 2

boundary conditions and the order 1 receiver solutions for the 20 km

(solid line) and the 10 km (dashed line) thick shallow layer. It can

first be observed that the residuals are larger for the vertical compo-

nent than for the transverse component. For the vertical component,

the residual amplitude is roughly divided by 8 between the 20 and

10 km layer thickness cases, which is coherent with an ε3 asymp-

totic approximation. For the transverse component, some parts of

the signal have indeed a residual amplitude divided by 8 but some

others only by 4 or 2. This indicates that some parts of the residual

signal is dominated by the boundary condition effects (order 2) and

some other by the receiver correction (order 1) or even sphericity

effects (order 0 for the transverse component). The last two effects

are very small but still appear due to the good accuracy achieved for

the transverse component. For applications requiring high accuracy

convergence, it might be a good idea to go to the order 2 also for

the receiver correction and all sphercity terms. The effect of the re-

ceiver correction is shown in Fig. 9. In this case, it can be seen that

it affects slightly the amplitude for the fundamental surface wave
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Figure 8. Residuals between the reference solution and the solution obtained with the order 2 boundary condition and the order 1 receiver solutions in model 2

with a 20 km (solid line) and a 10 km (dashed line) thick shallow layer. The amplitude of the traces is normalized with the maximum amplitude of the reference

solution.
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1000 2000 3000 4000 5000

Time (s)

Figure 9. Effect of the order 1 local correction on the receiver. On the top traces is plotted the vertical component of the reference solution (thin solid line),

the solution with order 2 asymptotic boundary condition and no correction at the receiver (dotted line) and the residual (bold solid line). On the bottom traces

is plotted the same thing but this time the receiver correction is applied (dotted line).

Z component

R1 R2

0 1000 2000 3000 4000 5000 6000 7000 8000

Time (s)

T component

G1 G2

Figure 10. Same as Fig. 7 right-hand part, but this time, the source is 10 km depth (in the shallow layer) and an order 1 correction is applied for the source.

This figure has to be compared with the approximate solutions Figs 4 and 5.

but mainly the amplitude of some higher modes. In Fig. 10 is shown

the effect of the order 1 source correction if the source lies in the

shallow layer. It can be seen that this correction accurately corrects

the amplitude effects seen on Figs 4 and 5. Nevertheless, looking

carefully, it appears that the accuracy is not as good (especially for

the Rayleigh phase) as when the source is not in the shallow layer.

This indicates that the order 2 correction for the source might be

useful for higher accuracy.

Finally, we show a test in a more realistic Earth. We use PREMoc,

a modified PREM model with a thin oceanic crust but no ocean (see

Fig. 11). For this model, the Earth radius is 6366 km and the crustal

thickness is 6.5 km. In Fig. 12 are shown traces obtained with dif-

ferent numerical simulations. The reference solution is computed in

the PREMoc with a SEM mesh honouring all the model disconti-

nuities and especially the Moho. Then, the solution corresponding

to the order 0 of the asymptotic solution is shown. In that case the

asymptotic solution is just a regular computation with free bound-

ary condition in the order 0 model. The order 0 model corresponds

to the elastic properties and density of the Ss operator for which

the crustal layer has been replaced by the continuity of the mantle

(see Fig. 11, right-hand graph). Note that here the order 0 model is

not constant in the shallow layer but is a degree 1 polynomial: the

prolongation of the PREMoc upper mantle. The traces obtained in

such a model have surface wave phases heavily shifted with respect

to the reference solution which shows how inaccurate this solution

is (Fig. 12). Next is computed the solution in PREMoc, but with a

SEM mesh that doesn’t honour the Moho. Instead the mesh inter-

face that corresponds to the Moho is moved down by 20 km to a
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Figure 11. P and S wave velocities (Vp and Vs) and density (rho) as a function of the Earth radius of the PREMoc model, a modified PREM model used for

the last numerical experiment of this paper. It is a modified PREM in the sense that the Earth radius in 6366 km (6371 km for the original PREM), the Moho

depth is 6.5 km (24.4 km for the original PREM) and crustal properties correspond to an oceanic crust (obtained from CRUST2.0). On the left is plotted an

Earth scale view of the model. On the right is plotted a zoom of rho, Vp and Vs in the last kilometres of PREMoc (dashed lines) and of the order 0 model (solid

line) used for the asymptotic method. The last model correspond to the elastic properties and density of the Ss operator.
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order 2

Figure 12. Vertical (top traces) and transverse (bottom traces) components for the experiment in PREMoc (Fig. 11). The reference solution (solid lines) is

computed in PREMoc with a mesh honouring all the interfaces and especially the Moho. In dotted line is plotted the solution computed in the order 0 model,

that is a model for which the crust has been removed and replaced by the continuity of the mantle (see Fig. 11, right-hand plot). In dash–dotted line is plotted

the solution computed in PREMoc but with a mesh that is not honouring the Moho discontinuity (the mesh interface corresponding the Moho have been placed

at 20 km depth, which corresponds to the Moho depth of the real PREM). In dashed line is plotted the solution computed with the order 2 asymptotic boundary

condition and the order 1 receiver corrector. The corner frequency of the source is 1/65 Hz and is an irrelevant moment tensor. The time windows are focused

on the minor arc surface waves. The source depth is 25 km and the epicentral distance is 77◦.

depth that corresponds to the Moho depth of the real PREM. This

represents the solution that is commonly used in global seismology.

It can be seen that this solution is more accurate than the previous

one, but the error is still very large. The phase shift is this time

overestimated where as in the example given Fig. 3, the phase shift

is underestimated. This shows how unpredictable is the error when

major model discontinuities are not honoured by a mesh interface.

Finally, the order 2 asymptotic solution is shown. The accuracy is

really good despite a small amplitude error. For this example, just

because of the time step, the computation of the asymptotic solution

is here seven times faster than that of the reference solution.

4 D I S C U S S I O N, C O N C L U S I O N A N D

P E R S P E C T I V E S

We have presented a second order asymptotic method to compute

the effective behaviour of the wavefield in the presence of a thin
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heterogeneous shallow layer below the free surface. Using an order 2

matching asymptotic expansion, we have shown that, in the case of a

shallow layer thickness much smaller than the minimum wavelength

of the wavefield, the shallow layer elastic and density properties can

be removed and replaced by continuation of the elastic and density

properties of the medium just below the shallow layer and by a

particular DtN boundary condition. From the numerical method

point of view, the main interest of such a method is that the shallow

layer lower boundary doesn’t exist anymore and, therefore, doesn’t

need to be matched by a mesh interface. This releases the meshing

and explicit time marching time step problems. It has been shown,

that if the thickness is small enough with respect to the minimum

wavelength, the accuracy is excellent. The actual ‘small enough’

thickness required widely varies with the actual properties of the

elastic medium in the shallow layer and the wanted accuracy. In the

example given in this paper the ratio thickness with respect to the

horizontal wavelength is as small as 1/30, but is can raise up to 5

for smaller velocity contrasts.

The SEM implementation of the DtN boundary condition can

lead to an unstable Newmark time scheme if the thin layer is not

thin enough compared to the minimum wavelength that can accu-

rately be sampled by the mesh. This can be a serious problem in

some situations. For example, if the thickness of the shallow layer

is smoothly varying laterally and becoming locally too thick so the

time scheme is unstable, the asymptotic solution cannot be used at

all. This problem can be solved using a spatial filtering of the dis-

placement wavefield at the surface before using it in the boundary

condition DtN operator. The spacial filtering removes the unphys-

ical high spatial frequencies of the wavefield and leads to a stable

scheme. Another potential solution in the introduction of auxiliary

variables following the work on non-reflecting absorbing boundaries

(Givoli 2004). These solutions will be explored in the near future.

Nevertheless, even if the scheme can be made stable in any case,

it doesn’t improve the fact that the accuracy that decreases rapidly

when the thickness of the layer is no longer small enough compared

the wavelength. This is the main limitation of this development: the

frequency range of accuracy is determined by the geometry (mainly

the thickness of the shallow layer) of the model. When the thin

layer assumption is broken by increasing the corner frequency of

the source or by increasing the thickness of the shallow layer, the

accuracy deteriorates and this development needs to be dropped.

Another obvious limitation is that this work only applies to small

scales directly located below the free surface and doesn’t help for

deeper small scale heterogeneities. An option to go around these

two problems is to move to volume homogenization (Capdeville &

Marigo 2007). In Capdeville & Marigo (2007), it is shown that, for a

given frequency band, an effective model and wave equation can be

found. In the layered model case, the order 2 effective medium is a

Backus filtering (Backus 1962) of the original model in the volume

together with a DtN boundary condition for the free surface similar

to the one obtained here. In that case, a different but valid solution is

found for each frequency band and for any depth of the small scale

heteogenities. The SEM implementation of Capdeville & Marigo

(2007)’s work will be the purpose of a future publication.

Applications of this work as it stands should be found in for-

ward modelling as it allows to take into account complex shallow

structures. A good example of such an application is the accurate

implementation of crustal models at the global scale. Such a tech-

nique is of course not limited to the global scale and can be applied

for example at the scale of a basin to take accurately into account

a shallow structure like a sediment layer. A following application

is the crustal correction for imaging technique. Indeed, for classi-

cal seismic imaging techniques, the crust is not inverted for, but

an a priori crustal model is used. By allowing to incorporate accu-

rately the a priori crustal model in the forward modelling problem,

this work can be used to solve this classical problem. This work

can also be used for seismic imaging by allowing to invert for the

crust. Indeed, this works gives an integrated parametrization of these

complex shallow structures and of the local sources and receivers

interaction with the small scale of the Earth through a limited num-

bers of parameters (X 1
L, X 1

N , etc.) that can be inverted for more easily

than a thin vertical parametrization of the crust.
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Chaljub, E., 2000. Modèlisation numérique de la propagation d’ondes sis-
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A P P E N D I X A : S E C O N D O R D E R E X P R E S S I O N O F T H E B O U N DA RY C O N D I T I O N

For the toroidal case, one can check that the ε2 terms for the asymptotic boundary condition is 0. Therefore, expression (62) is also valid for

the order 2.

For the spheroidal case the matching condition (50) gives[
(I − ε sX̂2

k)sŶ
1

k

]
2,4

(a) = 0, (A1)

which can be written as

TUk(a, ω) = −εω2 X 1
ρ(0)Uk(a, ω) + ε2

[
kω2 X 2

a(0) + k3 X 2
a1(0)

]
Vk(a, ω) (A2)

TV k(a, ω) = ε
[
k2 X 1

a1 − ω2 X 1
ρ(0)

]
Vk(a, ω) + ε2

[
kω2 X 2

b(0) + k3 X 2
a1

]
Uk(a, ω), (A3)

where all terms higher than ε2 have been truncated, and

X 1
a0(y) = −

∫ ya

y

[
a0(y′) − as

0(a)
]

dy′ (A4)

X 1
a1(y) = −

∫ ya

y

[
a1(y′) − as

1(a)
]

dy′ (A5)

X 2
a1(y) = −

∫ ya

y

[
X 1

a1(y′) − X 1
a1(0)

]
dy′ (A6)

X 2
a(y) =

∫ ya

y

{
ρ(y′)

[
X 1

a0(y′) − X 1
a0(0)

] + [
1 − as

0(a)
] [

X 1
ρ(y′) − X 1

ρ(0)
] }

dy′ (A7)

X 2
b(y) =

∫ ya

y

{
ρs(a)

[
X 1

a0(y′) − X 1
a0(0)

] + [
1 − a0(y′)

] [
X 1

ρ(y′) − X 1
ρ(0)

] }
dy′ + X 1

a0(0)X 1
ρ(0), (A8)

where for any function f ε , f (y) = f ε(εy + b). Furthermore, using that fact that

d

dy
[X 1

ρ(y) − X 1
ρ(0)] = ρ(y) − ρs(a), (A9)

and

d

dy

[
X 1

a0(y) − X 1
a0(0)

] = a0(y) − as
0(a), (A10)

it can be shown with some algebra that Xa
2(0) = Xb

2(0).

Using expressions (3) and (5), properties (18)–(20), the fact that

∇1 · Bkm = −kPkm · ẑ, (A11)

∇1 (Pkm · ẑ) = kBkm, (A12)
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and the identity (23) we find from (A2) and (A3)

tP SV
z = εX 1

ρ üz + ε2 X 2
a ∇1 · ü1 + ε2 X 2

a1 ∇2
1 (∇1 · u1) (A13)

tP SV
1 = −εX 1

a1 ∇1(∇1 · u1) + εX 1
ρ üP SV

1 − ε2 X 2
b ∇1üz − ε2 X 2

a1 ∇2
1 (∇1uz), (A14)

where the X coefficients are taken in y = 0 and the traction and displacement in (x, t), x belonging to the free surface. Using t = tP SV
1 +

tP SV
z ẑ + tSH and u = uP SV

1 + uP SV
z ẑ + uSH , we find, for all x belonging to the free surface and all time t

t = Aε(u, ü), (A15)

with

Aε(u, ü) = ε
{

X 1
ρ ü − X 1

a1 ∇1(∇1 · u1) + X 1
N ∇1 × ∇1 × u1

}
+ε2

{
X 2

a1∇2
1 [(∇1 · u1) ẑ − ∇1uz ] + X 2

b [(∇1 · ü1) ẑ − ∇1üz]
}
, (A16)

where the X coefficients are taken in y = 0. As written here, (A16) leads to a non-symmetric term in (81). Nevertheless, because X 2
a = X 2

b, it

can be symmetrize. This can be seen on the spectral expressions (A2) and (A3) or directly on (A16) following the same procedure as Chaljub

(2000) for the gravity terms in the wave equation.

A P P E N D I X B : S P H E RO I DA L C O N T R I B U T I O N T O T H E S O U RC E C O R R E C T I O N

We develop here the order 1 spheroidal contribution to the correction to be applied to source if it is located in the shallow layer. Starting from

M : ∇u = M11 : ε11 + M1z · (∇1uz + ∂zu1) + Mzzuz, (B1)

and considering the following spheroidal displacement for any k and m,

uc = U c
k Pkm + V c

k Bkm, (B2)

we have, for any M,

Mzzu
c
z = ∂zU

c
k MzzPkm · ẑ, (B3)

M1z · (
∇1uc

z + ∂zu
c
1

) = 1

Lε
e

T c
V kM1z · Bkm, (B4)

M11 : εc
11 = V c

k M11 : ∇1Bkm . (B5)

Using (54) and (55) for the spheroidal case, to the first order we find

V c
k = Vk − εLs

e X 1
eL (∂z Vk + kUk) , (B6)

T c
V k = TV k − εk X 1

ea0Cs
e∂zUk − ε

[
k2

(
X 1

ea1 − Fs
e X 1

ea0

) − ω2 X 1
eρ

]
Vk, (B7)

∂zU
c
k = Cs

e

Cε
e

∂zUk + k
F ε

e − Fs
e

Cε
e

Vk + εω2
X 1

eρ

Cε
e

Uk − εkaε
e0 Ls

e X 1
eL (∂z Vk + kUk), (B8)

where Cε
e = Cε(ze), Cs

e = Cs(ze), F ε
e = F ε(ze), Fs

e = Fs(ze),

X 1
ea0 = X 1

a0(0) − X 1
a0

(
ze − b

ε

)
, (B9)

X 1
ea1 = X 1

a1(0) − X 1
a1

(
ze − b

ε

)
. (B10)

Using (20), (23), (A11), I : ∇1Bkm = −kPkm · ẑ and combining with the toroidal solution, we finally have

Mc : εc = M0 : ε

− εX 1
eL Ls

eMc
11 : (∂zε11 + ∇1∇1uz) + εae0 X 1

eL Ls
e Mc

zz

(
∇1 · ∂zu1 + ∇2

1 uz

)
− εX 1

ea0

Cs
e

Ls
e

M0
1z · ∇1∂zuz + εω2

X 1
eρ

Ls
e

M0
1z · u1 + εω2

X 1
eρ

Cs
e

M0
zzuz

+ ε
X 1

ea1 − Fs
e X 1

ea0

Ls
e

M0
1z · ∇1 (∇1 · u1) − ε

X 1
eN

Ls
e

M0
1z · (∇1 × ∇1 × u1) , (B11)

where

M0
zz = Mc

zz

Cs
e

Cε
e

(B12)
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M0
rr = Mc

rr + Mc
zz

Fs
e − F ε

e

Cε
e

(B13)

M0
φφ = Mc

φφ + Mc
zz

Fs
e − F ε

e

Cε
e

(B14)

M0
zr = Mc

zr

Ls
e

Lε
e

(B15)

M0
zφ = Mc

zφ

Ls
e

Lε
e

(B16)

M0
rφ = Mc

rφ. (B17)

These last expressions give the order 0 effect of the shallow layer on the source. This result is the same than the one obtain by Capdeville &

Marigo (2007). As it has been done for the toroidal case, (B11) can be rewritten as

f(x, t) = F [ f (t)δ(x − xe)], (B18)

where the operator F can be derived from (B11).

Spectral element implementation of a source in the shallow layer is similar as the implementation of the boundary condition. It nevertheless

requires to compute the surface gradient of a vector, which, in spherical geometry using the ‘cubed sphere’ coordinate system is not completely

trivial. Useful formula for this point can be found in Choblet (2005).

A P P E N D I X C : E F F E C T O F S P H E R I C I T Y

For the sake of simplicity, this paper has been written for the flat geometry. Nevertheless, for large applications, including the examples given

in this paper, the sphericity is important. Working in spherical geometry leads to the same generic eq. (9) with similar matrices (10) and (11)

(see Takeuchi & Saito 1972, for details):

sSl (r, ω) =

⎡⎢⎢⎢⎣
d/r 1/C el/r 0

−ρω2 + a −d/r (−aγl + 2ρgr )/2 γl/r

−γl/r 0 2/r 1/L

(aγl + 2ρgr )/2 −el/r −ρω2 + bl −2/r

⎤⎥⎥⎥⎦ (C1)

with

a = 4

r 2

(
A − F2

C
− N − ρgr

)
, bl = γ 2

l

r 2

(
A − F2

C

)
− 2N

r 2
,

d = 1 − 2F

C
, el = γl

F

C
.

where g is the norm of the gravity field at the radius r and γl = √
l(l + 1). In the toroidal case, we have:

t Sl (r, ω) =
(

2/r 1/L

−ρω2 + 
l N/r 2 −2/r

)
, (C2)

with 
l = (l − 1)(l + 2) and l the angular degree.

For our frequency range of interest, l is large enough such that kr � l + 1
2

� √

l � γl , where k is the horizontal wave number used all

along this paper. Assuming the asymptotic expansion is performed close to the free surface, we have k >> 1
r . Simplifying (C1) and (C2), we

find the same expression than (10) and (11) but for two terms:

[sSk]23 = −[sSk]32 � − 2k

r
∂Ω

(a1 − N ), (C3)

where r∂
 is the earth radius. This requires to add ε 2
r
∂Ω

[X 1
a1(0) − X 1

N (0)] (∇1 · u1 ẑ − ∇1uz) to expression (A16).
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